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Abstract

In this paper, we consider a chained form transforma-
tion for a class of the 3-states and 2-inputs symmetric
affine nonholonomic systems. Firstly, we propose an al-
gorithm for building the coordinate and input transfor-
mation to convert such systems into the chained form.
It is shown that a chained form for a two-wheel car
is easily obtained by nsing the transformation. Sec-
ondly, we show that some planar 3-link nonholonomic
mechanical systems are expressed as the 3-states and
2-inputs symmetric affine system which we discuss. Fi-
nally, an asteroid sample return rohot is considered as
an example, and simulation has been carried out.

1 Introduction

It is known that the controller design for nonholo-
nomic systems is difficult, because smooth static state
feedback control can't ensure the asymptotic stability
of the closed-loop system [1]. Some nonholonomic sys-
tems, for example free-flying space robots [2], [3] and
legged robots [4], are expressed as symmetric affine sys-
tems. ‘A chained form is a canonical form of symmetric
affine systems and some control strategies based on it
are proposed. If a symmetric afline nonholonomic sys-
tem is transformed into the chained form, it could be
comparatively easy to design a controller. However, in
the algorithm [5] for building the transformation which
accomplishes the conversion., we should solve partial
differential equations and it is difficult to find the so-
lutions in general.

In this paper, we consider a chained form transforma-
tion for a class of the 3-states and 2-inputs symmetric
affine nonholonomic system. Firstly. we propose an al-
gorithm for building the coordinate and input transfor-
mation to convert such systems into the chained form.
It is shown that a chained form for a two-wheel car is
easily obtained by using the transformation. Secondly,
we show some examples which can be expressed as the
3-states and 2-inputs symmetric affine system. Finally,
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a space robot (an asteroid sample return robot) is con-
sidered and controllers are designed on the basis of the
chained form. Simulation results are shown.

2 Chained Form Transformation

2.1 Algorithm for chained form transformation
Let us consider a 3-states and 2-inputs symmetric
affine system

o1 ap(z1.29)  apa(z,22) | 0y
&g = a21(21,22)  a22(%1,72) { % ](1)
T3 azy(r1,22)  aszz(®y,22) |

If the matrix

aiilr1 2] G12{T1,22
Az, 2p) = ul (‘_ ) ) ( ] )
21(21,22)  og2(x1,72)

has its inverse, we introduce an input transformation

[ B L5
[-ﬁz:l =4A (-7:1,.7}2) [“2]

and (1) is rewritten as a 3-states and 2-inputs symmet-
ric affine system

o 1 0 “
T3 alzy,mg)  Bxy.2,) 2
= gi(@)uy + gz(x)uz (2)
where
[ee(x1.m2)  PBler,ze)]
= laz1(x1.22) (1.32(.1:1..7:2)]A_l(n:l.ntz).

The equation (2) can be regarded as a general form of
the 3-states and 2-inputs symmetric affine systems (1).

We assume that the vector fields g,(x), g,(x) are
smooth and independent. Let us define following three
distributions

Ay = span{g,.g,.ad,, g, }.
Ay = span{gz.adg go} .
Az = span{g,}.



We assume that the system (2) satisfies the relation
Ve € U CR® s.t. dima, =3

of the condition for the controllability. This relation
-can be rewritten as

B O
3 o
Ve EUCR® st o= o #0. (3)

Murray and Sastry [5] derived a set, of sufficient condi-
tions for determining if a controllable symmetric affine
system can be converted to chained form under the fol-
lowing assumption. -

Ay, 4, is involutive on U

And there exist the functions hy.hy which satisfy the
following conditions.

ehi h,:R* - R

¢ hy and h; are independent.

o dhy - Ay =0anddhy -g, =1 (4)

o dhy- Ay =0and dhy-ad, g #0 (5)

If we could find the independent solutions h; and hy of
the partial differential equations (4) and (5), the coor-
dinate transformation z = ¢(z) and the input trans-
formation v = f(xz)u to convert the system into the
chained form

n=wm , H=v, =25 (6)

can be expressed as

z1=hy, zn= Lg, ha, 23 = h-;) (7)
vy = Uy, Vg = (Lzl ha)uy + (Ly, Ly halus. (8)

We should find solutions hg, hy, which satisfy (4).(5),
for building the coordinate and input transformation
to convert the system (2) into the chained form (6).
[Proposition]

The functions h;, hy of solutions of the partial differ-
ential equations (4), (5) for building the coordinate and
input transformation to convert the system (2) into the
chained form (6) can be expressed as

hl =T (9)
hy = —/ﬂ(ml.mz)d;r:z + 3. (10)

[Proof]

It is easy to find that Ay and h; are independent. We
see that the derived functions hy. hy in (9).(10) satisfy
the conditions (4).(5). Using {9).(10) gives

dhy=[1 O 0], dhy =[x —fr1.m2) 1] (11)
and
: 0
dhy-g,=[1 0 0] 1 =0
B{ry.22)

. 0
dhy -ady g, =1 0 0] 0 =0
' 98 _ da
Juy [ 270
1
dhy-g, ={1 0 0] 0 =1

a(my, x2)

) : 0
dhz g, = (“).2 = [* —ﬂ(.’lﬁl, ]}2) 1] 1
: By, x2)
= —Hxy1,29) + B(z1,22) =0
0
dhg . (I.(lmgz = [* ——ﬂ(ml,mz) 1] 0
98 _ 0o
dxy oz
o3 O«
= - —— X 1
duq . 57 70 (12)

As from (3) the condition (12) is satisfied, we can find
that the functions h;, hy satisfy the condition (4),(5)
and are the solutions of the partial differential equa-
tions.

2.2 Example
Let us consider a two-wheel car as shown in Fig. 1.

0 X
Fig. 1 Two-wheel car

The state equation is expressed as

x i cosf 0 —
6 | = 0 1 [ 7..“ ]
¥y sing 0 "2
5 = f]ﬁ - Riw; + R,w,
dt 2
- _ o _ —R;wl + R,.w,.
=T W

where wy, w, are the angular velocities for the left wheel
and the right wheel. respectively. Let us define the
input transformation

'7_1.1 _ :i? 0 K38
ﬁ:) - 0 1 g ’

Then we obtain the state equation

.'I:? 1 0 "
6 1= 0 1 [ “'1 ] .
7 tanfl 0 2
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Using (9).(10) gives
hy =z, hy;=y

and the coordinate transformation z = ¢(xz.6.y) and
the input transformation v = B(x. 6. y)u are obatined
as

2y =&, zZg=Ly hy =tanf. z3 =y

v = 1y = cos Ty,

2 — cor? O
L,,,“l + Ly, Ly 1y = sec” 07,

Il

U9

Finally we obtain the chaind form (6).

3 Planar 3-link Mechanical Systems

We consider planar 3-link mechanical systems with
prismatic and revolute joints. Let us introduce three
assumptions

1. There is no external force.
2. The initial linear momentim of the system

is zero. (13)
3. The initial angular momentim of the system

is zero.

We consider four classes of the planar 3-link mechanical
systems.

Type A : It has two revolute joints as shown in Fig.
2. The orientation of the system can be represented as
the angle between the central axis of the first body and
the X axis of the inertia coordinate.

1 = 91._ T2 =02, I3 =@, N1 = él~ Uy = ()2
by + by cos By 4 bz cos Bz + by cos(8, 4 8,)

v(0;,0,) =
(61,62) ay + az cosfy + az cos by + aq cos(fy + )
e1 + cacosfy + c3cos(fy + 60,)
B(01,02) =
ay + ap cosby + az cosfly + aq cos(6y + 03)
Type B : It has two revolute joints as shown in Fig.

3. The orientation of the system can be represented as
the angle between the central axis of the second body
and the X axis of the inertia coordinate.

Ty =01, 73 =02, x3 =, uy = ()1, Uy = (;2
by + by sinfy + by cos(6y — 62)

a1 + azsinfy + a3 sin by + a4 cos(f; — 0)
c1 + ez s5infy + ¢3 cos(fy — 0y)

ay + ag 8in 6y + azsinfy + a4 cos(d; — 6,)

11(01,02) =

B(81,6;) =

Type C : It has the first revolute joint and the second
prismatic joint as shown in Fig. 4. The orientation of
the system can be represented as the angle hetween
the central axis of the first body and the X axis of the
inertia coordinate.

Ty =0, ra=1, 23 =, uy = 6. up =1

b2 + byl + byl cosh + by

11?2 + asl + azlcosf + ay
¢y siné

al? + azl + aglcos O + a,

a(f,l) =

BO.1) =
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Type D : It has the first prismatic joint and the sec-
ond revolute joint as shown in Fig. 5. The orientation
of the systemn can be represented as the angle between
the central axis of the first and second body and the X
axis of the inertia coordinate.

Ty =0, =1 23 =, uy = 9 U2 =1

(9 ,)_ bllc050+bz
A T a2 + agl + azlcosb + aq
¢y sinf
3(6.1) =
’((.) a2 + asl + azlcos @ + aq
02
6
% 1
¢
/('
o X

Fig. 2 Planar 3-link mechanical system with two
revolute joints (Type A)

Fig. 3 Planar 3-link mechanical system with two
revolute joints (Type B)

O X

Fig. 4 Planar 3-link mechanical system with revolute
and prismatic joints (Type C)

Fig. b Planar 3-link mechanical system with prismatic
and revolute joints (Type D)



We find that models of the planar 3-link mechanical

systems under the assumption (13) can be expressed -

as the form (2). The planar 3-link mechanical systems

-which has two prismatic joints are neglected, hecanse .

the mechanisum does not have any merit.

4 Attitude Control of an Asteroid Sample
Return Robot

First we explain the outline of the asteroid sample
veturn (MUSES-C) mission. The primary goal of the
MUSES-C mission is to acqnire and verify technology
which is necessary to return samples from a small body
in the solar system and bring back them to the earth.
We consider an asteroid sample retirn robot without
attitude control devices for example reaction wheels
and jets.

The sample return robot is released from the space
shuttle to the asteroid with a constant linear momen-

tum. The center of mass of the whole sample return |
robot approaches to the asteroid with the constant ve--

locity. In the approaching phase the configuration of

" the manipulator and the attitude of the robot hody -

should be controlled by actuating only manipulator
joints, C

In the legged robot which is treated by Li and Mont- . .

gomery [4] and the space robot which is treated by Nak-
agawa et al. [6], the revolute joint of a hody is located
at the center of mass of the base body. These examples
are easy to treat and special cases of the robot system
that we consider. _

In this section we derive a mathematical model by us-
ing the conservation law of linear and angular momen-
tum. By applying the proposed functions the system
is transformed into the cahined form. On the basis of
the cahined form open-loop and closed-loop controllers
are designed.

4.1 Model

Let us consider the sample return robot in the planar
sapce as shown in Fig. 6. The robot is the Type C
mechanical system in the section 3. Let us define the
inertial coordinate frame O — XY, the center of mass
of the whole system Py, the base body I, the arm
Py, Let us define position vectors ropy = OPcpy 1o =
OPy, vy = OP;. The direction of X axis is same as the
velocity vector Fopr. Let ¢ and 8 be the attitude angle
of the base body and the joint angle of the arm. Let us
define [(t) and d be the distances from the rotational
center of the revolute joint to P, and to I, respectively.
Let mg,m; be the mass of the base hody and the arm,
and M(= my + m;) be the total mass. respectively.
Let Iy and I (1) be the moment of inertia of the base
body and the arm about the center of mass. Let d; be
the distance from the rotational center of the revolute
joint of the first link to the center of mass of the first
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link. Let I[;.my; be the moment of inertia and the
mass of the link ». The moment of inertia of the arm

can be expressed as I} (1) = Iy + I12 + ’—”;};—':”zu(l —dy)>

. Assuming constant linear and zero angular momentum

of the system at the initial time, the linear and angular
momentum conservation equations are expressed as

m(,i'(, + 17111“1 = 01 (14)
Top + L) + @) 4 mgry X To+myry X7y =0

where C is a constant vector. -Let us define the state
and input vectors as

z:}[()-fﬂ,,' l-—l,l'. go;—go,;]T, u:[é I]T

where 04,14, @4 are the desired values. From the equa-
tions (14) the state equation can he represented as

:{Zl_ 1 . . 0 w0 .
I3 = 0 1 o (10)
I3 alzr.ea) B(x1,32) 2

* where

a(z1,22) = filrn + 8473 + lg)

By, 22) = folzr + 0422 + 1g)
: BI? + (=2q+pcos®)l + D
A = — g T2 T 2pcos I+ C

. “psind

81 =~
f2(8,1) BIZ 4 (=29 + 2pcos8)l + C
mymy, n mym;y

myg M
' 2mom d2mym
07Ny SRUSULIT!
C=IL+Ii1+5+
M ™y
dzmlmu
D = I+ 1+ +——
’ my2
dmgm.y . dymymay
p - M . (I - M2 M

A 4
center of mass
5 a
,c.~=((10t) IJ-I":"— (0)

Fig. 6 Asteroid sample-return robot

4.2 Chained form transformation
Using the proposition we can obtain the functions

hi = 1 {16)

L _ V2S(s 22)
V2psin(ry + #,) arctan [ JU(51) ]
hy = -+ T3

\/U(-Tl)

(17)



where
S(z1,23) = —q+pcos(zy +84) + B(zg + ly)
U(zy) 2BC — p? — 2p° + dpqcos(zy + 04)
—pz cos(2(xy + 84)).

The coordinate and input transformation is obtained
as

zn =@
2 = (\/Epcos(n;l +64) psin(x +10'1)T(:1:1))
Nen) V23U ()
% arctan [ V25(2y, $2)] _ V2psin(z; + 6,)
Ulzy) U(xy)+ 25221, 22)

S(z1.m2)T (1)
V2U (1)

V2psin(z; + 04) arctan [%)ﬂ]

b3 (\/ipsin(ml +6,4) + ) + a(zy, x9)

zZ3 = i
U(zy)
m = WUy
0z 0z
vy = 5:51.1.14— 5;2?@ (18)

4.3 Control law and simulation
The physical parameters of the robot are taken as
shown in Table 1. The initial configuration in the open-

i
loop and closed-loop control are taken as 2 = -2—[md],

0
T2
T3 = E[rad], respectively. The desired configuration is

taken as z¢ = Ofrad], z§ = O[m)], 2¢ = Ofrad]. Because

of the limitation of the extent of movement a constraint
condition should be considered. The state constraint
condition

=0.5[m], z§ = Ofrad] and 2 = 0frad], 3 = O[m),
K4

—g <o)< =, —0.5< aa(t) <0 (19)

)3

is considered.

Table 1 Parameters of robot,

[ Base bm’lyw Arm 1 l Arm 2 ]
Weight [kg] 300 30 30
Size [m] 2x2 1x03|1x03
Moment of inertia [kgm?] 200 2.725 2.725

We design the open-loop controller based on sinusoids
(5] and the closed-loop controller hased on the time-
state control form [7].

In the open-loop control the inpnt is given as

Ofsec] < t < 5fseq]

m

uy(t) = T uz(t) = 0.1,

£ < 30[sec]

2
vi(t) = 0.4615cos (—;(t—ﬁ))
o]

5lsec) <

va(t) = 0.0518sin (g;(f - 5)) .
5

In the closed-loop control we introdnce the input trans-
formation from the chained form (6) to the time-state
control form.

‘ : v

Jl1 =M. fig = —
Vi

From the transformation we obtain the time-state con-

trol form
d 23] _ |22 0
=1 ER R H R

(121

Tl‘f,_ = j1. (21)
As the obtained system (20) is liileal', the feedback con-
trol

flo = —i’i?gZz bl k323 (22)

can stabilize the system. The input ve for the chained
form is given as

vat) = ;kzzzzwl ~k3zzvy, v1 >0 (2, >0)
2= kazavy — kazzvy, v1 <0 (21 < 0).

(23)

In the simulation the feedback gains are taken as kp =
8, k3 = 16 and the input v1(t) = gy (#) is given as

onlt) = X f0<t<b5,15<t<25
T -5 ifb<t<1s.

Figs. 7 and 8 show the transisent responses for the
open-loop control and the closed-loop control, respec-
tively. In the open-loop control it is easy to obtain the
control input for big initial errors with considering the
constraint condition, but the controller is not robust for
disturbances. In the closed-loop control the controller
is robust for the disturbances, but the applicability of it
is restricted becanse of the state constraint. The calen-
lation for the inverse transformation from the input for
the chained form to the original input is complicated.

5 Concluding Remarks

We have considered a chained form transformation
for a class of the 3-states and 2-inputs symmetric affine
nonholonomic system. The solutions of the partial dif-
ferential equations are obtained for building the coor-
dinate and input, transformation to convert, the systemn
into the chained form. An asteroid sample return robot
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is considered as an example, and simnlation has been
carried out. We should consider following problems :
1). Robust controller design for parameter uncertainty,
2). Controller design for the nonholonomic system,
with the drift term (for example. a space robot with
non-zero initial angular momentiun) 3). Development
of the chained form transformation algorithm for wider
calss of the nonholonomic systems.

15
) time({sec]

Fig. 7 Transient responses for open-loop controller

£ : ; H : :
08 L H A SR R H H
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.g. 5 -~ T T T \ T T ~
EH : : : A : Al :
g T : : y : :
Y H H i H L s H :
0 2 4 6 8 10 12 14 16 18 20
tima{sac]

Fig. 8 Transient responses for closed-loop controller
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A Appendix

The definition of the function in the coordinate and inpat
transformation in (18).

T(x1) = —4pgsin(es + 84) + 2p° sin(2(zy + 64))
V(x1) = =dpqeos(zy + 02) + 4p° cos(2(x1 + 1))
Wiz, 22) = Uy} + 252(:1:1,::2)

\/—5 -"1 -"2)
T Zf.

=1 i=5

_17(:52 + L) sin{uy +62) (B2 + 14)® — 2¢(x2 + 14) + 2D - C)

(B(zz +14)2 + (—2q + 2pcos(z1 + 04))(x2 + 11) + C)2

g_zi = —————W(QPB ) (uus(:lrl +6q4) — ih'_l(z‘lUi—( 9_.1))___T(:nl)_)
r2 £1,¥2 3
+4pB sin(zy + 04)S{(r1,22)
W2(xy.22)

X (2psiu(.1:1 +64) + ————-——S(ml’ 22)T (a1 ))

U(xy)
28 (1, z2)(y w2) — 2B(x2 + 1g) — 2q + peos(zy + 6a)
B(wz + 1)+ (—2q + 21)(:()5(;; +84)) (22 + 1)+ C

_ V2psin(ar + 64) psin(zy + 04)V (1)

& U(,’rl) s 62 == \/5[]%(11)
& = — \/ipr,os(:m + 82)T(x4)

VvU(x1)

3psin(x, + 04)T2(x1)

& =

2\/§U§(:m)
& = _2])«:(15(:::1 + b4)
. Wiy, x2)
X (Zl)siu(a:l +64) + i(_l'_l_(-j_f(_;)jil_))
& = psin{ey + 84)T(xy)
¢ = Ul )W (1. 2:2)
X (2psiu(::>, +84) + ﬂ%)
& = 2psin(xy 4 84)S(wy, 22)
7 Uz )W (a1, 22)
x (2];siu(:l:1 +64) + ‘-9-(;"_Ui(i)_€-(—’-‘-))
g1
& = psin(xy + Hq)
8 Wiry.29)
X (—2];1:05(1:1 +64) — —S(—Jl—’(]j(z-:)l-‘)/(—ll)
2psin(ey + 0)T(21)  35(x1,22)T% (1)
Ufxy) 202(xy)
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