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Computational models can provide useful guidance in the

design of behavioral and neurophysiological experiments and

in the interpretation of complex, high dimensional biological

data. Because many problems faced by the primate brain in the

control of movement have parallels in robotic motor control,

models and algorithms from robotics research provide useful

inspiration, baseline performance, and sometimes direct

analogs for neuroscience.
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Introduction
The theory of motor control was largely developed in

classical engineering fields such as cybernetics [1], opti-

mal control [2], and control theory [3,4]. These fields have

addressed many crucial issues, such as negative feedback

and feedforward control, stochastic control, control of

over-actuated and under-actuated systems, state estima-

tion, movement planning with optimization criteria, adap-

tive control, reinforcement learning, and many more.

From the viewpoint of computational neuroscience, an

interesting question is in how far the insights, methods

and models developed in engineering sciences also apply

to motor control in biological organisms. The answer to

this question is not always clear. On one hand, the

distributed processing in the nervous system often does

not enable us to classify control strategies according to the

crisp definitions and ‘box charts’ of engineering domains.

On the other hand, evolution has probably come up with a

variety of control strategies that have not yet found

parallels in engineering. Nevertheless, in certain

instances, most researchers agree that strategies of bio-

logical motor control resemble methods of control theory,

as in the example of time-delayed systems, in which

feedforward control with predictive state estimation is

a common concept. An extended discussion of such issues
www.sciencedirect.com
can be found in an excellent recent textbook on compu-

tational motor control [5�].

The view taken here is that methods from engineering

science can be useful in various ways. First, they can

simply function as an inspiration of what possible

approaches and theories exist for a given problem (e.g.

[6–8]). Second, they can offer a baseline of what beha-

vioral performance can be achieved using the best theory

available that is suitable for the motor system at hand,

irrespective of whether this theory is biologically plau-

sible or not. If a more biologically faithful model demon-

strates a different level of performance, it might be

explained by the differences of this model from the

baseline-engineering model. And third, of course, some

engineering approaches might be directly applicable to

models of biological control, as, for instance, in oculomo-

tor control [9,10].

In this review, we focus on recent research in computa-

tional motor control, with a view towards parallels

between computational modeling and theories in artificial

intelligence and robotics, in particular robotics with

anthropomorphic or humanoid robots. We structured this

review according to the control diagram in Figure 1,

which is commonly used in robotics and can also function

as an abstract guideline for research in biological motor

control [11]. This diagram distinguishes between five

major stages of motor control: first, the higher level

processing and decision making, which defines the intent

of the motor system; second, the motor planning stage;

third, the potential need and problem of coordinate

transformations; fourth, the final conversion of plans to

motor commands; and fifth, the preprocessing of sensory

information such that it is suitable for control. Of course,

the separation of the stages in Figure 1 might not be

present in some control algorithms and in biological

systems, but, as will be seen below, a conceptual differ-

entiation of these stages will be useful for our discussion.

The brain as a mixture model
The motor command generation stage in Figure 1, which

is usually associated with some of the main motor area in

the primate brain such as the primary motor cortices and

the cerebellum, has been the focus of a large amount of

neurophysiological and computational research. It is now

relatively well established that the central nervous system

makes use of the computational principle of internal

models, which are mechanisms that can mimic the

input–output characteristics of the motor apparatus (for-

ward models), or their inverse (inverse models) [11,12].

Research in this area has started to focus on how multiple
Current Opinion in Neurobiology 2005, 15:675–682
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Figure 1

Sketch of a generic motor control diagram, typically used in robotics research, that can also function as a discussion guideline for biological

motor control.
tasks are controlled with internal models, for example,

objects with different weight or inertial properties. This

topic is discussed in the literature as multiple model

learning, contextual model switching, or mixture models.

The main principle of the ‘mixture of experts’, a neural

architecture [13] developed in machine learning, and its

newer derivatives developed specifically for motor control

[14,15], is the ‘divide and conquer’ principle: multiple

specialized simple internal models can outperform a

single large-scale internal model that tries to accomplish

everything by itself. This strategy is especially useful for

ill-posed problems. Holding two objects of different

weight with the same arm posture, for instance, requires

different motor commands. A single neural network

would only learn the average motor command of both

objects, and thus perform poorly on both of them, whereas

a mixture of experts can learn the exact inverse by

switching object specifically.

How are the multiple models encoded in the CNS?

Recent imaging and neurophysiological studies support

the existence of multiple internal models [16–19] in

separate neural substrates. Alternatively, if neurons that

form the internal model multiplicatively code contextual

(such as a color cue associated with a movement) and non-

contextual information (such as the state of the arm), then

a single network, that is, the same neural substrate, could

encode several internal models, each accessed by differ-

ent contextual cues [20,21�].

The brain as a stochastic optimal controller
Because noise, as sketched in Figure 1, is predominant in

the nervous system, it is bound to affect motor control. On

the efferent side, in motor neurons for instance, the

standard deviation of noise is between 10% and 25% of

the mean activity of a motor neuron [22]. What strategies
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does the central nervous system use to minimize the

effects of noise on movements? A first solution is to

generate smooth movements. Harris and Wolpert [23]

proposed a signal-dependent noise theory according to

which the goal of motor planning is to minimize the

effects of noise on target errors. The commonly observed

relative straightness of arm movements and the smooth

bell shape velocity profile thus result from the minimiza-

tion of the consequence of noise on the motor output.

Second, redundancy due to the number of overcomplete

muscles reduces variability [23], and the resolution of

redundancy on the muscular level is well modeled by the

theory of signal dependent noise [24]. Third, redundancy

due to the large number of contributing neurons further

reduces variability. Hamilton et al. [25�] showed that

using the proximal joints during movements might help

to decrease end-point variability because the larger mus-

cles of these proximal joints havemoremotor units, which

result in reducing variability. The redundancy of cortical

neurons might additionally play a part in reducing the

effect of noise on movements: the reduced number of

surviving (noisy) neurons in stroke patients might cause

greater end-point variability [26�].

Noise in motor control can, in theory, arise from sensory

(i.e. target localization), planning, execution, or muscular

origins. Van Beers et al. [27�] showed that the variability

observed in hand position after reaching movements is

not explained by sensory or planning noise, but rather by

noise in movement execution. Jones et al. [28] ruled out

the possibility of large muscular noise by showing that

variability in thumb force production mostly arises from

the noisy discharges of motoneurons. Todorov and Jordan

[23] suggested a complete theory of stochastic optimal

feedback control, which addresses motor planning, motor

execution and redundancy resolution and that can

account for a large body of experimental data. Note,
www.sciencedirect.com
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however, that the computational complexity of learning

stochastic optimal control is still daunting in nonlinear

motor systems, even in theory. Furthermore, signal

dependent noise-based theories might need some revi-

sions as co-contraction actually reduces the movement

variability in single joint elbow movements [29], despite

injecting theoretically more noise due to higher muscle

contraction levels.

Generalization and error-based learning
A crucial component of the theory of motor command

generation regarding internal models is how internal

models are learned, stored in short- and long-term mem-

ory, and how they generalize to new tasks. To quantify

such issues, Shadmehr and co-workers [30] developed a

novel approach to derive the extent of learning general-

ization from trial-to-trial changes in behavior in human

experiments using a manipulandum that can exert force

fields on the hand during movements. It was shown that

the spatial generalization of learning, for example, the

extrapolation of a learned force field to areas of the

workspace of the hand where the field had not been

experienced before, can be modeled in terms of spatially

localized basis functions, that is, spatially tuned receptive

fields, similar to that used in modern statistical learning

approaches [31]. These basis functions, which are com-

bined to form the internal model of the force field, were

bimodal, as was found in the spatially preferred directions

of firing in cerebellar Purkinje cells [30,32]. Detailed

changes in trial-to-trial performance could be predicted

from an error-based learning rule, that is, a gradient

descent supervised learning method.

A recent study by Franklin et al. [33] broadened the scope

of force field studies in demonstrating how error-based

learning can also adjust the level of co-contraction for

reaching movement in an unstable force field, essentially

addressing the question of how the brain could learn

impedance control (i.e. the adjustment of compliance

in a task-specific way). The authors propose a computa-

tional model that can learn appropriate patterns of muscle

activation to compensate for both perturbing forces and

instabilities, in addition to predicting the evolution of

movements observed in humans. At the core of the model

is an intriguing asymmetric learning rule that has higher

learning gains for agonistic muscles than for antagonistic

muscles, and also a decay term to reduce co-contraction if

only small movement errors are experienced.

Models of motor learning usually assume a quadratic error

function in which the mean squared error is minimized

over repeated trials; humans, however, seem to use an

error function that is quadratic for small errors, but sig-

nificantly less than quadratic for large errors, making it

robust to outliers [34]. Furthermore, supervised learning

of internal models with neural networks requires that

neurons receive two inputs: one that carries the input
www.sciencedirect.com
signal, and the other the movement error, such that the

synaptic strength for the inputs to the neuron can be

modified. The cerebellar Purkinje cells have such archi-

tecture, with the inputs from the inferior olive carrying

the error signal [35]. Because the inferior olive neurons

have a very low firing rate, the interference effect of the

error signals on the Purkinje cell outputs is minimized.

Schweighofer et al. [36��] recently proposed that moder-

ate electrical coupling between inferior olive neurons can

induce a ‘chaotic resonance’, which maximizes the trans-

mission of the error signals in spite of these low firing

rates, and thus might facilitate learning of internal models

in the cerebellum.

Motor skill learning is sometimes hard or even impossible

[37]. For arm movements, it is, for instance, impossible to

learn two opposite force fields sequentially: learning of

the second field can wipe out learning of the first one.

Random scheduling of the two fields together with con-

textual cues, however, enables learning of both fields [38].

Besides random scheduling, another approach to learn

complex tasks is to use a developmental method in which

movements of increasing difficulty are attempted as

learning progresses [39,40].

Operational space control and redundancy
resolution
As sketched in Figure 1, before reaching the motor

command generation stage, information flow from motor

planning requires a stage of coordinate transformations to

transform external or task coordinates to the internal

coordinates of the motor system, for example, a Cartesian

space to muscle or joint space conversion. Given that in

most motor tasks the number of degrees of freedom

(DOFs) of the internal space significantly exceeds the

number of DOFs in external space, it is necessary to

resolve how to employ the excess of DOFs in internal

space. This problem is called the degree-of-freedom

problem [41] or the problem of redundancy resolution.

Earlier studies in computational motor control hypothe-

sized specific organizational principles that could help to

circumvent the problem of redundancy resolution, for

example, in the form of freezing certain DOFs or slaving

them together so that the simplified system had no

redundant DOFs anymore [42]. These approaches, how-

ever, could not quite explain the behavioral findings that,

on average over repeated trials, the variability in internal

coordinates often exceeds the variability in task space

coordinates. For example, in point-to-point reaching

movement with the unconstrained arm, the variability

of joint angular trajectories is significantly larger than the

variability of end-effector coordinates [23]. Interestingly,

recent trends in research on task control and redundancy

resolution in biological movement have moved increas-

ingly closer to ideas of ‘operational space control’ and

‘inverse kinematics’ control as suggested in the 1980s in
Current Opinion in Neurobiology 2005, 15:675–682
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Figure 2

Differences of cortical activity between rhythmic and discrete

movement, as reported in an fMRI experiment [56��]. The blue regions

show brain areas that were more strongly activated during a discrete

flexion-extension wrist movement than during a rhythmic wrist

movement. The green regions demonstrate brain areas with larger

activation during rhythmic wrist movement. Because discrete movement

activated many more brain areas than rhythmic movement, it was

concluded that rhythmic movement could not be composed of

discrete strokes. Adapted from [56��].
robotics [43,44]. The key idea of operational space con-

trol is that a desired movement in task space, for exam-

ple, bringing a cup of coffee to the mouth, can be

transformed with the help of the Jacobian of the kine-

matics of themovement system into a desiredmovement

in internal space, and that stable controllers can be

formulated for such an approach. However, given the

excess of DOFs in internal space, only a fraction of

the internal DOFs is properly constrained, and the

unconstrained DOFs can be used to fulfill subordinate

criteria, for example, energy efficiency, avoidance of

joint limits, and so on. This unconstrained part of the

internal space was termed the ‘uncontrolled manifold’

[42], and is referred to as null-space in the engineering

literature. From the viewpoint of task achievement, it is

not necessary to suppress the inherent noise in biological

motor control for the unconstrained internal DOFs, such

that they tend to exhibit higher variability in repeated

trials [23].

Relating redundancy resolution and task space control to

the formal framework of operational space control enables

us to examine several established task-space control

theories in the framework of biological motor control.

For instance, which variables are transformed from task

space to internal space? Possible candidates are positions,

velocities, accelerations and forces [45], and some recent

behavioral results with a force manipulandum indicate

that there seems to be no positional control in internal

space for an externally defined reaching task [46�].
Another important issue is which principles are used to

constrain the uncontrolled manifold, and solutions could

include no control, avoidance of joint limits [47], task

specific optimization [48], minimal intervention [49] and

hierarchical task control [50��].

Motor primitives in the brain
What units of action does the brain use for the generation

of complex movement in the movement planning stage

in Figure 1? From a computational point of view, it seems

impossible that the low level motor commands for com-

plex motor acts, for example, a tennis serve, could be

learned from pure trial and error learning with unsuper-

vised learning methods such as reinforcement learning

[51]. Thus, there might be a ‘language’ of more abstract

building blocks inmotor control, that is, motor primitives

(a.k.a. schemas, basis behaviors, macros, or options). It is

important to note that such a ‘building block’ architec-

ture is distinct from the mixture model approach

described above, which was a theory of modules for

movement execution. For instance, different load con-

ditions might be addressed by the mixture model

approaches above, but usually it is assumed that a move-

ment plan has already been generated and that only the

conversion from planning variables (e.g. desired posi-

tions and velocities of the limb) to motor commands

needs to be performed.
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Several interesting developments in research on motor

primitives are worthwhile highlighting. One active area of

investigation focuses on movement generation with sub-

movements (or discrete strokes). From investigating the

kinematics of arm movements in monkeys [52] and

humans [53], Fishbach and Novak et al. argue that even

complex movements with multiple velocity peaks can be

decomposed into elementary strokes that form the basis

of an intermittent stroke-based movement planning

mechanism. In a similar vein, Rohrer et al. [54] observed
that in reaching movements of recovering patients with

brain lesions, the number of submovements decreased

during recovery until smoothmovement performance was

regained, again arguing in favor of a stroke-based com-

position of complex movement. Sosnik et al. [55] demon-

strated that practice of a novel stroke-based movement

sequence can lead to the formation of new and more

complex motor primitives, characterized by the co-articu-

lation of previously distinct strokes.

That movement generation based on discrete strokes

might not be sufficient to account for the full spectrum

of motor behaviors was demonstrated in a functional

magnetic resonance imaging (fMRI) experiment that

compared the cortical activations between discrete and

rhythmic movements in humans [56��]. This investiga-

tion found a distinct set of premotor and parietal activa-

tions in discrete movement (Figure 2) that led to the

conclusion that rhythmic movements seem to be gener-
www.sciencedirect.com
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ated by separate cortical mechanisms in primates. Inter-

estingly, however, the study left open the possibility that

discrete movements might actually be generated by a

modulated rhythmic movement circuit. A modeling study

[57�] formalized the idea of separate discrete and rhyth-

mic movement primitives in the framework of learnable

nonlinear dynamic systems. This framework highlighted

the fact that complex desired trajectories, and their tim-

ing, can be generated by simple neural networks in real-

time without the need to store desired trajectories in

memory, or to have an explicit clocking mechanism

[58,59]. Thus, for the first time, a computational bridge

was formed between ideas of dynamic systems theory for

motor control [60,61] and optimization approaches to the

neural control of movement [12]. Moreover, the simple

parameterization of goal-directed movement in this

dynamic systems approach relates to experimental stu-

dies demonstrating goal directed movement through

microstimulation of cortical [62] and spinal [63] circuits.

The Bayesian brain in motor control
Because Bayesian decision theory enables optimal inte-

gration of prior knowledge and sensed noisy information

from multiple sources, the concept of Bayesian inference

is particularly useful when uncertainty about variables

needs to be incorporated into decision-making. A remark-

able result of modern statistical learning theory [31,64] is

that many artificial and biological neural networks can be

interpreted as Bayes optimal signal processing systems,

despite possessing neither explicit knowledge of Bayes

rule nor knowledge of the probability distributions of the

involved variables. In the wake of the successes of Baye-

sianmethods in visual perception [65,66], several research

groups have started to investigate Bayes optimal proces-

sing in motor control, especially focusing on issues of
Figure 3

Simulations of Bayesian inference with gain encoding for the directional orie

Gaussian directional tuning curves for 16 simulated cells, equally spaced ov

the tuning curve of one cell. (b) Response of 64 simulated cells with Gauss

movement direction of �208. Each dot corresponds to the activity of one ce

and the responses have been corrupted by independent Poisson noise. (c)

applying a Bayesian decoder to the noisy hills shown in (b). With independe

peak of the noisy hill, and the width of the distribution (i.e. the variance) is i

noisy hill represents the uncertainty in the population read-out. Adapted fro

www.sciencedirect.com
sensory processing, as indicated by the corresponding box

in Figure 1.

By manipulating the bias and the reliability (i.e. noise) of

visual feedback in a point-to-point reaching task in a

virtual environment, Körding and Wolpert [67��] demon-

strated that human subjects do, indeed, behave in a Bayes

optimal way. First, subjects learned to adjust their move-

ment strategy to minimize the pointing error in an altered

visual environment with deterministic but shifted feed-

back, similar to the situation that has been previously

reported in prism-adaptation experiments [68,69]. Sec-

ond, subjects performed reaching movements with noisy

feedback about their performance, in which different

levels of noise were added to the feedback signal. Sur-

prisingly, the reaching performance of the subjects could

be explained only by a model of Bayesian integration of

the learned prior from the first stage of the experiment

and the feedback noise level applied in the second stage

of the experiment. A related experiment demonstrated

that Bayes optimal processing can also be achieved if the

feedback signal is a sensed force signal [70], that is, it is

not the visual modality of feedback that is important.

Sober and Sabes [71�] highlighted, however, some points

of caution about the Bayesian view of signal processing.

These authors demonstrated that in a point-to-point

reaching task, proprioceptive and visual information

could be combined in a task-dependent manner, that

is, not solely based on the level of noise in the individual

signals, but also based on what signals are the most useful

for the task achievement. One could argue, however, that

these results could be reconciled with the Bayesian view

by considering Bayesian signal processing together with a

task dependent loss function, which is a standard element
ntation of a reaching movement. (a) A population of idealized

er a range of reaching orientations; each color corresponds to

ian tuning curves similar to the ones shown in (a), in response to a

ll. The cells have been ranked according to their preferred direction

The posterior distribution over directional orientation obtained from

nt Poisson noise, the peak of the distribution coincides with the

nversely proportional the gain of the noisy hill. Thus, the gain of the

m [72��].
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of Bayesian decision theory — future experiments are

needed to clarify such issues. Finally, an intriguing model

of how Bayesian signal processing could take place in

neural population codes was recently suggested by Pou-

get et al. [72��,73]. The model demonstrates how Poisson

noise in neural firing and a gain coding mechanism can be

exploited to propagate uncertainty in neural processing—

exactly what is needed for Bayesian inference (Figure 3).

Conclusions and future directions
This review has highlighted recent research directions in

computational neuroscience for motor control in which

the computational foundations have strong overlap with

theories in robotics and artificial intelligence. Points of

discussion have included motor control with internal

models and in the face of noise, motor learning, coordi-

nate transformation, task space control, movement plan-

ning with motor primitives and probabilistic inference in

sensorimotor control. Note that although Figure 1 also

includes a box about higher level processing and decision

making, as an input to the movement planning box, there

has been very little computational motor control research

in this area. Several interesting lines of research, however,

point towards modeling decision making in terms of the

intent of action: first, in the field of machine learning,

inverse reinforcement learning [74] enables us to derive

an intended cost function from observation. Second, in

the field of brain–machine interfaces, there are efforts to

read-out neural data to interpret on-going or future beha-

vior [75]. And third, in research on the reciprocal inter-

action between action observation and action generation,

eye-movement patterns seem to indicate whether purpo-

seful action is performed or not [76��].

Two interesting trends in motor control research appear

from the present review. First, there has been a growing

acceptance of complex computational models of brain

information processing. This trend seems to have been

spurred by the wide recognition of the internal model

theory, and by the need of systems-level computational

models to interpret large-scale brain recordings as, for

instance, obtained in neural prosthetics [77]. Second,

there have been several model-based experiments, in

which complex models function as a guide to the experi-

ment design and subsequent data analysis (e.g. [78,79]).

Although, as mentioned in the introduction, the models

and algorithms of more engineering oriented sciences

might not always be a perfect match for the information

processing in the central nervous system, they do often

provide solid foundations that can help us to ground the

vast amount of neuroscientific data that is collected today,

and they can be replicated, revised, and falsified more

easily than purely data driven research.
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