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Abstract 

In this paper. we colisider a chained foriii t,raiisforiiia- 
tioii for a class of the 3-states ancl 2-inpiits syiiiiiietric 
affine iionliolonoiiiic syst,eiiis. Firstly. we propose an al- 
gorithm for lmildiiig the coorcliiiate ancl inpiit, t,raiisfor- 
iiiatioii to coiivert siich systems int,o the chained foriii. 
It is shown that a chained form for a two-wheel car 
is easily ohtained by iisiiig the traiisforniation. Sec- 
ondly, we show that soiiie plaiiar 3-lii:k iioiilioloiioiiiic 
mechanical systems we expressed as the 3-states and 
2-inpiits symmetric affine system which we rlisciiss. Fi- 
nally, aii asteroid saiiiple retiirii rolmt is considered as 
ai example. aiid siiiiiilatioii has heeii carried oiit. 

1 Introduction 
It is kiiowii t h t  the controller tksigii for iianliolo- 

iioiiiic systems is tlifficidt. hecaiise siiioatli static state 
feedback control can't eiisiire the asyniptotic stalility 
of t,he closed-loop syst,eiii [I]. Soiiie iioiiholoiiomic sys- 
teiiis, for example free-flying s p x e  rohot,s [2). [3] and 
legged robots [4]. are expressed a.s syiiimet,ric affine sys- 
tems. A chained foriii is a canonical foriii of syiiiiiietric 
affine systems aiid soiiie control stmtegies 1xwed oii it 
are proposed. If a symmetric atfine nniiholonoiiiic sys- 
tem is transforiiiecl into the chaiiial forin. i t  coiild be 
comparatively easy to design a cont,roller. However, in 
the algorithm [SI for biiildiiig the thaiisforiiiation which 
accomplishes the coiiversioii. we slioiilcl solve partial 
differeiit,ial eqiiatioiis and it is clifticiilt, tm find the so- 
lutions in general. 

In this paper. we consider a chaiiietl foriii transforiiia- 
tioii for a class of the 3-states anti 2-iiipiits syiiiiiietric 
affine iionliolonoiiiic system. Firstly. we propose ail a1- 
goritliiii for biiilding the coorc1iiiat.t: ij,ll(l inpiit, traiisfor- 
iiiatioii to convert siich systems inta the chained foriii. 
It is shown that, a chained foriii for a t,wo-wheel car is 
easily obtained by iisiiig the transforiliilt,ioii. Secondly. 
we show soiiie examples which caii he expre, 
3-states and 2-iiipiits symmetric afilir system. Finally. 
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a space rolmt (ill1 asttwid saiiiple retiirii rolmt) is coii- 
siderecl aiid controllers are desigiied on the hasis of t.he 
chained foriii. Siiiiiilatioii results we shown. 

2 Chained Form Transformation 

2.1 Algorithm for chained form transformation 
Let 11s consider a 3-states and 2-iiipiits syiiiiiietric 

affine system 

n.11 ( X I .  : x 2 )  a12  ( 5 1  , 2 2 )  

~ / . 3 1 ( : 1 : 1 . : ~ 2 )  a32 (2 :1 .2 :2 )  

If the matrix 

has its inverse. we iiitrorliice ail inpiit t,raiisforiiiat,ion 

aiicl (1) is rewrit,ten as a 3-st,at,es aiid 2-iiipiibs symmet,- 
ric affine system 



r o i  We assiiiiie that the system ( 2 )  satisfies the relation 

Vx E U E R3 s.t. cliniAo = 3 

of the condition for tlie cniitrollal~i~ity. This relation 
.can be rewritten a.? 

Miirray aiicl Sastry [5] deriver1 a set of siifficient coiidi- 
tioiis for rieterniiniiig if a controllal~lt! syiiiiiietric affine 
system can he converted to cliainecl form iintler the fol- 
lowiiig assiiiiipt,ioii. 

Al. A2 is iiivnliitive oii U 

And there exist the fiiiictions 11.1, hz  which satisfy the 
following coiidit,ioiis. 

0 hGl. h,2 : R3 --+ R 
0 h.1 and h.2 are iadependt-:nt. 

dh.1 . A1 = 0 atid dh.1 * 91 = 1 
0 dh.2 . 62 = 0 and dh.2 . d!,, C-J~ # 0 

(4)' 
( 5 )  

If we coiild fincl tlie iiidepentleiit solilttiom hi and h.2 of 
tlie partial differential equations (4) and (5) .  tlie canr- 
cliiiate traiisforiiiatioii z = cj(e) ancl the inpiit trans- 
foriiiatioii v = jll(z)u to convert thc: system into the 
ch.iiied form 

i l  = 111 , i 2  = 1J2 , i3 = z.2111 ( 6 )  

cai be expressed as 

~1 = h.1. 22 = L,, hr2, 2 3  = h.2 (7 )  
111 := 111. 712 := (L:11~,2)1/.1 + (L!,2Ls,,h2)?/.2. (8) 

We slioiild find soliitions hl. h.2. which satisfy (4),(5). 
for biiildiiig tlie coordinate ancl inpiit transforiiiation 
to coiivert the system (2)  into the chained form (6 ) .  
[Proposition] 

The filiict,ioiis h,l, h.2 of soliit,ioiis of the paytiill differ- 
ential equations (4),  (5) for biiiltling the coordinate and 
hpi i t  transformation to convert the system ( 2 )  into the 
diainecl form (G) can be expressed as 

h.1 = x1 (9) 

(10) h 2  = - JB(I1. zz)d.':2 + x 3 .  

[Proof] 
It is easy to find that h.1 aiid h z  are iiitlepeii(lent. We 

see that, the derived fiiiict,ioiis h.1. h.2 in (9).( 10) satisfy 
the coiiditioiis (4).(5). Usiiig (9).( 10) gives 

dh.1 = [ 1 0 o]  . dh.2 = [ * - [3( x1. : x 2 )  11 (11) 

aiid 

dh.1 ' g 2  = [ l  0 01 

As from (3) the condition (12) ks satisfied, we can find 
that the fiiiictions hl. 11.2 satisfy the coiiditioii (4),( 5) 
illid are the snliitioiis of the partial differential eqiia- 
tioiw . I 
2.2 Example 

Let u s  c.onsiditr a two-wheel car as shown in Fig. 1. 

The state eqiiation is t:xpressed a.. 
I 

where wl, w.,. art; t h  aiigiilar velocities for the left wheel 
and the riglit, wliw4. ri-!spectively. Let 11s define the 
inpiLt. t,raiisformatioii 

Then we ol)taiii the stiitr! eqiiatioii 

I. 
21 27 



Using (9) ,( 10) gives Type D : It, lim t,lw first prismatic joint and the sec- 
oiitl revoliitx joint, as shown in Fig. 5. Tlie orientation 
of the systkln (:ill1 Ilr represented as t,he angle between 
the central axis of  the first, and second hody and the X 
<axis of the incrtia coorc-linate. 

h1 = 3: , h.2 = ?/ 

and the coor&iat,e t,raiisforiiiatioii z = (/)(:1:.0. y) and 
the input. traiisforiiiatioii 2, = / 3 (  : I : ,  0. y)u are obatiiied 

3 Planar 3-link Mechanical Systems 

we colisider planar 3-link mechaiiical syshiis with 
prismatic and revoliite joints. Let i i s  intmtliice three 
ihssi iiiiptions 

1. 
2. 

3. 

There is no external force. 
The initial linear momentiin of t,lie systeiii 
is zero. (13) 
Tlie initial aiigidar iiioiiieiit,iim of the system 
is zero. 

T1 = 0. .1'2 = I .  .1'3 = Lp, 11.1 = 8. ?/,2 = 1 
hi1 C O S @  + h2 

N ( H . / )  = 

[3(H.I) = 

0112 + n21 + a31 cos8 + n4 

n1/2 + n2l + a31 cos0 + 
c1 sin 8 

0 U X  
we colisider foiir classes of the planar 3-liiik mechanical 
systems. rt-:voliitk joints (Type A) 
Type A : It has two revoliite joints as shown in Fig. 
2. The orientation of the system can be represented as 
the angle between the central axis of the first Imdy and 
the X axis of t,he inertia coortliiiate:. 

Fig. 2 Planar 3-liiik iiierJianica1 system wit,li two ip 
21 = 81. .r, = 82, 2 3  = $7. 111 = rs,. 11, = 6 2  

's 0 ,  

0 X 
hi + h2 COS 81 + b3 COS Hz + h4 COS( 81 + 82) 
n 1  + 0.2 cosBl + n.3 cos H, + 0.4 cos(& + e,) 

':I + c2 cos 8 2  + c3 cos(01 + I92 ) 
0.1 + "2 cos 81 + 0.3 cos 02 + "4 cos( H1 + 02 ) 

481702) = 

P(H1.02) = 
Fig. 3 Planar 3 - h k  iiiecliaiiical systeiii with two 

rwoliite joints (Type B) 

Type B : It has t,wo revoliik joints as shown in Fig. 
3. The orientation of the system can be represented as 
the angle bet,ween the central axis of tlie second body 
and the X axis of the inertia coortliiixte. 

21 = 01, :1:2 = 82. .1.'3 = Lp' '111 = 01. 1/.2 = 02 
bl + h2 siiiH1 + 0 3  cos(& - 02) 

nl + 0.2 sin 01 + 0.3 sin 02 + 4 cos(& - 192) 
c1 + c 2  sin 02 + c3 cos(H1 - H2 ) 

sin 01 + 0.3 sill H, + q cns(H1 - o2 ) 

f?(Bl,B,) = 

Fig. 4 Planar 3 - h k  iiic:cliaiiical system with revoliite 
ant1 prismat,ic joints (Type C)  

"('17 '2) = o.l + 
Type C : It has the first revoliite joint and the secoiid 
prismatic joint a s  shown in Fig. 4. Tlie orientation of 

the t,he central systeiii axis caii of be t,he represeiit,ed first Ixdy as an(I the t,lie angle X axis Ixtweeii of tlie [--& / 
inertia coordiiiat,e. 

,-- n: l  = 8,  :1:2 = 1 ,  3:3 = Lp. 111 = 0. 162 = I 
b112 + h21 + h 3 l  COSH + h, 

X 0 
N ( 0 . I )  = 

/3(0.1) = 

n112 + 0.21 + 4 cos H + n.4 

n,P + n2l + n31 cos H + n.4 

c1 sin H Fig. 5 Plaiiilr 3-liiik nit:t~hanical system with prismatic 
;t11(1 rttvoliit,c: joints (Typc: D)  
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We fiiid t,liat, iiioclels of t,he l>laiii\.r 3-link niecliaiiical 
systeiiis under the assiuiiption ( 13) citii 1 ~ :  exlwessed 
as the foriii (2). Tlie planar %link nieclianical systeiiis 
,which has two prismatic jointss are iieglc:ct,ed. because 
tlie iiiedianisiiiii does not have ally Iiicrit. 

First we explain the oiitliiie of tl is  asteroid saniple 
rekiirn (MUSES-C) mission. The 1)riiiiartl.y goal of tlie 
MUSES-C iiiissioii is to acqiiire aiid verify tecliiiology 
which is necessary to retiirii saiiip1t:s from a siiiall body 
in the solar systeiii and bring Ixwk t,lieiii t,o the earth. 
We consider ai asteroid saniple retiirii rohot witlioiit 
att,it,iide coiit.ro1 devices for exaiiiple reac,t,ion wheels 
aiid jets. 

Tlie sample retiirii robot is released from tlie space 
sliiitkle too the ast,eroid with a const,aiit linear ~iioiiieii- 
tiiiii. Tlie center of iiiass of the wliole saiiiple ret,iirii 
robot approaches to t,lie ast,eroicl with the c.oiisttaiit ve- 
locity. h tlie approacliing phase the coiifigiiration of 
the iiiaiipiilator and the attitiide of tlie robot hody 
shoiild be coiitmllcxl hy actiiating oiily maiiipiilator 
joints. 

In tlie legged rolmt wliirh is txeatxd by Li aiid Moiit- 
goiiiery [4] aiid tlie space robot which is treated by Nak- 
agawa et al. [GI. the revoliite joint of a lwtly is located 
at the center of mass of the base hotly. These examples 
are easy to treat and special cases of the robot system 
that, we consider. 

Iii this section we derive a matlieiiiatical iiiotlel by iis- 

iiig tlie coiiservatioii law of linear aiicl aiigiilar iiioiiien- 
timi. By applying tlie proposed fiiiict,ioiis the system 
is transformed into the caliiiiecl form. On tlie Im.sis of 
the cahiiied form open-loop and closed-loop controllers 
are designed. 

. .  

4.1. Model 
Let lis consider the saiiiple retiirii robot in tlie planar 

sapce as showti in Fig. G. The rollot, is the Type C 
mechanical systmi in the section 3. Let iis tlefiiie the 
iiiertial coorcliiiate fraiiie 0 - XY. tlie center of i i i~ss  
of the whole system PCM, the base Imrly f i l ,  the ariii 
PI. Let iis define positZion vectors T C M  = @cM = 
OPO, q = @I.. ~ ~ i e  clirect,ioii of x axis is saiiie a s  t,lie 
velocity vector rCM. Let 'p atid 8 be tlie ahtitiide aigle 
of the base body and the joint aiigle of the ariii. Let iis 
rlefiiie l ( t )  and d be the distaiic.es froin the rot,at,ional 
center of the revoliite joint to Pl aiicl to fil. respectively. 
Let m.o. ml he the iiiass of the haw Imcly niicl the ami, 
aid M(= ??J.o + m1) he the total iiiass. respectively. 
Let Ill aiid 11(1) be the iiioiiieiit of iiiertia of the base 
body aiid t,he ami aboiit. the center of inass. Let d l  be 
tlie distance from tlie rotational cr:iit,c!r of tlie revoliite 
joint of the first, link to the. cc-mter of inass of the first 

. 4 A t t i t u d e  Cont ro l  of an Asteroid Sample 
Return Robot. 
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link. Let, ll;,. f11.1i he the iiioiiieiit of inertia aiicl the 
iiiass of the link %. The nioiiieiit, of inertia of the ariii 

Assiiiiiiiig coiistmt4 h e a r  aiicl zero aiqiiliw iiioiiieiituii 
of the systeiii at, tlie iiiitial time, the linear aiid aiigiilar 
iiiomeiit,iiiii r.oiiservat.ioii eqiiatioiis are expressed as 

rn,(]i.,, + n t . 1 i - 1  = c. 
IO+ -t 11(r)(ri + +) +;moro x i.0 + ni.lrl x i.1 = o 

can be expressc:d as I1 (1) = Ill + 112 + ( l -  d , ) 2 .  
ri l l  2 

(14) 

where C is a coustaiit, veckor. Let iis rlefiiie the st,at,e 
aiid inpiit, vectors a s  

. .  
z=[H-H,1 !-l,i. ( D - ' p , j ] T ,  t i= [ i  iIT 

wliere OJ. 1,l. ' p , j  are tlie desired valiies. Froiii tlie eqiia- 
tioiis (14) tlie st&e equation can he reprkseiited a s  

U =i,= 6) 
Fig. G Ast,eroid saiiiple-retmii rohot. 

4.2 Chained form transformation 
Using the prolmsit,ioii we can obtain t,lie fiiiictioiis 

h.1 = :i:1 (16) 



where 

Base h l y  Arm 1 Arm 2 
Weight [kg] 300 30 30 

Size [in] 2 x 2 1 x 0.3 1 x 0.3 
Moiiieiit of inertia [kgm'] 200 2.725 2.725 

The coordinate aiid inpiit t,ransforiiiation is oh tained 
as 

4.3 Control law and simulation 
The physical parameters of the robot are taken as 

sliowii in Table 1. Tlie initial coiifigiiration in the open- 
loop aiirl closed-loop control are taken a3 2:; = -[rad]. 

xi = --O.S[111]. z! = O[rad] aiid :I!; = O[racl]. 2:; = 0[111], 
z! = -[rad]. respect,ively. Tlie tlesired coiifigurat,ion is 

taken a9 .xf = O[rad]. z$ = 0[m]. .I:: = O[rat'l]. Because 
of the limitation of the extent of iiioveiiieiit a constraint 
coiiditioii slioiild he considered. Tlie state constraiiit 
coiidi t ioii 

T 

2 

.IT 

12 

(19) 
?r ?r -- < 21(t) 5 - -0.5 5 . 1 : 2 ( t )  <_ 0 
2 -  2 '  

is considered. 

Talde 1 I'araiiiet,ers of robot 

We design the open-loop cont,rollt:r Imsetl on siiiiisoicls 
[5]  aiid the closed-loop controller I>iise(.I on the time- 
state control form [7]. 

In tlie open-loop control the iiipiit, is given as 

O[sec] 5 t. 5 5[sec] 

In the closed-loop coiitml we introrhce tlie inpiit tram- 
formation from tlie chained foriii ( G )  to the time-state 
co11trol for111. 

U2 
/"I = ' I l l .  /"2 = - 

1) 1 

From tli-e t,raiisfnriiiat,ion we obtain the tiiiie-state coii- 
trol for111 

As the obtained system (20) is linear, the feedback coii- 
trol 

Figs. 7 ant1 8 show t,he traiisiseiit respoiises for the 
open-loop contml and the closed-loop control, rcspec- 
tively. In the opeii-loop coiitml it is easy tm oht,aiii the 
control iiipiit for big initial errors with coiisitleriiig the 
constraint condition. h i i t  the controller is not, rolxist for 
disttirbances. In tlie closed-loop control tlie coiitroller 
is robust for tlie clistiirlmiices, hut the applicability of i t  
is restricted Iwcxiisc: of the state constraint. Tlie calcii- 
latioii for tlie iiiverst: kraiisforiiiatioii froiii tlit! iiipiit for 
the chained form t,o t,he origiiial input is complicated. 

5 Concluding Remarks 

We have coiisic~lttrod a cliailierl form transfor~nation 
for a class of tlic: 3-stxbr:s and 2-inpiits syiiiiiietric affine 
iioiilioloiioiiiic: s,ystt:iii. Tlie sohitinis of tlie partial tlif- 
fereiitial c:rjiiat,ions art: nl~taiiied for hiilcliiig the coor- 
dinate and iiil)iit, tjraiisfnriiiatioii to coiivert the systeiii 
into tlie cliaiiitvl fnriii. A11 asteroid sample rthirii robot, 
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is considered iw an exainple. ancl siiniilatioii has 1,eeii 
carried orit,. We shoiilcl consider fnllowing prol)leiiis : 
1). Robiist controller design for l > i ~ i i ~ i i ~ : t ~  iuicertainty. 
2) .  Controller tlesign for the iionlioloiioiiiic system, 
with the clrift, teriii (for exaiiiplc. a space robot, with 
iim-zero initial aiigiilx 1iio1iie1it11iii) 3).  Develop~iie~it 
of the cliained form transformation aIgorit,lim for wider 
cdss of the noiiholonomic systeiiis. 
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