User Tools

Site Tools


es:internal:doctorado

Doctorado

Ideas

  • Para manipulación con dos manos, usar un controlador estilo o similar a STUART que úna de cierta forma las dos manos, pero que no le tome importancia a la posición(a menos que esté cerca de un obstaculo). De esta forma las dos manos se van a mover a una posición tal donde ambas pueden lograr la orientación requerida.

Object control

  • Skilled: Requiere no solo tener un buen modelo del objecto (que definitivamente ayuda a hacer manipulación más experimentada), sino que también el mapeo a las correctas acciones del robot van a interferir en el resultado.
  • Implement a simple kalman filter. Then see if there are some implementations in python.
  • Add forward kinematics to all the fingers. Calculate velocity and possibly acceleration on them.
  • Add all calculated forces from all the fingers to the force controller and to the equivalent applied object excerted force.
  • Use the finger forward kinematics and vision information to adjust object position in the estimated position. and maybe do it later for velocity.
  • Check if the object is touched at all in the model. Don't exert force/torque if the position is outside of the box faces. The force can not be inside the faces, if this is the case, then reestimate object position. Fingers must be always touching object if there is some force measured on them. If there is force measured on them and there is no possible logical position for the object to be, then it means the object is deformable (or some error), in the case the object is deformable, then estimate the best possibly object position match, from here deformation can also be measured.
  • Adjust estimated position according to touch information.
  • Motion equations to the object. Estimate position and speed of object from vision, in every moment of time. Every time there is synchronized information of position, speed, and force. Then estimate final outcome, given some continuation of the current force for some extra time. Or while there is force don't estimate, until there is no force anymore, then estimate.
  • Inverse problem. Initially specify the action used (to select the right motion controller).
  • Try with different objects.
  • Constantly update the object model parameters. Update rule. Kalman filter?
  • Decidir hasta donde abarcar del systema total en el modelo dynamic (no lineal)
  • A partir de los diagramas de fase extraer automaticamente una funcion best fit (probando muchas funciones y métodos y escogiendo la funcion con menos parametros pero que se acerque más) que me diga cosas importantes cualitativas de systemas dynamics. Tal vez luego mathematicamente checkear que esas puedan ser posibles soluciones analiticas.

Articulos importantes:

  1. The motor somatotopy of speech perception. Alessandro D'ausilio

iCub

  • Kalman filter between vision estimated motion of all the picture and measured angles in the head and the commanded position or velocities to the joints. Is it possible to estimate the position of my head with respect to the world from the video? This is for dealing with problems in calibration and actuation and angle measurement with all types of robots.

Mi robot

  • Juegos muy bajos en los joints de las articulaciones.
    • Pero aun así, poder lidear con juegos. Probar un robot con juegos muy grandes y encontrar formas de hacer funcionar el sistema.
  • Autocalibración en todo.

Ideas de exposición para CR

  • Robots que se pueden comunicar con humanos (no expertos) en forma natural (lenguaje y interacción física)
  • El robot es un compañero y no un “esclavo”
  • Comunicación: “entendimiento mutuo”. Compartir conocimiento y experiencia. El cuerpo es el canal de comunicación del humano.
  • Robots que nos pueden entender. Predecir que es lo que el humano va a hacer en un futuro cercano.
  • ciencias del cerebro: como un humano entiendo que hace otro humano.
  • ciencias roboticas: como un humanoide entiendo lo que un humano hace.
  • Las dos últimas juntas son ciencias cognitivas.
  • Descubrimientos importantes:
    • Canonical neurons in F5. Mirror Neurons. Visuomotor neurons: ambiguity of the discharge or “motor” perception. Fadiga, Fogassi. Dependiendo de la complejidad del calculo del grasp se activan más o menos neuronas.
  • Mostrar el panfleto de La noche larga de ciencia y el día de puertas abiertas. Cuantas areas una universidad en Bavaria cubre, y no es la única universidad grande. Un estado con 12 millones de habitantes.

Conferencias relacionadas con robótica

Personas interesadas en trabajar juntos

  • Rafael Mu?oz Salinas rmsalinas@uco.es. Espa~nol de Cordoba. Hablamos de trabajar en proyectos conjuntos.
es/internal/doctorado.txt · Last modified: 2021/02/01 05:55 by 127.0.0.1