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Abstract— In this paper, we propose a stochastic differential
equation-based exploration algorithm to enable exploration in
three-dimensional indoor environments with a payload con-
strained micro-aerial vehicle (MAV). We are able to address
computation, memory, and sensor limitations by considering
only the known occupied space in the current map. We
determine regions for further exploration based on the evolution
of a stochastic differential equation that simulates the expansion
of a system of particles with Newtonian dynamics. The regions
of most significant particle expansion correlate to unexplored
space. After identifying and processing these regions, the
autonomous MAV navigates to these locations to enable fully
autonomous exploration. The performance of the approach is
demonstrated through numerical simulations and experimental
results in single and multi-floor indoor experiments.

I. INTRODUCTION

In this paper, we present a methodology for exploration
in three-dimensional indoor environments with a payload
constrained micro-aerial vehicle (MAV). We consider the
problem of autonomous exploration as consisting of two
parts: (1) the definition of regions (frontiers) that, when vis-
ited, spatially extend the current environment model, and (2)
autonomous navigation to those regions, including mapping,
localization, planning, and control. As payload limitations on
our MAV restrict the onboard processing and sensing options,
we pursue a methodology for identifying regions for further
exploration that is amenable to the system limitations.

Exploration is a classic problem in the field of mobile
robotics and relevant to applications that require a robot to
autonomously navigate through unknown environments. The
two-part definition above is consistent with traditional explo-
ration approaches such as entropy-, frontier-, and information
gain-based exploration [1]–[5]. These strategies define loca-
tions in the map that, if visited by the robot, reduce environ-
ment uncertainty and guide the exploration process. Frontier-
based exploration approaches generally compute exploration
frontiers as the discrete boundary between the certain and
uncertain regions of the current environment estimate. Thus,
given a dense occupancy grid representation of the world,
such a computation requires both known (occupied and
unoccupied) and unknown cells in the map. Entropy- and
information gain-based methods compute regions that reduce
map uncertainty by considering the information currently
available in the map paired with the probability of reducing
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Fig. 1. The experimental platform with onboard computation (1.6 GHz
Atom processor) and sensing (laser scanner, Microsoft Kinect, and IMU).

the uncertainty in the map through sensing in unexplored
regions.

While these approaches are effective in two dimensions
(e.g. [6]–[8]), the naive extension of these methods to three
dimensions introduces several challenges when considering
systems with payload constraints. The primary challenge is
the ability of onboard sensors to faithfully provide infor-
mation about known and unknown environment regions in
three dimensions. Due to limited available power, our MAV
(Fig. 1) is only able to carry a restricted set of sensors
such as lasers and cameras (mono, stereo, or RGB-D) that
fit within the payload capacity of the vehicle. However,
scanning lasers provide only partial information about the
three-dimensional structure of the surrounding environment.
The fact that any three-dimensional information is available
from a laser rigidly mounted to a MAV is a consequence of
the motion of the MAV during flight. Cameras suffer from
similar limitations, where three-dimensional information is
dependent on vehicle position and orientation. Hence, at any
moment, full information about the surrounding environment
is only available as a function of the current vehicle state and
prior motions. A secondary challenge resulting from payload
constraints is limited onboard processing. While this chal-
lenge continues to relax due to technological advancements,
it is of pragmatic concern in this work as the use of the
sensor data is restricted due to available onboard processing.

The problem of 3D exploration and mapping for ground
robots is considered in the literature using simplified 3D
polygonal representations [9] and 2.5D elevation maps [10].
These methods are able to acquire 3D models of the en-
vironment but for 2D locomotion and are generally unable
to handle indoor environments that contain multiple stories.
Complete 3D surface exploration is considered in the litera-
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ture, where depth discontinuities in the workspace are elimi-
nated by using graph search [11] or frontier-void [12] based
methods. Three-dimensional extensions of frontier regions
are integrated with a vector field based approach in [13]
to achieve 3D exploration with a stereo camera. However,
these approaches require a high computational budget and
operating environments are limited to small workspaces.

In this work, we detail our approach to exploration that
addresses these challenges resulting from limited onboard
sensing and processing, permitting autonomous exploration
with a MAV in complex three-dimensional environments.
We begin in Sect. II by describing the motivation for this
work, the key concepts of our approach, and place these
ideas into context with related literature. The methodology
and algorithm details are provided in Sect. III. We present
numerical simulations that contrast performance between a
similar existing approach and our method in Sect. IV. Ex-
perimental results detailing an autonomous MAV exploring
complex indoor environments are reported in Sect. V.

II. MOTIVATION

Consider a robot starting in a completely unknown envi-
ronment. As the robot acquires sensor information, it is able
to build a map representing the unoccupied and occupied
spaces of the environment. Concurrently, the robot identifies
those sensed regions as known and therefore explored. The
goal of this work is to identify regions that are presently
unknown and guide the robot to those unknown locations, in
the process exploring and expanding the map representation
of the environment.

The development of our approach results from evaluation
of existing methods, such as frontier-based exploration, with
naive extensions to three dimensions. We found that sen-
sors providing incomplete information about the surround-
ing three-dimensional environment often fail to accurately
capture the differences between unoccupied and unknown
space. We frequently observed cases where unknown and
unoccupied regions of space were nearly co-located and
sparsely filled regions of the environment that should clearly
be identified as unoccupied. Frontier-based exploration per-
forms poorly in this case as it relies on the boundary
between unoccupied and unknown space to determine the
next exploratory step of the vehicle (Fig. 2); yielding
exploration strategies that ultimately drive the system to
provide complete local sensor coverage but at the cost of
reducing the rate of expansion of the map. Additionally,
while in two dimensions, maintaining a dense map that
contains a representation of known and unknown regions
is computationally tractable, attempting the same in three
dimensions quickly becomes intractable for systems with
limited memory and computational capabilities due to the
density of the information.

Therefore, we pursue an approach that does not require a
dense representation of free space. In doing so, we address
some of the issues resulting from incomplete sensor infor-
mation. Fundamental to our approach is the observation (and

(a) (b)

Fig. 2. Challenges with traditional frontier-based exploration methods
in three dimensions. Figure 2(a) depicts experimental data showing the
observed free and occupied space given a dense voxel grid representation
(where free and occupied space voxels are shown as green points and blue
cubes, respectively). Frontier-based exploration methods look toward the
boundary between free and unexplored space. However, in three dimensions,
free space observations are often incomplete due to sensor field-of-view,
resolution, and occlusions; yielding frontiers (red spheres in Fig. 2(b)) that
result in poor exploration performance.

assumption) that unstructured or uncluttered regions of the
map generally correlate to unexplored regions of the indoor
environment. Therefore, we wish to identify these regions
as locations for further exploration. Following the literature,
we call these regions frontiers as they serve to differentiate
between the known and unknown regions of the environment.

III. IDENTIFYING FRONTIERS FOR EXPLORATION VIA
STOCHASTIC DIFFERENTIAL EQUATIONS

A. Overview

The exploration algorithm begins when the robot starts
sensing the environment and building a map of the occupied
space while concurrently initializing particles that represent
the environment free space based on sensor observations
(Sect. III-C). The particles are dispersed through the known
and unknown space with dynamics defined by a stochastic
differential equation (SDE) that considers collisions with the
known occupied space defined by the current map (Sect.III-
D). After the simulated application of particle dynamics,
exploration frontiers are identified based on the particle dis-
persion and sent to the autonomous navigation system in the
form of navigation goals (Sect. III-E). The MAV navigates to
these locations while incorporating sensor information into
the map and defining new particles based on the sensor
observations of the free space. After the final frontier is
visited by the vehicle, the particle set is resampled based
on the local density and current particle set (Sect. III-F), the
SDE is re-evaluated and new frontiers are identified and sent
to the autonomous navigation subsystem.

We refer to the process of initializing, extracting frontiers,
and resampling as the Stochastic Differential Equation-based
Exploration algorithm (SDEE). The SDEE algorithm is run
repeatedly as required for the duration of the experiment or
until the environment is completely explored. Each step of
the algorithm is detailed in the remainder of this section.

B. Assumptions

We begin by assuming that the MAV is able to au-
tonomously navigate. Hence, this work builds upon previous
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Fig. 3. The autonomous exploration system design.

results [14] where we detail the design of a fully autonomous
MAV system able to localize, map, plan, and control on-
board the vehicle without requiring external infrastructure or
human interaction beyond high-level navigation goals. We
define the output of the SDEE algorithm as the equivalent
input of the navigation system. Thus, the SDEE algorithm
provides a sequence of goal locations in the current map (see
Fig. 3).

We assume that the characteristic sensor length, or maxi-
mum observable distance of the least capable sensor (in terms
of range), is known in advance, and denote this value as D.
For this work, we set the maximum observable distance of
the laser scanner and RGB-D camera sensor as 30 m and 4 m,
respectively. Hence, D = 4 m for the experimental results.

C. Particle-based Representation of Free Space

Our approach requires a sparsely sampled representation
of the free space. As the robot observes and maps the envi-
ronment, it generates or emits particles at known free space
locations according to the sensors. Therefore, as the robot is
equipped with a laser scanner and RGB-D camera sensor,
we may readily define free space locations by uniformly
sampling over the observed unoccupied space – the space
between the robot and the observed occupied space.

Define a set of particles, X, where each particle, xi,
represents a discrete point-mass in free space (R2 or R3

for this work). As the robot observes the environment, the
number of particles, N = |X|, increases. We require that
at least Nmin particles exist by enforcing this fact through
resampling (Sect. III-F). Nmin represents the minimum num-
ber of particles required to represent the volume of the free
space in our framework. Additionally, we define Nmax as the
maximum number of particles permitted to exist at any time.
Nmax is selected based on CPU capabilities.

Therefore, excluding the initial phase, Nmin ≤ N ≤ Nmax.
When N = Nmax we force a resample of the particles.
In doing so, we reduce the number of particles to Nmin
while also possibly identifying new exploration frontiers as
navigation goals. During the experiments we also limit the
rate of particle emission by only creating new particles after
a small translation or rotation. This heuristic is applied to
prevent the unnecessary emission of particles while the robot
hovers in place and generally observes the same parts of the
environment.

Thus far we have only identified the particles as repre-
senting point-masses in the free space. We now associate
with the particles dynamics that allow us to simulate particle
expansion given the current map of the occupied space.

D. SDE-based Particle Dynamics

Consider an enclosed three-dimensional environment that
contains a fixed number of gas molecules with dynamics that
follow a Langevin equation:

mẍi(t) = −∇U(xi(t))− γẋi(t) +
√

2γkbTη(t) (1)

with m defining the molecule mass, xi(t) ∈ R3 is the
position of the ith molecule at time t, U(xi(t)) is the potential
due to interactions between molecules, γ is a damping term,
kb is the Boltzmann constant, T is the temperature, and η(t)
is a δ-correlated stationary zero-mean Gaussian process.

We want the molecules to emulate an ideal gas. This
means that the molecules do not interact (U(xi(t)) = 0), and
the collisions are perfectly elastic and satisfy the assumptions
for frictionless impact. The evolution of the state of each
molecule, xi(t), is dictated by (1), with initial conditions
xi(0), ẋi(0), and the environment. At steady state, the
pressure of the gas, P , in an environment volume, V , is
given by the ideal gas law:

P = µ
N

V
(2)

where µ = kbT can be considered to be a constant.
As the particles disperse through the environment accord-

ing to the motion equations in (1), the volume increases and
according to (2), the pressure and the density of particles,
ρ = N

V , decrease. Both of these quantities, P and ρ, can be
estimated locally based on the distances between particles.
The lowest density regions, which are areas of maximum
expansion, correspond to unexplored regions and can be
used to guide the identification of frontiers as discussed in
Sect. III-E.

1) Time and Length Scales: From (1), the time constant
associated with the deterministic, macro-scale Newtonian
motion of a particle is given by:

τ =
m

γ
.

A choice of the time scale and the initial velocity of a particle
leads naturally to a length scale. By solving the differential
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equation we get an expression of the distance travelled by
the particle:

xi(t)− xi(0) = τ ẋ(0)(1− e
−t
τ ).

Thus the length scale, L, associated with the time scale τ is
given by:

L = τ ẋi(0)(1− e−1) (3)

It is natural to choose the length scale based on the maximum
sensor measurement range, L ∼ D. Thus, we can pick either
the initial velocities for the particles in the SDE simulation or
the time scale τ and determine the other using the equation
above.

2) SDE Integration and Initialization: Each run of the
SDE simulation is carried out for a randomly chosen initial
velocity ẋi(0) for the time duration τ . However, the inte-
gration time step, ∆t, and initial velocity must be chosen
to ensure that we detect any particle collisions with the
environment. Therefore, we choose ∆t and define ẋi(0) as
a function of ∆t and the resolution of the occupied space
with voxels of dimension ∆M × ∆M × ∆M . To ensure
that we are able to detect any possible collisions of the
particles with the environment, we require ‖ẋi(0)‖ = ∆M

∆t .
The magnitude is consistent across all particles and we draw
the direction of the initial velocity vector randomly from a
uniform distribution in azimuth and elevation angles.

In the experiments we found that the exploration rate is
improved if we bias the velocity vector directions to favor
x-y motion over z motion. This improvement is due to the
fact that buildings tend to be larger in length and width as
compared to height.

E. Frontier Extraction

Based on the previous statement that we are interested in
detecting regions of largest volumetric expansion, we can
consider volumetric or density changes as a function of
local changes in X resulting from the SDE simulation. For
the sake of brevity, we discuss here only detection based
on volumetric changes as in practice this method yields
better performance with fewer false positives – frontiers
that empirically do not correspond to points for further
exploration. However, changes in local density are readily
computed and may be approached in a similar manner.

Denote the sets X(0) and X(τ) as X0 and Xτ , respec-
tively. We are interested in the particles, xi,τ ∈ Xτ , that
are spatially separated from the particles, xi,0 ∈ X0. To this
end, we construct a KD-Tree based on the X0, compute the
closest neighbor to the particle xi,τ for all i = 1, . . . , N , and
set this value to d̂i. Therefore, d̂i represents:

d̂i = min
xj,0∈X0

‖xi,τ − xj,0‖

and measures the volumetric change between the two particle
sets. We choose the largest distances through thresholding:

d̂i > αD

where α ∈ (0, 1] is a scalar. Decreasing α will yield more
possible frontier locations but at the cost of increasing the

number of false positive solutions. The selection of this
parameter is discussed in Sect. III-H.

The actual goal for autonomous navigation should be
in known free space to ensure that the robot is able to
continue to localize itself. Therefore, we define the point gi
as the position of the ith particle immediately following its
last reflection (assuming an obstacle collision occurs). The
orientation of the goal is defined as the orientation of the
velocity of the ith particle at gi:

ġi,τ
‖ġi,τ‖ . Hence, the exploration

goal will always have direct line-of-sight sensing of both
explored and unexplored space. These goals are clustered,
sorted based on proximity to the robot, and sent to the global
planner and controller to achieve full autonomy [14].

F. Resampling

As we are continually emitting particles into the free space
representation of the environment, we wish to maintain some
bound on the number of particles. We focus the resampling
process on preserving the local density in the free space
representation. We define the weight wi of the ith particle
using the metric:

di =
1

ki

∑
j∈Ki

‖xj − xi‖

wi =
di∑N
j=1 dj

where Ki denoting the neighboring set of the nearest ki
particles (i.e. |Ki| = ki). Note here that wi is analogous
to the density of a mixture medium with uniform mass per
particle but with particles in lower density regions having
a higher weight, and thus a higher probability of being
sampled.

The particles are resampled according to their weights and
the particles representing the free space samples after this
procedure become the set X. As resampling may result in
picking the same particle multiple times, particle degeneracy
becomes a concern. However, the SDEE algorithm introduces
stochasticity into the particle state via the SDE step, avoiding
the issue of particle degeneracy.

A complication in our approach is that we rely on sparse
density of particles to provide insight into the locations of
frontier regions. However, as the volume size grows in time,
maintaining N as the constant resampling size yields an
increasingly sparse representations of the environment free
space. Therefore, we introduce the step of pruning the set
X based on the difference between the present time and
when the particle was created. As particles are emitted in
areas of new sensor observations, older particles correspond
to regions that were previously observed some time prior. A
cost to forgetting particles in regions of previous exploration
is that if the robot returns to the location, it will not be
able to distinguish that the region was previously explored.
However, this concern is easily overcome via the loop-
closure methods employed by the autonomous navigation
system [14] to determine that the area was previously visited.
Note that pruning is only necessary as N → Nmax.
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Fig. 4. Numerical simulations of the SDE-based frontier identification
approach. The output of the SDEE algorithm is shown for two cases, N =
200 and N = 800, for three different types of environments. We show
the resulting frontier goals (gi) and results from traditional frontier-based
exploration.

G. Complexity

The SDEE algorithm consists of three computational
steps: simulation of the SDE, selection of the frontiers,
and resampling. The complexity of the SDE is O(TN),
where T = τ/∆t is the total number of update steps. The
complexity of the frontier identification and resampling are
both O(N logN). Therefore, the total complexity of our
exploration algorithm is 2O(N logN) + O(TN).

Available onboard memory is most greatly impacted by the
occupied and free space storage. For a map of size M×M×
M , the occupied-space requires O(M3) storage space. This
amount may be reduced by leveraging sparse mapping meth-
ods [15] such that the required memory becomes O(mM2),
where m is a small number compared to M . The free space
particle representation requires O(N) space to store. Note
that for a voxel grid free space representation the map will
require O(M3). In most practical applications N � M3.
Therefore, the proposed algorithm can run using much less
memory than a dense voxel grid environment representation.
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Fig. 5. The SDEE algorithm is sensitive to the setting of Nmin and α.
Here we show the effects of varying N while holding α = 0.6 for the three
environments in Fig. 4. The figure depicts the average of ten simulated trials
for each N for each representative map. The rate of false positives is the
percentage of identified frontiers that do not lie in the unexplored space.

H. Algorithm Parameters

The SDEE algorithm requires selection of two inter-
related parameters Nmin and α. The parameters represent the
notion of particle dispersion and differentiate between the
uncluttered environment as unexplored space or unoccupied
space. Define the minimum density ρmin = Nmin

Vmin
, where

Vmin represents the volume spanned by these particles. Also,
define the density associated with the thresholded set of
particles with d̂i > αD as ρα. We wish for ρα � ρmin.
In practice, we find a suitable α and Nmin for a simulation
environment with similar spatial characteristics and use these
values for all future experiments. In general, these values
need only be within the correct order-of-magnitude and are
not sensitive to small changes. However, moving to a new
environment with very different spatial characteristics will
require new parameter selection.

IV. COMPARISON TO FRONTIER-BASED EXPLORATION

In this section, we compare the performance of the SDE-
based frontier extraction to traditional frontier-based ex-
ploration methods [1]. As noted previously (Sect. II) and
depicted in Fig. 2, the traditional approach performs poorly
in three dimensions. For this reason, we consider the com-
parison in two dimensions. In Fig. 4 we show three different
maps of different geometric characteristics, the output of the
SDE-based frontier extraction (Sect. III-E), and the output
of the tradional frontier-based approach. We see that the
SDE-based approach yields results similar to the tradional
approach.

As previously detailed, algorithm parameters, specifically
Nmin and α, play an import role in performance. In Fig. 5, we
depict the rate of false positive frontiers (i.e. the percentage
of identifed frontiers that do not lie in the unexplored space)
while varying N and holding α = 0.6. The figure depicts
the average of ten simulated trials for each N for each
representative map in Fig. 4. Note that for N < 100, the
false positive rate is high, but when N > 150 this number
drops to zero and remains at this value. This fact supports
the argument in Sect. III-H that one need only select an
appropriate Nmin and α for a simulated environment of
simular scale and the algorithm will work well for a variety
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Fig. 6. The number of particles required during exploration and identified
and clustered goals resulting from the SDEE algorithm. The update of the
SDEE algorithm is clearly visible as the particles reduce to Nmin during
resampling. Figs. 6(a) and 6(b) correspond to the results shown in Figs. 7
and 8, respectively.

of different environments. These parameters must be recon-
sidered only when the environment scale and characteristics
change considerably.

V. EXPERIMENTAL RESULTS

A. Experiment Design and Implementation Details

We present two experiments to demonstrate the perfor-
mance of the proposed algorithm in 3D indoor environments:
(1) a single floor exploration in the hallway of a building;
(2) a full 3D exploration in an unstructured multi-floor
environment. In both experiments, the exploration process
is completed when the SDEE algorithm no longer identifies
frontiers for further exploration.

The robot platform is sold by Ascending Technologies,
GmbH [16] and equipped with an IMU (accelerometer, gy-
roscope, magnetometer) and pressure sensor. We developed
custom firmware to run at the embedded level to address
feedback control and estimation requirements. The other
computation unit onboard is a 1.6 GHz Atom processor
with 1 GB of RAM. The sensors on the robot include a
Hokuyo UTM-30LX (laser), and a Microsoft Kinect sensor.
A custom 3D printed mount is attached to the laser that
houses mirrors and redirects a small number of laser beams
upward and downward. Communication with the robot for
monitoring experiment progress is via 802.11n networking.
Figure 1 shows a picture of our robot platform. All algorithm
development is in C++ using ROS [17] as the interfacing
robotics middleware. The experimental environment includes
two buildings in the School of Engineering and Applied
Science at the University of Pennsylvania. In all experiments,
the robot starts without any knowledge of the environment
and operates fully autonomously without any human inter-
action. We bound the total size of the environment in order
to ensure mission completion within the battery life of the
robot.

B. Exploration of a Single Floor Hallway

In this experiment, the robot explores a single floor
hallway. Figure 7 shows the intermediate stages of the
exploration process. The robot continuously explores and
gathers information as it traverses the length of the hallway.
This experiment requires the full lifetime of the battery and

results in a complete map of the environment, including a
dense covering of all vertical walls, floors, and ceilings, as
shown in Fig. 7(h). The number of particles and goals as well
as the SDEE algorithm updates with resampling associated
with this trial are visible in Fig. 6(a).

C. Exploration of a Multi-floor Building

In this experiment, the robot operates in an unstructured
lobby of a multi-floor building, where there are several
vertical spaces for the robot to explore. Figure 8 shows the
intermediate stages of the exploration process. We see the
goals that lead the robot to finish the exploration of the
first floor (within the boundary) before exploring the vertical
direction.

Figure 8(h) shows the full 3D map created by the robot
after exploration. Despite the fact that the ceiling height
exceeds four meters, the proposed algorithm successfully
finds exploration goals that guide the robot to sense the high
ceiling area, resulting in full coverage of the ceiling and the
second floor. The number of particles and goals as well as
the SDEE algorithm updates with resampling associated with
this trial are visible in Fig. 6(b).

VI. CONCLUSION AND FUTURE WORK

In this paper, we propose a stochastic differential equation-
based exploration algorithm to enable exploration in three-
dimensional indoor environments with a payload constrained
MAV. We are able to address memory and sensor limita-
tions by considering only the known occupied space in the
current map (as opposed to also representing known free
space and unknown space). We determine regions for further
exploration based on the evolution of a stochastic differential
equation that simulates the expansion of a particle system
with Newtonian dynamics. The regions of most significant
particle expansion correlate to unexplored space. After iden-
tifying and processing these regions, the autonomous MAV
navigates to these locations to enable fully autonomous ex-
ploration. The performance of the approach is demonstrated
through numerical simulations and experimental results in
single and multi-floor indoor experiments.

We are interested in moving forward in two directions.
At present, our path generation does not take into account
optimal platform motion given energy dissipation or informa-
tion gain [18]. We are interested in pursuing trajectories that
seek to optimize based on these properties. Finally, we are
interested in extending our methods to consider autonomous
exploration with multiple aerial robots.

REFERENCES

[1] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics. Cambridge,
MA: The MIT Press, 2005.

[2] C. Stachniss, G. Grisetti, and W. Burgard, “Information gain-based
exploration using Rao-Blackwellized particle filters,” in Proc. of
Robot.: Sci. and Syst., Cambridge, MA, June 2005, pp. 65–72.

[3] B. Yamauchi, “A frontier-based approach for autonomous exploration,”
in IEEE Intl. Sym. on Comput. Intell. in Robot. and Autom., July 1997,
pp. 146 –151.

14



(a) (b) (c) (d)

(e) Circle (◦) (f) Square (�) (g) (h) Final

Fig. 7. Exploration of a single floor hallway (Figs. 7(a)-7(d)) and visualization of the map, SDEE goals (red spheres), and sensor information (Figs. 7(e)-
7(h)). The circle (◦) and square (�) correspond to the same times noted in Fig. 6(a) via the corresponding shapes. Videos of the experiments are available
at http://mrsl.grasp.upenn.edu/shaojie/ICRA2012.mov.

(a) (b) (c) (d)

(e) Circle (◦) (f) Square (�) (g) Cross (×) (h) Final

Fig. 8. Exploration of a multi-floor building with online data visualization. The circle (◦), square (�), and cross (×) correspond to the same times noted
in Fig. 6(b) via the corresponding shapes.

[4] A. Visser and B. A. Slamet, “Balancing the information gain against
the movement cost for multi-robot frontier exploration,” in Euro.
Robot. Sym., ser. Springer Tracts in Advanced Robotics. Springer
Berlin, 2008, vol. 44, pp. 43–52.

[5] A. Bachrach, R. He, and N. Roy, “Autonomous flight in unknown
indoor environments,” Intl. J. of Micro Air Vehicles, vol. 1, no. 4, pp.
217–228, December 2009.

[6] S. Thrun, S. Thayer, W. Whittaker, C. Baker, W. Burgard, D. Ferguson,
D. Hahnel, M. Montemerlo, A. Morris, Z. Omohundro, C. Reverte, and
W. Whittaker, “Autonomous exploration and mapping of abandoned
mines,” IEEE Robot. Autom. Mag., vol. 11, no. 1, pp. 79–91, Dec.
2004.

[7] D. Fox, J. Ko, K. Konolige, B. Limketkai, D. Schultz, and B. Stewart,
“Distributed multirobot exploration and mapping,” Proc. of the IEEE,
vol. 94, no. 7, pp. 1325–1339, July 2006.

[8] S. Bhattacharya, N. Michael, and V. Kumar, “Distributed converage
and exploration in unknown non-convex environments,” in Intl. Sym.
on Distributed Auton. Syst., Lausanne, Switzerland, Nov. 2010.

[9] A. Nuchter, H. Surmann, and J. Hertzberg, “Planning robot motion for
3D digitalization of indoor environments,” in Proc. of the Intl. Conf.
on Adv. Robot., Coimbra, Portugal, June 2003, pp. 222–227.

[10] D. Joho, C. Stachniss, P. Pfaff, and W. Burgard, “Autonomous ex-

ploration for 3D map learning,” in Fachgesprach Autonome Mobile
Systeme, Kaiserslautern, Germany, Oct. 2007.

[11] R. Shade and P. Newman, “Discovering and mapping complete sur-
faces with stereo,” in Proc. of the IEEE Intl. Conf. on Robot. and
Autom., Anchorage, AK, May 2010, pp. 3910–3915.

[12] C. Dornhege and A. Kleiner, “A frontier-void-based approach for
autonomous exploration in 3D,” in Proc. of IEEE Intl. Sym. on Safety,
Security, and Rescue Robotics, Kyoto, Japan, Nov. 2011.

[13] R. Shade and P. Newman, “Choosing where to go: Complete 3D
exploration with stereo,” in Proc. of the IEEE Intl. Conf. on Robot.
and Autom., Shanghai, China, May 2011, pp. 2806–2811.

[14] S. Shen, N. Michael, and V. Kumar, “Autonomous multi-floor indoor
navigation with a computationally constrained MAV,” in Proc. of the
IEEE Intl. Conf. on Robot. and Autom., Shanghai, China, May 2011.

[15] I. Dryanovski, W. Morris, and X. Jizhong, “Multi-volume occupancy
grids: An efficient probabilistic 3d mapping model for micro aerial
vehicles,” in Proc. of the IEEE/RSJ Intl. Conf. on Intell. Robots and
Syst., Taipei, Taiwan, Oct. 2010, pp. 1553–1559.

[16] “Ascending Technologies, GmbH,” http://www.asctec.de/.
[17] “Robot Operating System,” http://pr.willowgarage.com/wiki/ROS/.
[18] S. Prentice and N. Roy, “The belief roadmap: Efficient planning in

belief space by factoring the covariance,” Intl. J. Robot. Research,
vol. 8, pp. 1448–1465, Dec. 2009.

15


