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The Attitude Control Problem

" John Ting-Yung Wen, Member, IEEE, and Kenneth Kreutz-Delgado, Member, IEEE

Abstract—A general framework for the analysis of the atti-
tude tracking control problem for a rigid body is presented in
this paper. In contrast to the approach that feedback linearizes
the attitude dynamics to a double integrator form with respect
to some minimal representation of the orientation, a large
family of globally stable control laws are obtained by using the
globally nonsingular unit quaternion representation in a Lya-
punov function candidate whose form is motivated by the
consideration of total energy of the rigid body. The controllers
share the common structure of a proportional-derivative feed-
back plus some feedforward which can be zero (the model-inde-
pendent case), the Coriolis torque compensation, or an adaptive
compensation. These controller structures are compared in terms
of the requirement on the a priori model information, guaran-
teed transient performance, and robustness. The global stability
of the Luh-Walker-Paul robot end-effector controller is also
analyzed in this framework.

1. INTRODUCTION

HE orientation control of a rigid body has important

applications from pointing and slewing of aircraft, heli-
copter, spacecraft, and satellites [1]-[8], to the orientation
control of a rigid object held by a single or multiple robot
arms [9]-[19]. In the case of robot arm control, the arms can
be viewed as actuators maneuvering the attitude of the held
object where the control loop is closed around the tip force
(which acts to move the held object), and the joint torques are
then selected to effect the desired tip force profile in a
feedforward manner.

The Euler equation which describes the evolution of the
orientation on the attitude configuration space, the rotation
group SO(3), is usually viewed as too complex to work with
directly. For this reason, an additional compensation is some-
times done to place the attitude dynamics in a double integra-
tor form with respect to some minimal 3-parameter represen-
tation of attitude [1], [7], [10]-[13]. Such an approach
therefore introduces an additional level of complexity to the
control law. Furthermore, this approach can never result in a
control law which is globally stable on SO(3), as there are
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no globally nonsingular 3-parameter representations of the
rotation group [6], [8]. When working with three-parameter
representations of attitude, it is consequently necessary to
avoid singularities of attitude representation. This compli-
cates path planning and can seriously constrain admissible
attitudes. This limit on the allowable motions is for purely
mathematical reasons which have nothing to do with the
physically admissible motions.

The research reported in this paper resuits from an investi-
gation into the proper attitude error measures needed to have
globally stable control on the rotation group when controlling
the Euler equation, and into the proper formulation of, and
tools for, the study of such control. The work reported here
is motivated in part by the early work of [1] on spacecraft
attitude control, which focused on appropriate attitude repre-
sentations and adopted a Lyapunov approach, and by the
recent developments in energy-like Lyapunov functions ap-
propriate for control analysis of systems whose behavior
arises from a Lagrangian analysis [20]. Our work is also
closely related to that in [3]. In fact, the results given in this
paper can be viewed as a natural extension of the work in
(11, [3].

The unit quaternion, which uses the least possible number
of parameters (four) to represent orientation globally, is
chosen as the representation for the attitude error. Unit
quaternions have been previously used in the robotics context
in path planning [22] and, recently, their ability to represent
attitude in a singularity-free way has gained appreciation in
robot kinematics analysis [23], [24]. For spacecraft control
analysis, unit quaternions have been applied in [1], [3]. The
use of the energy Lyapunov function is not a new concept—it
has appeared in the context of the stabilization of mechanical
systems [25], [26], attitude control [2]-[S] and, more re-
cently, robotics [20], [27]-[30]. With the novel use of a
product term, first introduced in [20], this framework allows
for robustness analysis with respect to parameter error, signal
noise, and external disturbance (such as friction), robustness
enhancement by using sliding-mode type of modification [31]
and adaptive control [30]. The generality of this framework
is demonstrated by the wide range of stabilizing control laws
that have been obtained: from model-independent, propor-
tional derivative (PD) tracking control, to model-dependent
tracking control, and finally to adaptive control. The trade-off
of controller complexity, achievable performance, and re-
quired a priori model information between these control
laws can be rigorously quantified.

Similar considerations, but with a slightly different error
measure, result in a second class of control laws which are
“‘almost’’ globally asymptotically stable and which are expo-
nentially stable in a neighborhood. This class of control laws
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contains the attitude control law first proposed in [9] as a
special case. In [9], only 2 heuristic stability proof is given,
which is based on the linearization about the nominal trajec-
tory, so the work reported here gives the first rigorous
analysis and justification for the attitude control law given in
[9]. In [16], the generalization of the control law in [9] is
claimed. However, this is not strictly true since [16] uses a
different attitude error and a nonlinear feedback gain. The
generalization here involves the original form of the con-
troller as stated in [9]. The lack of global stability of the
control law in [9] is also pointed out in [21].

Similar lines of inquiry to those in this paper have ap-
peared in [3]-[5), [16]-[19]. A comparison between our
approach and this related body of work is summarized below.

1) The stability of a large number of control laws is shown
in this paper, including model independent control, model
based tracking control, and adaptive control. Most of these
control laws are new; the setpoint control laws (from a
constant angular velocity to another constant angular veloc-
ity) in [3], and the setpoint control (zero desired angular
velocity) in [4], [5] are special cases of the more general
control laws developed here.

2) A cross term we added in the Lyapunov function is
critical for the derivation of the new results in this paper.
This technique has been used in robot control {20} but not in
the attitude control literature. The energy motivated Lya-
punov function has also been used in [3]-[5], [19], but
without the cross term. An energy Lyapunov function is used
in [17] for the angular velocity observer analysis, but a
feedback linearizing feedforward compensation is used for
control. Similarly, an energy Lyapunov analysis is used in
[16] with feedback linearization. A complicated Lyapunov
analysis is used in [18] to produce a globally asymptotically
stable control law that is more complex than the ones pre-
sented here.

3) Global stability of the controllers in this paper is shown
based on the globally nonsingular attitude parameterization
provided by unit quaternions together with a Lyapunov analy-
sis. Global stability for a special type of setpoint control is
shown in [3]. Globally stable tracking control with feedback
linearization is shown in [16], [17] (the latter also incorpo-
rated an angular velocity observer). Global stability for set-
point control is achieved in [4], [5], [18]. The global stability
in [19] requires sufficiently high gain due to the use of the
three-parameter representation of Gibb’s vector. As noted in
[3], no globally asymptotically stable control law that is also
continuous on SO(3) exists. Indeed, the controllers men-
tioned above are only continuous on either S(3) or R3.

4)As pointed out in [3], unit quaternion feedback control
also produces an unstable equilibrium (which also corre-
sponds to the same attitude). This may lead to an undesirable
situation where the rigid body reaches the desired attitude
and then, with any arbitrarily small perturbation, turns 360°
about some axis. We have derived a sufficient condition to
avoid this situation.

5) Global stability (but only local asymptotic stability) of
the control law in [9] is shown here. This control law is
computationally efficient and performs almost identically to
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the globally asymptotically stable control law for small er-
rors.

6) In contrast to previous work, our development is com-
pletely coordinate-free; the actual implementation can be
done in any coordinate frame depending on convenience.

The insights gained from this inquiry have proven fruitful
in other contexts. The idea that the error measure should
correspond to the topology of the error space, and that the
energy terms in the Lyapunov functions should also conform
to this topology, has lead to a new class of control laws
appropriate for control of all-revolute joint manipulators
whose joint space is the N-torus, TN [31]. The energy
Lyapunov technique itself has proven to be valuable for
investigating control issues pertaining to constrained mechan-
ical systems [33], [15], [32].

The rest of this paper is organized as follows. Section II
provides the background of the attitude control problem: the
representation issue on SO(3), different attitude error mea-
sures, and the differential equations governing their evolution
(kinematic and dynamic equations). Section III presents a
family of stable tracking control laws based on the unit
quaternion error measure. Three controller structures,
model-independent, model-dependent, and parameter adap-
tive control structures, are analyzed in detail and their rela-
tive merits discussed. The global stability of control laws
based on the vector guaternion error measure is also shown.
Some simulation results are given in Section IV.

II. PRELIMINARIES AND PROBLEM STATEMENT
A. Notations

A basis-free vectorial perspective will be adopted through-
out this paper. Let V be a normed linear vector space with
dimension 3 and be endowed with an inner product, called
the dot product. Bold face lowercase letters, e.g., v, are used
to denote vectors, and bold face uppercase letters, e.g., L,
are used to denote linear transforms (or linear operators) that
act on such vectors.

Given a vector v, the crossproduct operation v X is a
linear operator, and can be represented in a coordinate frame
by an antisymmetric matrix ¥

0 el 2N Y
i=1| vs 0 -, (2.1)
—v, Uy 0

where (v,,v,,v,;) are the components of v in the given
coordinate frame.

There are three coordinate frames of interest, denoted by
“0” for the inertial frame, ‘‘s>’ for the body frame, and
“«d”" for the desired body frame, respectively. For the coor-
dinate frame representation of a vector, a leading superscript
indicates the frame of reference. For the angular velocity @,
the subscripts @b in «,, means the angular velocity of the
a-frame with respect to the b-frame. For the attitude matrix,
the subscript frame is transformed to the superscript frame.
For time derivatives of vectors, the frame with respect to
which the derivative is taken is denoted by a trailing super-
script of dr.
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B. Representation of Attitude

A coordinate frame in V is given by a set of orthonor-
mal basis vectors that obey the right hand rule, say,
{eol, €, eog}, and can be considered as a linear operator,
E,:R3® >V (a row of three vectors) defined by

Eo = [eol’ 602, eo3] : (22)

The attitude operator for a rigid body is defined as a linear
transformation taking an inertial reference frame, E,, to a
fixed body frame, E. This transform is of the form

oAS = ESE;‘

(2.3)

where * denotes the adjoint of a linear transform. It follows
from the definition that *4, =°A4%. The orthonormality of
the basis vectors implies that °A4 ; is orthogonal, i.e., "A’:OA s
= . (J is the identity operator). The right-hand convention
of the basis vectors imply that the product of the eigenvalues
of °A, is equal to +1. Linear transforms having these
properties form the manifold SO(3). There are three eigen-
values for °A: {1, e/*, e7/®}. Call the eigenvector corre-
sponding to the eigenvalue 1, k. By the Euler theorem, °A
is equivalent to a rotation tranformation about k over an
angle ¢.

The coordinate frame representation of °A in either £, or
E; is the same and is known as the attitude matrix (equiv-
alently, orientation matrix, direction cosine matrix, or rota-
tion matrix) and is given by

°A, = EXE,. (2.4)
The columns of °A, are the basis vectors in E; represented
in the E, frame. The rows of °A4 are the basis vectors in E,
represented in the E, frame. There are 9 parameters in the
attitude matrix, subject to 6 constraints imposed by the
orthogonality. For manipulation, analysis, and implementa-
tion reasons, frequently it is simpler to use other representa-
tions. The minimal number of parameters needed to represent
oA, is 3 with no constraint. Some common minimal repre-
sentations are: Euler angles, Gibbs vector, unit equvalent
axis/angle, and vector quaternion. Minimal representations
are only /ocally one-to-one and onto mappings of the attitude
matrix, and there are always singular orientations (i.e., the
Jacobian that maps differentail changes in the representation
to differential changes in the attitude matrix is singular for
some orientations). The minimal number of parameters that
can globally represent attitude without singularities is 4, with
one constraint equation. The unit quaternion (or the Euler
parameters) is a popular nonsingular four-parameter repre-
sentaiton due to their desirable computational properties
{81, [22].
The unit quaternion q , = [(;0:] can be defined for the

attitude operator, °A4 , as

o, = COS — = sin —k. 2.5
G4 ) da 1 5 (2.5)
G-, is called the scalar part of q, and g, is called the

vector part of g 4. Clearly, | go |> + ||| = 1. °4, can
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be related to q , through the Rodriquez formula [8]:

A, =1+4+29, X (g4X) +2qo g, x . (2.6)

Algorithms for computing q, from °4, can be found in
{35]. In general, +q, both represent °4, and this sign
ambiguity must be resolved consistently during implementa-
tion. Many important properties of the quaternion representa-
tion are given in [1], [3].

C. Kinematic Equation of Attitude

The evolution of the attitude operator in time is governed
by the rigid body kinematics equation. This equaiton, as well
as the kinematic equations for other representations for the
attitude operator, are summarized below (for a representa-
tion-dependent derivation of these equations for a specified
coordinate frame, see, for example, [34], [8], [3]).

1) Attitude Operator:

d°A, .
F = wWs, X As (27)
2) Unit Quaternion:
dg., 1 1
dt = _Ewso'qA = _EqA'wso
(:qtl: = %wsoq"A + %wso X gq= %(q"A‘/_'_ da X)“’so'

(2.8)

As noted earlier, the unit quaternion, although globally non-
singular, contains a sign ambiguity in that (g.,, g 4) and
(—go4, — q 4) represent the same attitude. In many quater-
nion extraction algorithms [35], the sign of g, 4 is arbitrarily
chosen positive. This approach is not used here, instead, the
sign ambiguity is resolved by choosing the one that satisfies
the associated kinematic differential equation. In implementa-
tion, this would probably imply keeping some immediate past
values of the quaternion.
3) Minimal Representations:

dp

Jpa(p ) F = W
where p is any minimal representation and J,, is the Jaco-
bian that transforms the rate of change of p in E, to the
angular velocity. There always exists at least a configuration
p such that J,, is singular, at which point, the representation
is no longer valid and a different minimal representation that
is not singular at the point may be used.

(2.9)

D. Representation of Attitude Error

Suppose a desired coordinate frame E, is given. The
control objective is to drive the body frame E, toward E,.
Hence, we define the frame error as

AE2E, - E,. (2.10)

Note that AE is no longer a frame (since AE*AE # I in
general). We now form an attitude error operator by post-
multiplying A E by the adjoint of a reference frame. If the



WEN AND KREUTZ-DELGADO: THE ATTITUDE CONTROL PROBLEM

reference frame is E,, then the attitude error operator is
AAo= (ES—Ed)E: :aAs-oAd (211)

if the reference frame is E,, then the attitude error operator
is

AA, = (E, - E))Ef = J— E,Ef = J—A,. (2.12)

Clearly, when either attitude error operator is zero, E;
coincides with E, as required. We will mainly consider
A A . Note that the second term in (2.12), E Ef =°A,, is
an attitude operator (which rotates E, to E,). We call Ay
the relative attitude. Represented in the E frame, ‘A, is

S £ (SAd)s = EFALE, = EJE; =°A, (2.13)

and in the E, frame
R < (sAd)o = E:SAdEo = E:EdE;kEo =0AdSAo'
(2.14)

The S representation has been used in [1], [3]-[5] and R
representation used in [9] (without the quaternion kinematic
equation). Here, we have shown that they are just different
coordinate representations for the same linear operator °A ;.

Note that in both (2.11) and (2.12), the attitude error
operator appears as the difference between two attitude opera-
tors. Motivated by this observation, in general, a measure of
the attitude error will be taken as the norm of the difference
between some representaion of the each of the attitude opera-
tors. Some examples motivated by the A 4, case are

ol. induced norm of °A; —°A4 ;

02. norm of go, — o4, ON R X V;

03. norm of go, — goq, ON V, using the unit quaternion
representation;

04. norm of poy — Poy, ON V, for any 3-parameter
representaion Po 4 .

Some examples motivated by the A A case are

s1. induced norm of S —°A ;;

s2.normof g, — gs4, 0N R X V;

s3. norm of g, — gs4, on V, using the unit quaternion
representation for ‘4 ;.

s4. norm of p,— ps4, onV, for any 3-parameter repre-
sentation s .

Error measures motivated by A A, are avoided in this
paper since they are either unsuitable for our stability analy-
sis (cases ol and 03) or do not avoid the singularity of
representation problem (case 04). A notable exception is
case 02 above, which was used in [16] to derive a globally
stable control law which, interestingly, can also be obtained
by using case s2 of the A 4 error measures. In [7], case 04
is used and p is chosen to the vector part of the quaternion.
A specail maneuver (2-stage detumbling) is necessary to
avoid representation singularities. In contrast to case s4 of
the A A error measures, singularities of both °A and °A;
need to be avoided rather than just the singularities of a
single attitude operator in SO(3), i.e., “4,. For these rea-
sons, we will use principal error measures based on A A . In
particular, 2-norms of cases §2-53 are considered in detail
and they provide a rich class of stable control algorithms; this
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error measure is also used in [3]-[5]. Case s4 is used in [1].
In case s2, either sign in qo, = = 1 can be used; without loss
of generality, only the +1 case is considered. Some of these
error measures are related, for example, the 2-norm of the
case s3 error is the same as the Frobenius norm of the case
sl error. In cases s3 and s4, g,=p,=0, hence, the
attitude error is simply given by the norm of g or p.

E. Kinematic Equation for the Attitude Error

The evolution of °A, in time can be obtained via direct
differentiation in time with respect to the E, frame

d’A, dE,
des  ar*
Define the angular velocity error as Aw £ @, — Wy By

the additive property of the angular velocity, @g, = @y, —
w. = —Aw. Equation (2.15) is of the same form as 2.7

so

E¥ = @, x E4E¥ = w,o x4, (2.15)

except (0, s) in (2.7) is replaced by (s, d). Letg = [2"] be

the unit quaternion representation for °4,. Then the kine-
matic equation q can be obtained from (2.8) with (o, $)
replaced by (s, d)

dq, 1
dt - zwds q
dq 1 1

S do®as + S Was X 4 (2.16)

dr 2
All the time derivatives can also be taken with respect to
the E, frame, resulting in the following kinematic equations:
d*A, d’A,
dr’ at’
W, XAy —*Agw,, X + wy XAy

w,, XAy Ay, X +

= s s
= Wyo X Aa' - Adwsa

dq dq
X e TG X9t s
1 1
= quwds - 5 Yas X g+ wg, X q. (2.17)

F. Dynamic Equation for the Attitude

Dynamics of the rotation of a rigid body is given by
Euler’s equation [6], [8]

dlwg, dwg,
ar° =1 i + w,, X o,
dw
=1 dtf’o +w, X log, =17 (2.18)

where I is the rigid body inertia, and the facts that dI/dt*
= 0 (due to the rigid body assumption) and that the time
derivative of w,, is the same when taken in either E, or E..

If I is equal to the identity operator multiplied by a scalar,
the Coriolis term w,, X Jw,, vanishes. The dynamic equa-
tion then becomes

w30=v

(2.19)

for an effective control v = I~ '7. In general, this equation
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can be obtained for a general I by using the so-called
feedback linearization control (as in [9], [14])

r=Iv+ w, X lo,,. (2.20)

This method was used in [1], [9] where the control problem
effectively reduces to the consideration of (2.19). The stabil-
ity results to be presented in the next section—which hold for
arbitrary I—hold for the exact linearization case also, by
taking I to be the identity. The linearization procedure can
be taken one step further to a minimal representation with
[recall (2.9)]

dJ, dp
dt° dt°
where w is now the effective control. Provided that J, is

nonsingular, the dynamics becomes a decoupled double inte-
grator

v=J,w+ (2.21)

d’p
dr®’

This approach was used by [7], [10]-[12] (among many
others) in the robotics literature.

=w. (2.22)

G. Problem Statement

Let E; and E, be the actaul and the desired coordinate
frames of the rigid body and w,, their relative angular
velocities. This paper considers the following problem:

Find a feedback control law 7 = f(E,, E;, w,,, @4,)

such that asymptotically E, = E; and w,; — 0.

Perfect and instantaneous measurement of E, and w ,; are
assumed. The desired quantities E,, w,,, and dw,,/dt°
(angular velocity and acceleration of E, relative to the
inertial frame E,) are also assumed instantaneously avail-
able. w,,(¢#) and dw,,(t)/dt° are assumed uniformly
bounded in 7.

TII. GLOBALLY STABLE ATTITUDE TRACKING CONTROL LAwS
A. Introduction

We will show the global asymptotic stability of the zero
equilibrium of the attitude trajectory error system for a
family of control laws with the following general controller
structure:

= proportional and derivative feedback

+ feedforward compensation.

(3.1)

The proportional feedback is in terms of the vector quater-
nion of the relative attitude, and the derivative feedback is in
terms of the angular velocity error w . Together, their role
is to ensure stability, correct for tracking error and reject
disturbances. The feedforward term, on the other hand, is
used to enhance the tracking performance (in terms of the
maximum tracking error) by compensating for the plant
dynamics. Three different types of feedforward compensation
are considered
1) no compensation (a model independent control law);
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2) full model based compensation with known parameters;

3) compensation with parameter adaptation (a parameter
independent control law).

We will show that global asymptotic stability is achieved in
each of these cases, but there is the classical trade-off be-
tween the achievable tracking performance and the amount of
a prior available model information.

The main tool for the stability analysis is the Lyapunov
direct method with a judicious choice of the Lyapunov func-
tion candidate. This choice is motivated by the consideration
of the total energy in the system; it consists of three terms:
the kinetic energy error (kinetic energy with the angular
velocity error substitutted for the angular velocity), an artifi-
cial potential energy and a product term of angular momen-
tum, and the position error. The product term is chosen small
enough so that the Lyapunov function candidate is positive
definite. The purpose of this term is to establish local expo-
nential convergence and to facilitate the generalization to
adaptive control. Without the product term, stability can still
be shown by using the invariance principle [36], but neither
the local exponential rate of convergence nor the generaliza-
tion to adaptive control are possible. Motivation of the
product term is based on the work in [20].

In order to establish a global result, the globally nonsingu-
lar unit quaternion is used to parameterize SO(3). We will
consider a potential energy based on the 2-norm of the unit
quaternion of the relative attitude ‘4, resulting in control
laws that are globally asymptotically stabilizing. For compar-
ison, we also consider an artificial potential energy based on
the vector part of the quaternion of A4 ;; the resulting control
laws are globally stable but only almost globally asymptoti-
cally stable. They also have the drawback of turning off at
error angle of 180°. The control law in [9] is a special case
of this class of control laws.

The following notation is used for various bounds needed
in the stability proofs:

v 2 11|

Ya = sup fl@g0(1) |-
1=0
Euclidean vector norm is used throughout this paper. The
norm of a tensor is defined in the sense of the induced norm.
All of the control laws to be presented below will be written
in the vectorial form. Either the body frame or the inertial
frame can be used for the implementation.

B. Model-Independent Control Law

By using the unit quaternion error measure, the PD con-
troller is shown in this section to be globally stabilizing for a
class of desired trajectories. This result is a generalization of
the setpoint control laws in [3] (with zero final desired
angular velocity) and {4], [5]; in fact, if the desired trajectory
is a step change in attitude, then we obtain those results in
[31-15].

Theorem 1: Consider the following control law:

T=k,q—k,Aw (3.2)
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where kp, k, are positive scalar constants. Let

dwdo(t)

Pl(t) = dr®

(3.3)

] PRI

If peL,[0,0) N L0, ), then g(¢) and Aw(f) >0 as

t— oo,

Proof: Consider the following scalar function:

V= (kp+0kv)((qo_ 1)2+q"1)
1
+5Aw-IAw7cq-IAw.

(3.4)
V can be bounded below by

_ [ lal ]T [ lq] }
SR (3-5)
where
Pc=l[2(kp+cku) Y, (3.6)
2 Yy Ky

p; is defined as infy,;_,v - Tv, which is positive since the

inertia is positive definite. For ¢ sufficiently small, P, is

positive definite. Now, compute the time derivative of V
along the solution trajectory:

V=—(k,+ck,)g Aw+ Aw

dwdo)

lr+ow,, X Ilw, —I——
( do do dt°

1 1
—c(—z-waq— quAw+wd,,Xq) -TAw

Idwdo
dt°
—cq (wgox I - Io, X) Aw.

fcq~(-rfwm><lwso—

Now substitute in the control law (3.2), then
V= —ck,lql” — k] A0]® + (Aw - cq)

dw,,
)

-(—wdoxlwdo—l

1 1
—cAw-I(Ewa q- quAw+wd0><q

—cq- (Ao X TAw+ (wyy X I — Iwy, X) Aw)

< -xTQ.x + wix
< =N x[|> + o(2) x|l (3.7)
where
Al lal ]
X = 3.8
[nAwu 3-8
" 3
c P _.YI‘ch
0.2, 2 (3.9)
5’)/,7(16‘ k,—2cy,;
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dw,,

de°

wé%( (3.10)

PéV1+CZ'YI(

+ ol [

dw,,
dr’°

; uwd,,HZ) (3.11)

and X\ £ Anin(@,) denotes the minimum eigenvalue of Q.
For c sufficiently small, Q. is positive definite (i.e., A > 0).
Now, integrate both sides of (3.7), then we have

. t t
V= Vo= =\ [ lx(s)12 ds + [ o(s)lx(s)]l ds
0 0
which can be further written as

\ / I x(s)2 ds - / "o(s) | x(s)] ds = V. (3.12)

By moving the second term on the left-hand side of (3.12) to
the right-hand side and applying Schwarz inequality, we have
(the assumption p, € L, is used here)

MxlZ, = Vo +llolllxl L,

After some more algebra (completing the square involving
|l x|l .,), we obtain a bound on the || x| .,

2\ 11/2
1(V0+ nanz” N
A 4N
Hence, x € L,[0, o). Substitute (3.13) into (3.12), it follows
that V" along the solution trajectory is uniformly bounded in
t. From the kinematic and dynamic equations, X is also
uniformly bounded, and, therefore, x is uniformly continu-
ous. It follows by Barbalat’s theorem [37], that x(¢) = 0 as
t = . The above proof hinges on choosing ¢ sufficiently
small so that P, and Q_ are both positive definite. Since ¢ is
not implemented in the control law, it is a free parameter that
can be chosen small enough to satisfy the required condi-
tions. For given gains, k, and k,, there is a permissible
range of ¢, which in turn determines the convergence rate.

]

When the initial condition is known and the desired trajec-
tory is planned so that there is no initial tracking error, i.e.,
V, = 0, we have the following uniform upperbound for V,:

Visliol,lixlle, (3.14)

From (3.13), this bound shrinks with large A, which is in
turn determined by the PD gains, k, and k,. Thus, as
expected, higher gains imply better tracking performance.
Practically, there are limits to the level of gains, determined
by, for example, sampling, actuator saturation, noise etc.
Therefore, a nonzero transient tracking error may be in-
curred even with ¥V, = 0.

The control law (3.2) do not depend on any model infor-
mation, in contrast to the feedback linearization approach in
(2.20) where a nonlinear compensation term of the form
w X Iw always needs to be present. However, the achievable
performance (as measured by the maximum tracking error)
for a given set of gains depends on the body inertia.

This theorem is most useful for the slewing types of

leoll .,
2N

I xll,, = (3.13)
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operation, where the problem is to move from the initial
attitude to a goal attitude with certain desired transient re-
sponse. In that case, the L, requirement of p,(#) can be
trivially satisfied.

For the setpoint control case, w,,(t) = 0 dw,,(t)/dt° =
0, which is also considered in [3]-[5], p, €L, is trivially
satisfied. Therefore, the zero equilibrium is globally asymp-
totically stable. Furthermore, V¥, < V, and

V

Auin(Pe)
(3.15)

7< max (k,, k)|l x|l = max (k,, k)

Since k, and k, only need to be positive, 7 can be made

arbitrarily small, uniformly in ¢, as pointed out in [3].

C. Model-Dependent Control Law

The lack of model information implies a nonzero transient
tracking error in the simple PD control law in the previous
section. In many instances, high feedback gains are not
possible due to practical constraints, yet good tracking per-
formance is still demanded. The result below shows that this
is possible by incorporating the structure of the model in the
control law. Note that the restriction placed on the class of
desired trajectories in Theorem 1 is removed here. This
result is a generalization of the control law in [3], where the
desired angular velocity is a constant vector.

Theorem 2: Consider the following control laws:

dw,
dt°®

r=k,q -k, Aw+1 ° +z,xIz, (3.16)

where z,, z, can be either w, or w,,, and k,, k, are
positive scalar constants. If
k,> ayyrvq (3.17)

with @, a constant depending on z, and z, as follows:

% 2 4
Wio Wao 0
@Wao Wso 1
Wso Wao 0
w w 1

50 so

then ¢(¢) = 0 and Aw(f) 2> 0 as ¢ — oo.
If g,(+)—~ +1, as t— oo, then the convergence is of
exponential rate. A sufficient condition for this to happen is

%Am(O) -TAw(0) < 2k, (1 + ¢,(0)). (3.18)
Proof:

1) The proof is similar to the proof of Theorem 1. Con-
sider the Lyapunov function candidate in (3.4). Take the
derivative along the solution as before, and substitute in the
control law (3.16), then we have

V= -x"0.x (3.19)
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where Q. is now

1

Ckp T HYaYiC
2
=1, (3.20)
5 @VaVi€ k, — ayyva — a3vic
where
<y 2, 4 43
Wy Wy, 32
@40 V“’so 0 1 .
Wso @40 1 1
w (2 1 2

so so

Hence, if k, satisfies (3.17), then there exists a range of ¢
sufficiently small so that Q. is positive definite. Again by
using the Barbalat’s theorem, it follows that x(7) = 0 as
t — oo as stated.

2) It remains to show the exponential rate of convergence.

When | g|| = 0, g, tends to either +1 or —1. Suppose
g,— +1. Then there exists some finite time 7" such that
q,(t)=0forall t=T.Since |g,| =1, fort=T

2
fgl?=1-g2=1-¢q,=(1-4q,)-

Therefore

1 1
gl =S lal*+ lal?

1

=

(gl + (1 - q,)")-

[S3

Then for all # = T, there exists A > 0 such that

Vs —\V.

Hence, | q| and Aw — O exponentially. If g,— —1, no
such conclusion can be drawn. In that case

V- a(k,+ ck,).
If

V(0) < 4(k, + ck,) (3.21)
then this situation (g, > —1) cannot occur for V is nonin-
creasing. Since ¢ is not implemented and can be chosen
arbitrarily small, (3.21) can be replaced by

S 80(0) 186(0) < K, 4 - (1 - 4,0))* - 140O)1)

=2k,(1+ ¢,(0)). (3.22)

Hence, (3.18) is a condition of exponential convergence of
V() to zero. [ |

The desired torque term, dw,,/dt°, in the feedforward
compensation can be replaced by dw,,/dt®, with the same
stability result except that the constant a, in (3.17) is re-
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placed by
9 L 4
W40 Wa, 1
W4, W, 0
Wso Wao 1
2 ) 0.

SO

The model-independent control law in Theorem 1 does not
require any model information and therefore can be applied
to the attitude control of any rigid body. However, when high
performance is sought without the expense of very high
feedback gains, model-dependent control laws are helpful.
From the proof, V, < ¥V, for all ¢ = 0. Therefore, if the
initial tracking error is zero (¥, = 0), ¥, will remain zero
(for the model independent case, the bound of V, is given by
(3.14) and (3.13), which is nonzero). The nonlinear compen-
sation term has a similar form as the crossproduct term in the
model dynamics; indeed, in one case, this term is the output
of the inverted plant driven by w,,. In the next section, we
will discuss the adaptive form the model-dependent tracking
control laws with the inertia replaced by its estimate.

In Theorem 2, g, may converge to either +1 or —1. We
will show later in Section III-E that ¢, = — 1 corresponds to
an unstable equilibrium (this is also pointed out in [3]). The
case that g, — —1 is clearly undersirable, as any small
perturbation will cause a rotation of 360° to g, = +1. This
situation is avoided if condition (3.18) is satisfied by choos-
ing k, large enough or Aw(0) = O (for the case considered
in [3], Aw(0) # 0).

The exponential convergence condition (3.18) also im-
plies robustness with respect to the inertia in the control law.
For the setpoint control case, this result reduces to the
robustness result in [5]. Suppose the inertia I in (3.16) is
perturbed from the true inertia, i.e., I =1, + AI, and
|AI| = 5,. Then the Lyapunov derivative of ¥ can be
bounded by

V= —W+ﬁ\/_ (3.23)
where p is defined as in Theorem 1, and Ap £ A, (P.).
Note that p is only assumed to be uniformly bounded but not
necessarily in L,[0, o) (the L, assumption is only needed
for the model independent control) Let W be the positive

root of W2 = V. Then
. A 0
We-Zwq 20 (3.24)
2 2\p
which gives the bound
P
W(1) < e OPW(0) + 2 T2 (1 = e=021) . (3.25)
A\p

Hence, the system remains Lagrange stable with the ultimate
bound linear in the size of the inertia error.

Comparison between Theorem 2 with the results in [16]
reveals the relative strength and weakness of the two ap-
proaches. Both approaches are based on using a globally
nonsingular parameterization, the unit quaternion. The atti-
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tude error measure in the stability analysis in [16] uses the S
error of (2.13), and the generalization to the R case of (2.14)
is not obvious. Here both the R and S types of error
measure are treated in the same framework. The controller in
[16] allows positive definite matrix PD feedback gains, in
contrast to our scalar gain requirement (however, this can be
ameliorated by a more complex control law; see Section III-E
later). This may be important if the response time is different
in different directions (due to perhaps highly different inertia
parameters). Explicit cancellation of the nonlinear terms is
required in [16]. This is a consequence of the choice of
unweighted 2-norm of A% in the Lyapunov function. By
using the energy-type Lyapunov function proposed here,
similar results to Theorem 2 may be obtained.

D. Adaptive Control

In the model dependent control law (3.16), if the inertia
matrix is unknown or poorly known, we can replace it by an
estimate and update the estimate by a simple gradient scheme.
The result below shows global asymptotic stability in this
adaptive scheme. We adopt the following notations: Given a
symmetric 3 X 3 matrix W, define

“(W) = [Wn’leszs’szstpW ] (3-26)

For arbitrary vectors, a, b, define 4 from the relation
a" Wb = h"(a, b)u(W). (3.27)

Theorem 3: In Theorem 2, suppose I is replaced by the
estimate I, and ‘I, the body frame representation of I is
updated by

dv(;}) dwdo
= —K,| h|Aw - S| —=
s [h( o - a5’ 2]

~h(7 (N ~ csq),szz)} (3.28)

for any K; > 0, and “z,, °z, can be either *w_, or *w,,. If ¢
is chosen sufficiently small, and k, is chosen sufficiently
large in the sense of (3.17), then ¢(7) and Aw(¢)— 0 as
{— oo,

Proof: Define

AT 2T o (3.29
287 sy, 29)

Introduce a new Lyapunov function candidate, ¥, as the sum
of the previous Lyapunov function candidate (used in Theo-
rem 2) and an estimation error term

Vi=V+ AV
where V is given by (3.4) and AV is given by

1
AV = EU(A’I)TK,_IU(ASI).
Because of the estimated inertia instead of the true inertia in
the control law, V' now contains the following additional
term:

(Aw-cq) - [z, x Alz,
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which, in the body frame, can be written as

dw
TA:I hl ASw — s ,S do))
o7 )[ ( o - ca | S

—h(sgl(As“’ - ¢q),°z,) |-
The derivative of AV is
dv(°l)
dt

With the chosen adaptation law (3.28), these two extra terms
cancel with each other exactly. If follows then

-xTQ.x.

vT(AT) KT

v, < (3.30)
As in Theorem 2, for ¢ sufficiently small (but independent of
the initial condition), Q, is positive definite, and the Bar-
balat’s theorem can be used to show that x(f) = O as t = o
as stated. |

We have exploited the fact that I in the body frame is
symmetric and, therefore, only 6 parameters are updated. In
general, *1 —°I does not converge to zero (except under a
sufficient excitation condition), and *I need not be positive
definite as does °I.

In the proof for the aforementioned theorem, the parameter
¢ needs to be sufficiently small to guarantee that P, (in
(3.6)), and Q, in (3.9) are positive definite. In contrast to the
model independent control laws (3.2) and the model based
control laws (3.16), ¢ is implemented in the control law for
the adaptive case, and it should be chosen small enough to
ensure stability. In contrast to the robot control case 201,
[30], the allowable size for ¢ is not dependent on the initial
condition, so the stability result here is a global one for ¢
chosen as a small enough constant.

E. Discussion

In Theorems 1 through 3, we have obtained a large class of
control laws with the basic structure as in (3.1) and we have
proved their global asymptotic stability in the closed-loop.
This global result is achieved by combining a globally non-
singular parameterization (quaternion) with a global stability
analysis tool (Lyapunov’s direct method). In this section, we
will discuss some additional properties of this class of con-
trollers.

The choice of the Lyapunov function candidate (3.4) is
clearly the foundation of all our results. Some important
features of this choice should be noted.

1) The position error is measured by the Euclidean norm
of the unit quaternion of the relative atitude °4,. This
representation is globally nonsingular.

2) The velocity error is a quadratic form weighted by the
inertia matrix (the Riemannian metric). It is like the kinetic
energy of the rigid body except that the angular velocity is
replaced by the angular velocity error. In the setpoint control
case (w,, = 0), this term is simply the kinetic energy. This
choice of velocity error avoids the need to explicitly compen-
sate for the nonlinear Coriolis term (as required in [16]).

3) There is a product term between position and velocity
errors weighted by a small constant ¢. This term produces a
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—c|/q||* term in ¥, which combines with the —lAw|?
term to form the —|/x||?> term. This allows us to show
exponential stability in model independent and model-depen-
dent control laws. In the latter case, we can also assert
robustness with respect to the inertia matrix. Our develop-
ment of the adaptive control also depends crucially on the
— || x||*> term in V. In contrast to the the stability proof
without the cross term, the invariance principle is no longer
needed. The constant ¢ needs to be sufficiently smail in order
for the stability property to hold (both for V' to be positive
definite and V negative definite in x). In the nonadaptive
cases, ¢ is not implemented in the control law, therefore, it
can be freely chosen to be sufficiently small for the analysis
purpose. In the adaptive case, ¢ needs to chosen small
enough to guarantee global asymptotic stability.

Instead of using the Riemannian metric for the angular
velocity error, the Euclidean metric (the unweighted two-
norm) can also be used to show global stability for the
feedback linearizing control laws as discussed in (2.20).

We have used q — g, to form the attitude tracking error,
where g, =[1 00 0]7. But, as noted in Section II-E, the
scalar quaternion part of q, (the first element) can be either
=1 If g4, is set to —1, the same stability analysis goes
through in Theorems 1 through 3, provided the sign of the
proportional (vector quaternion) feedback is changed to —1
and the sign of the cross term in V' (cf. (3.4)) is changed to
+1. The two different signs in the proportional feedback
correspond to two opposite directions of rotation about the
equivalent axis to reduce the error angle to zero. Unless the
initial error angle is exactly =, clearly one of the rotations is
over the shorter span. Which sign should one choose to effect
a smaller range of rotation? To answer this, consider the
initial error angle, angular velocity, and desired angular
velocity to be very small so that local linearization (about
q,= +1, =0, @ =0, w; = 0) holds. In that case, the
linearized kinematic and dynamic equations are:

Aw= —-24
20§ =7+ ooy,

where the ** 7" is the derivative in either the inertial or body
frame. By using any one of the controllers in Theorems 1
through 3, the closed-loop dynamics is determined by 2 Ig +
2k,q + k,q which is exponentially stable. This procedure
is also used in [3]. If the opposite sign in the proportional
feedback is used, the linearized system is unstable, and the
rigid body will turn completely around to reduce the error
angle to zero. Of course, linearization can again be per-
formed when tracking error has eventually become small, but
now the linearization is about g, = —1, and for that lin-
earized system, negative proportional feedback produces an
exponentially stable closed-loop system. The choice of posi-
tive proportional feedback may not al/ways be the best
choice. If the initial kinetic energy kicks the rigid body in the
wrong direction of rotation, and it is so large that the error
angle increases beyond m at some #, then negative propor-
tional feedback may yield a faster convergence.

Another issue caused by the equivalent representation of
q, by [+1,0,0, 017 is that, in general, we only know that ¢
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converges to zero by g, may converge to either *1. This is
due to the fact that the closed-loop equilibria consist of

e

q= Aw=10/{.
0 0
0

We now show that the equilibrium corresponding to g, = —1
is unstable, i.e., there exists an arbitrarily small perturbation
that will cause divergence from the equilibrium (this is also
proved in [3]). Suppose that g,(f) = — 1as t = o. Then V
converges to a steady-state value of

Vss = 4(k, + ck,) > 0.

Suppose g, is perturbed to g, = —1 + € where € is a
small positive constant. Then, the perturbed ¥ becomes (to
the first order of €)

V=2(k,+ ck,)(2 —€) = Vs — 2(k, + ck,)e < Vss.

But V is strictly decreasing as long as g # 0 (cf. (3.19)).
This implies that ¥ will never return to V,,. From Theorem
2, asymptotic stability is still assured, therefore g, must
converge to + 1, and the convergence is of exponential rate.
As noted in Section III-C, if k, is sufficiently large or
Aw(0) = 0, then g, always converges to +1.

One drawback of the class of control laws presented so far
is that the gains must be chosen as scalars. One can try to
replace the unweighted two-norm of q — Qg by a weighted
two-norm of the form:

ERIE

q 0 K, q |

After a little algebra, one can show that the derivative of this
term along the solution is

Aw- (-k,q - (K, - k,f)q,9 +qx K,q)

+2g-wy, Xq if K, is constant in the ‘“0’’ frame,

Aw- (_kpq - (Kp - kpj)q(;q —gX qu)

if K, is constant in the ‘s’ frame.

The same stability results as in Theorems 1 through 3 can be
therefore obtained if kg in the control laws are replaced by

k,q+ (K,-k,”)d,9FqxK,q (3.31)
where the minus sign corresporids to a constant K, in the
inertial frame and the plus sign to the constant K, in the
body frame. The scalar gain case is recovered if K, is
chosen to be a constant times the identity. A direct general-
ization by replacing the scalar gain by a positive definite
matrix in the vector quaternion feedback is still under investi-
gation. A related result was shown in [5] that K, can also be
replaced by (kI + k,,#)"' where k, and k,, are
positive scalars.
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Now consider the case that k, is replaced by an arbitrary
positive definite matrix K. If the ck, term is removed in the
Lyapunov function candidate in (3.4), then the only addi-
tional term introduced in ¥V can be bounded by
c| K, ||l Aw| || q|. Since ¢ can be chosen arbitrarily small in
the nonadaptive case and will be chosen sufficiently small in
the adaptive case, this term does not affect the stability
conclusion. Hence, in general, one can replace the scalar k,
in the control laws by any positive definite matrix.

Depending on the choices of z, and z,, (3.16) consists of
four controliers. For the case of z, = 2, = @g,, for feedfor-
ward compensation only depends on the desired trajectory; if
it is preplanned, the feedforward term can be precomputed
and then played back at run time. The trade-off between the
memory space and real-time computational load is a useful
one if a very high sampling rate is required (for example, for
high bandwidth control).

For the model-based control law (3.16), the feedforward
compensation is of the same structure as the plant dynamics.
Other partial compensation schemes can also be used, with-
out affecting the closed-loop asymptotic stability. For exam-
ple, if only I(dw,,/dt°) is included, then we have a cross
between the model independent case and the full model based
case. With the same Lyapunov analysis, it is straightforward
to show that perfect tracking is no longer possible when the
initial tracking error is zero, but the maximum tracking error
will be smaller than the model independent case, since the
constant p (cf. (3.11)) is reduced in size.

It may appear that the control laws presented here create a
continuous, globally asymptotically stable vector field on
SO(3) x R?. This is not possible, as pointed out in [3], [18].
Indeed, their implementation would require memory since
the sign ambiguity in g cannot be resolved from the attitude
kinematic equation (2.7); the quaternion kinematic equation
(2.8) must be used. This means that the control laws do not
generate a vector field on SO(3) x R3. However, on S(3) X
R3 (S(3) is the unit sphere in R*, where the quaternion lies),
then we do have a globally asymptotically stable vector field
in the closed-loop, i.e., consider (2.8) as the kinematics
equation instead of (2.7).

It was shown in [17] that a stable observer for @ can be
constructed based on the attitude information alone. Though
the feedback linearizing control was used in [17], its observer
can be combined with the results here to yield a large class of
globally asymptotically stable control laws with only the
attitude measurements.

When there is less than three independent actuators, the
technique in this paper is no longer applicable. The difficulty
lies in part in that the linearized system is not controllable,
and indeed, no smooth locally asymptotically stable feedback
law exists. This problem has been discussed extensively in
[39], [40], [41]. The Lyapunov approach can still be useful
(though not as useful as the three-actuator case) in this case.
For example, it can be shown that stable rotation to any
attitude can be achieved about the axis where actuation is
available. Then any arbitrary attitude can be attained by
connecting together no more than five such rotations. The
detail of this result will be communicated in the future.
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F. Controller Based on the Vector Quaternion Error
Measure

The attitude error is zero when g = 0. Hence, in the
artificial potential energy in the Lyapunov function candidate
(3.4), the unit quaternion of the relative attitude can be
replaced by the vector quaternion of the relative attitude.
This gives rise to a slightly modified control law. This
section will analyze the closed-loop stability for this case. We
will only discuss the model-dependent tracking case, but the
model independent and the parameter adaptive cases can be
analyzed similarly.

The theorem below states the global stability property of
this class of control laws. We will also show that the con-
troller in [9] is a special case.

Theorem 4: Consider the following control laws

dlw,,

T=k,q,q+ k,Aw + e +z, x Iz, (3.32)
where z,, Z,, can be either w , or w,,. If k, satisfies the
inequality (3.17), then g, (¢)g(¢) and Aw(¢) = 0 as { = oo.
The equilibria that correspond to (g, = 0, Aw = 0) are all
unstable.

If the initial condition satisfies

S Aw(0) - TAw(0)
k

P

| g,(0)|* (3.33)

then g(f) and Aw(?) — O exponentially as ¢ — oo.
Proof: The proof is based on a slightly modified Lya-
punov function candidate:

1
V= (kp+ cku)q g+ EAw'IAw -cq,q9 TAw.
(3.34)

The derivative of V' along the solution is the same as (3.7),
except in each of the expressions, ¢ in the second and third
terms is replaced by cq,, and there are two additional terms

c
—(k, +ck,)(g,— 1)g - Aw - EAw -qq-TAw.
Define

A {woluqu}

BRI

Then with the control law (3.32), V can be bounded above
by (in the same way as in the proof of Theorem 2):

V<-27Q.z (3.35)
where Q, is given by (3.20), except the 2-2 block contains
an additional —1/2+,c term. For c sufficiently small, Q is
positive definite. Therefore, the asymptotic convergence of z
to zero follows from the Barbalat’s theorem.

When z = 0, either g, = 0 or | g| = 0, with the latter
being the desired equilibrium. If the former case is true, then
V= 1/2(k, + ck,). Suppose g, is now perturbed to g, = e,
where € is an arbitrary constant. Then, the perturbed V

becomes
1 1
V= E(k” +ck,)(1 - €) < E(k” + ck,).

Since V is strictly decreasing, the trajectory will never return
to any of the equilibria corresponding to g, = 0, in other
words, ¢(¢) — 0, as t— o. Hence, the equilibria corre-
sponding to (g, = 0, Aw = 0) are all unstable.

If the initial condition satisfies

(k, + ck,) > V. (3.36)

1
2
The above argument also shows that g converges to zero,
otherwise, V would increase at some ¢, violating (3.35).
Since ¢ can be chosen arbitrarily small, it can be set to zero
in (3.36), which then becomes (3.33). If (3.33) holds, g, is
uniformly bounded below. Then, | z||* can be bounded
below by V, implying an exponential rate of convergence. M
The control law (3.32) is globally stabilizing and the
velocity tracking error goes to zero asymptotically. The
closed-loop equilibria consist of the following two sets:

q=0 and

gl =1.

The first equilibrium is the desired one, corresponding to
zero tracking error. The rest are 7 away from the desired
attitude about some axis. We have shown that the undersir-
able equilibria are all unstable, i.e., there exists an arbitrarily
small perturbation which will cause divergence from these
equilibria. Hence, the closed-loop stability is only slightly
weaker than before, in that the global asymptotic stability is
weakened to almost global asymptotic stability. Further-
more, in most tracking control applications, the initial kinetic
energy error is zero (by choosing the initial desired velocity
to be the actual initial velocity). Then (3.33) is trivially
satisfied, implying exponential convergence to the desired
equilibrium.

Even though global asymptotic stability is also achieved
(almost), the performance in general is poorer for large error
angles. To see this, write the proportional feedback term in
(3.16) and (3.32) as

w,=0 g,=1
w,=0 ¢g,=0

“ g k  for(3.16 3.37
- sing or (3.16) (3.37)
kp
- ? sin d) -k for (332) (338)

where ¢ and k are the equivalent angle and axis that
represent the attitude error. For (3.32), the error feedback
decreases with ¢ when ¢ is greater than = /2. In the extreme
case of ¢ = w, the proportional term is turned off com-
pletely. Simulation has also confirmed poor performance for
large error angles. This deficiency is clearly avoided in the
vector quaternion feedback case. However, when the error is
small, this control law performs equally well as (3.16) since
sin ¢ = sin ¢ /2 (or q, = 1).

By using the relationship between the direction cosine and
quaternion representations of R, (3.32) can be stated in an
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equivalent form in terms of R:

o k, dwgy, 5
T = _TF(R) -k, Aw +"I°( +°271°z,

dt®
(3.39)
where F: SO(3) — R3 is a linear funciton defined as
Ay — Ap
F(A) = 5 A — Ay (3.40)
A21 - AlZ

If °A, and °A, are written as °A; = [n, 0, @] and °A, =
[ny 04, a4, then [9]

F(R)=nxnz+o0Xo,+axa, (3.41)

This simplifies the computation of the attitude error feedback
term in °7 considerably. The stability analysis for this con-
troller can also be carried out directly with R itself by
replacing the desired potential energy terms in the Lyapunov
functions with the Frobenius norm of I — R. The ease in
computing R is a strong plus for the control law (3.39),
since no quaternion extraction algorithm is needed to form
the error feedback signal. The formula (3.41) does not hold
for the S error, however.

The computation of ¢ in the control laws in Theorems 1
through 3 requires the use of a quaternion extraction algo-
rithm at sample rate. Since the sign ambiguity in quaternion
is resolved by requiring the kinematic equaiton (2.8) to hold
(rather than simply choosing the positive g,, as in most of
the existing algorithms), these control laws incur a greater
computational cost than that in the control laws in Theorem 4
which, by using (3.41), can be more efficiently implemented.

The control law in (3.32) is of a very similar form to the
resolved acceleration control in [9]. Indeed, if the inertial
matrix is the identity, the controllers are exactly the same.
Hence, Theorem 4 also serves as a rigorous justification of
the resolved acceleration control law given in [9]. This proof
is superior than the one given in [16] in which the error
measure is required to be S (instead of R as in [9]; as stated
in the previous remark, error feedback involving R has a
more desirable computational property) and the feedback
gain in nonlinear.

IV. EXAMPLE

A simple example is given, which is motivated by the one
given in [7], to illustrate some of the results presented in this
paper. The moment of inertia matrix in the body frame is

given by
1.0 00 0.0
‘=100 0.63 0.0 |
0.0 00 0.85

The (2,2) element is chosen to be 0.63 instead of the 0.93
used in [7].

A choice of the attitude representation needs to be made
for the simulation. If the nine-parameter attitude matrix is
used, it is difficult to ensure that the six constraints imposed
by the orthogonality are satisfied throughout the simulation.

(4.1)
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If a minimal representation is used, there will be the singular-
ity issue. We chose to use the unit quaternion kinematic
equation (2.8). The unit norm constraint is enforced by
updating ¢, through

q-9q
a,

qo == (42)
This method breaks down near g, = 0, so when |gq,]| is
small, it is updated by (2.8). In this way, the violation of the
unit norm constraint due to the integration error can be kept
small.

We will first compare the performance of point-to-point
tracking between the model independent, model dependent,
and adaptive controllers. Then the model dependent vector
quaternion feedback control law (3.16) is compared to the
vector and scalar quaternion product feedback control (3.32)
for both tracking a periodic trajectory and setpoint control.

In terms of the equivalent axis and angle representation,
the initial attitude *A4 , for all cases is given as:

equivalentaxis k= [0.4896,0.2032,0.8480] "

equivalent angles ¢ = 2.4648rad (141.22°).

The initial angular velocity is zero.

A. Comparison of Point-to-Point Tracking Performance

Suppose the desired trajectory is given by a rotation along
the equivalent axis k of the initial attitude towards the
asymptotic desired attitude I3, ;. The desired rotaional angle
given by

¢'d(t) = d’/" (d’f— ¢,‘)€_m2
deo(t) = d;d(t) k= 2a(¢f_ d)i)te—oztz ck
“go(1) = 6a(t) - k = 2a(, - ¢;)(1 - 2011‘2)6""’2 “k

where ¢, = 0 and ¢; and k are the initial angle and axis.

We compare the performance of three tracking control
laws: the model independent control (3.2), model dependent
control (3.16), and adaptive control (3.28) (with 2z, = 2, =
w,, for the latter two cases). The gains are selected to be
k,=4and k,=8.In the adaptive case, the adaptation gain
is selected to be K, = 100, and the initial inertia parameters
(6 of them) are all chosen zero. The plot of the scalar part of
the quaternion of the desired case versus the three controlled
cases is shown in Fig. 1. The actual trajectory closely tracks
the desired trajectory in all three cases. The tracking error (in
terms of the scalar quaternion) is shown in Fig. 2. Perfect
tracking is achieved, as expected, in the model dependent
case. A maximum tracking error of g, = 0.012 is incurred
for the model independent case. This error is reduced by
about 30% in the adaptive case. It has been noticed in
simulation that this error can be further reduced by using
higher adaptation gains.

The estimated inertia is initially set to zero. The eigenval-
ues converge to (—0.0072, — 0.0655, 0.2365), while the
eigenvalues of the true inertia is (0.63, 0.85, 1.00). As men-
tioned earlier, the convergence of the tracking error to zero
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solid=desired, + = model indep, x = model based. o = adaptive

(=]
=
0.3 R . R R N .
0 1 2 3 4 5 6 7 8 9 10
Fig. 1. Tracking comparison.
x10-% + = model indep, x = model based, 0 = adaptive

2
L=l
E2

0 1 é é 4 5I 6 % 8 9 10
Fig. 2. Tracking error.

does not imply nor require the convergence of the parameter

estimation error. If an accurate inertia estimate is desired, a

sufficient excitation condition must be satisfied by the desired

trajectory.

B. Comparison Between Control Laws in (3.16) and (3.32)

The control laws (3.16) and (3.32) are compared in this
section. We first consider the tracking of a constant spin
(with angular velocity 1.5 rad/s) about the initial equivalent
axis. By choosing the initial desired attitude to be the true
initial attitude, the initial attitude error is zero. However,
there is an initial velocity error since the rigid body is
initially at rest. Since the attitude tracking error remains
small for all ¢ (due to the small size of the initial error state),
the two controllers are virtually indistinguishable; see Figs. 3
and 4. This demonstrates the usefulness of the control law
(3.32) in the tracking context despite its sluggishness for
large error angles. Coupled with its computational efficiency
for the R type relative attitude, this may well be the control
law of choice for the tracking application.

For the setpoint control over large angular range, the
responses become quite different. As shown in Fig. 5, the
response in the case of control law (3.32) is much slower
than that of the quaternion feedback. This is due to the fact
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solid=desired, x=q feedback, o=q qo feedback
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Fig. 3. Tracking comparison.
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Fig. 4. Tracking error.
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Fig. 5. Set point comparison.

that the proportional feedback term in (3.32) is the product of
g, and g and ¢, in this case is initially small (around 0.33).

V. CoNCLUSION

A general analytic framework based on the coordinate
independent vectorial algebra for the stability analysis of a
large family of globally stable tracking control laws is pre-



WEN AND KREUTZ-DELGADO: THE ATTITUDE CONTROL PROBLEM

sented. The attitude error is represented as the difference
between the actual body frame and the desired body frame
with respect to the inertial frame. For the stability analysis,
two measures of the attitude error are used: the Euclidean
norm of the difference between the unit quaternions of the
relative attitude °A,; and of the desired frame ., and the
Euclidean norm of the vector quaternion of °4 ;. Based on an
energy motivated Lyapunov function using each of these
error measures, a family of control laws is constructed; and
due to the global nature of the unit quaternion representation,
the global stability of the closed-loop system can be shown.
The results given in this paper can be viewed as a natural
extension of the work begun in [1] and significantly advanced
in [3].

The controller structure is of the form of proportional and
derivative feedback and a feedforward compensation. The
proportional term is either the vector quaternion feedback
(for the unit quaternion error measure) or the vector quater-
nion and scalar quaternion product (for the vector quaternion
error measure). In the first case, the zero error equilibrium is
globally asymptotically stable. In the second case, there are
two sets of equilibria, 180° apart about some axis. Only the
desired one (zero error) is asymptotically stable and all the
others are unstable. The control law in [9] is a special case of
this class. The feedforward may be zero, a nonlinear com-
pensation similar to the inverted plant, or the nonlinear
compensation with adaptation for the rigid body inertia. The
strength of the stability result, required model information,
real-time computation load, maximum tracking error are
some of the trade-offs between the different cases of feedfor-
ward compensation.

Current research in this area involves the generalization of
the approach here to the attitude control of a rigid body with
flexible appendages.
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