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Fourier theory is pretty complicated mathematically. But there are some
beautifully simple holistic concepts behind Fourier theory which are
relatively easy to explain intuitively. There are other sites on the web that
can give you the mathematical formulation of the Fourier transform. I will
present only the basic intuitive insights here, as applied to spatial imagery.

Basic Principles: How space is represented by frequency
Higher Harmonics: "Ringing" effects
An Analog Analogy: The Optical Fourier Transform

Fourier Filtering: Image Processing using Fourier
Transforms

Basic Principles

Fourier theory states that any signal, in our case visual images, can be
expressed as a sum of a series of sinusoids. In the case of imagery, these are
sinusoidal variations in brightness across the image. For example the
sinusoidal pattern shown below can be captured in a single Fouier term that
encodes 1: the spatial frequency, 2: the magnitude (positive or negative), and
3: the phase.

These three values capture all of the information in the sinusoidal image. The
spatial frequency is the frequency across space (the x-axis in this case) with
which the brightness modulates. For example the image below shows
another sinusoid with a higher spatial frequency.
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The magnitude of the sinusoid corresponds to its contrast, or the difference
between the darkest and brightest peaks of the image. A negative magnitude
represents a contrast-reversal, i.e. the brights become dark, and vice-versa.
The phase represents how the wave is shifted relative to the origin, in this
case it represents how much the sinusoid is shifted left or right.

A Fourier transform encodes not just a single sinusoid, but a whole series of
sinusoids through a range of spatial frequencies from zero (i.e. no
modulation, i.e. the average brightness of the whole image) all the way up to
the "nyquist frequency”, i.e. the highest spatial frequency that can be
encoded in the digital image, which is related to the resolution, or size of the
pixels. The Fourier transform encodes all of the spatial frequencies present
in an image simultaneously as follows. A signal containing only a single
spatial frequency of frequency fis plotted as a single peak at point falong
the spatial frequency axis, the height of that peak corresponding to the
amplitude, or contrast of that sinusoidal signal.
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There is also a "DC term" corresponding to zero frequency, that represents
the average brightness across the whole image. A zero DC term would mean
an image with average brightness of zero, which would mean the sinusoid
alternated between positive and negative values in the brightness image. But
since there is no such thing as a negative brightness, all real images have a
positive DC term, as shown here too.

Actually, for mathematical reasons beyond the scope of this tutorial, the
Fourier transform also plots a mirror-image of the spatial frequency plot
reflected across the origin, with spatial frequency increasing in both
directions from the origin. For mathematical reasons beyond the scope of
this explanation, these two plots are always mirror-image reflections of each
other, with identical peaks at fand -fas shown below.
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What I have shown is actually the Fourier transform of a single scan line of
the sinusoidal image, which is a one-dimensional signal. A full
two-dimensional Fourier transform performs a 1-D transform on every
scan-line or row of the image, and another 1-D transform on every column of
the image, producing a 2-D Fourier transform of the same size as the original
image.

The image below shows a sinusoidal brightness image, and its
two-dimensional Fourier transform, presented here also as a brightness
image. Every pixel of the Fourier image is a spatial frequency value, the
magnitude of that value is encoded by the brightness of the pixel. In this case
there is a bright pixel at the very center - this is the DC term, flanked by two
bright pixels either side of the center, that encode the sinusoidal pattern. The
brighter the peaks in the Fourier image, the higher the contrast in the
brightness image. Since there is only one Fourier component in this simple
image, all other values in the Fourier image are zero, depicted as black.

Brightness Image Fourier transform

Here is another sinusoidal brightness image, this time with a lower spatial
frequency, together with it's two-dimensional Fourier transform showing
three peaks as before, except this time the peaks representing the sinusoid
are closer to the central DC term, indicating a lower spatial frequency.

Brightness Image Fourier transform
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The significant point is that the Fourier image encodes exactly the same
information as the brightness image, except expressed in terms of amplitude
as a function of spatial frequency, rather than brightness as a function of
spatial displacement. An inverse Fourier transform of the Fourier image
produces an exact pixel-for-pixel replica of the original brightness image.

The orientation of the sinusoid correlates with the orientation of the peaks in
the Fourier image relative to the central DC point. In this case a tilted
sinusoidal pattern creates a tilted pair of peaks in the Fourier image.

Brightness Image Fourier transform

A

Different Fourier coefficients combine additively to produce combination
patterns. For example the sinusoidal image shown below is computed as the
sum of the tilted sinusoid shown above, and the vertical sinusoid of lower
spatial frequency shown above that.

Brightness Image Fourier transform

The brightness and the Fourier images are completely interchangable,
because they contain exactly the same information. The combined brightness
image shown above could have been produced by a pixel-for-pixel adding of
the two brightness images, or by a pixel-for-pixel addition of the
corresponding Fourier transforms, followed by an inverse transform to go
back to the brightness domain. Either way the result would be exactly
identical.
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Higher Harmonics and "Ringing" effects

The basis set for the Fourier transform is the smooth sinusoidal function,
which is optimized for expressing smooth rounded shapes. But the Fourier
transform can actually represent any shape, even harsh rectilinear shapes
with sharp boundaries, which are the most difficult to express in the Fourier
code, because they need so many higher order terms, or higher harmonics.
How these "square wave" functions are expressed as smooth sinusoids will
be demonstrated by example.

The figure below shows four sinusoidal brightness images of spatial
frequency 1, 3, 5, and 7. The first one, of frequency 1, is the fundamental,
and the others are higher harmonics on that fundamental, because they are
integer multiples of the fundamental frequency. These are in fact the "odd
harmonics" on the fundamental, and each one exhibits a bright vertical band
through the center of the image. The Fourier transform for each of these
patterns is shown below.

1 3 5 7
The next table shows the result of progressively adding higher harmonics to
the fundamental. Note how the central vertical band gets sharper and
stronger with each additional higher harmonic, while the background drops
down towards a uniform dark field. Note also how the higher harmonics

produce peaks in the Fourier images that spread outward from the
fundamental, defining a periodic pattern in frequency space.

1 1+3 1+3+5 1+3+5+7
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The images below show what would happen if this process were continued all
the way out to the Nyquist frequency - it would produce a thin vertical stripe
in the brightness image, with sharp boundaries, i.e. a "square wave" in
brightness along the x dimension. The Fourier transform of this image
exhibits an "infinite" series of harmonics or higher order terms, although
these do not actually go out to infinity due to the finite resolution of the
original image. This is how the Fourier transform encodes sharp square-wave
type features as the sum of a series of smooth sinusoids.

Brightness Image Fourier transform

Back to top

The Optical Fourier Transform

A great intuitive advance can be made in understanding the principles of the
Fourier transform once you learn that a simple lens can perform a Fourier
transform in real-time as follows. Place an image, for example a slide
transparency, at the focal length of the lens, and illuminate that slide with
coherent light, like a colimated laser beam. At the other focus of the lens
place a frosted glass screen. Thats it! The lens will automatically perform a
Fourier transform on the input image, and project it onto the frosted glass
screen. For example if the input image is a sinusoidal grating, as shown
below, the resultant Fourier image will have a bright spot at the center, the
DC term, with two flanking peaks on either side, whose distance from the
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center will vary with the spatial frequency of the sinusoid.
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We can now see the holistic principle behind the Fourier transform. Every
point on the input image radiates an expanding cone of rays towards the
lens, but since the image is at the focus of the lens, those rays will be
refracted into a parallel beam that illuminates the entire image at the
ground-glass screen. In other words, every point of the input image is spread
uniformly over the Fourier image, where constructive and destructive
interference will automatically produce the proper Fourier representation.

frosted glass screen
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Conversely, parallel rays from the entire input image are focused onto the
single central point of the Fourier image, where it defines the central DC
term by the average brightness of the input image.

7 of 10 02/17/2012 08:10 PM



An Intuitive Explanation of Fourier Theory http://sharp.bu.edu/~slehar/fourier/fourier.html

input Fourier
image lens image

! ot

-+ f - - f »

Note that the optical Fourier transformer automatically operates in the
reverse direction also, where it performs an inverse Fourier transform,
converting the Fourier representation back into a spatial brightness image.
Mathematically the forward and inverse transforms are identical except for a
minus sign that reverses the direction of the computation.

Back to top

Fourier Filtering

I will now show how the Fourier transform can be used to perform filtering
operations to adjust the spatial frequency content of an image. We begin with
an input image shown below, and perform a Fourier transform on it, then we
do an inverse transform to reconstruct the original image. This reconstructed
image is identical, pixel-for-pixel, with the original brightness image.

Brightness Image Fourier Transform Inverse Transformed

I will now demonstrate how we can manipulate the transformed image to
adjust its spatial frequency content, and then perform an inverse transform
to produce the Fourier filtered image. We begin with a low-pass filter, i.e. a
filter that allows the low spatial-frequency components to pass through, but
cuts off the high spatial frequencies. Since the low frequency components
are found near the central DC point, all we have to do is define a radius
around the DC point, and zero-out every point in the Fourier image that is
beyond that radius. In other words the low-pass filtered transform is identical
to the central portion of the Fourier transform, with the rest of the Fourier
image set to zero. An inverse Fourier transform applied to this low-pass
filtered image produces the inverse transformed image shown below.
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Low-Pass Filtered Inverse Transformed

We see that the low-pass filtered image is blurred, preserving the low
frequency broad smooth regions of dark and bright, but losing the sharp
contours and crisp edges. Mathematically, low-pass filtering is equivalent to
an optical blurring function.

Next we try the converse, high-pass filtering, where we use the same spatial
frequency threshold to define a radius in the Fourier image. All spatial
frequency components that fall within that radius are eliminated, preserving
only the higher spatial frequency components. After performing the inverse
transform on this image we see the effect of high-pass filtering, which is to
preserve all of the sharp crisp edges from the original, but it loses the larger
regions of dark and bright.

High-Pass Filtered Inverse Transformed

If the low-pass filtered inverse-transformed image is added pixel-for-pixel to
the high-pass inverse-transformed image, this would exactly restore the
original unfiltered image. These images are complementary therefore, each
one encodes the information which is missing from the other.

Next we will demonstrate a band-pass filtering that preserves only those
spatial frequencies that fall within a band, greater than a low cut-off, but less
than a higher cut-off.

Band-Pass Filtered Inverse Transformed
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The next simulation is the same as above, except with a narrower band of
spatial frequencies.

Band-Pass Filtered Inverse Transformed

The next simulation shows band-pass filtering about a higher spatial-
frequency band,

Band-Pass Filtered Inverse Transformed

and finally the same as above except again using a narrower spatial-
frequency band.

Band-Pass Filtered Inverse Transformed

These computer simulations demonstrate that the Fourier representation
encodes image information in a holistic distributed manner that allows
manipulation of the global information content of the image by spatial
manipulations of the transformed image.

Back to top
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