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Abstract

We are interested in using low-degree-of-freedom robots to perform com-
plex tasks by nonprehensile manipulation (manipulation without a form-
or force-closure grasp). By not grasping, the robot can use gravitational,
centrifugal, and Coriolis forces as virtual motors to control more degrees
of freedom of the part. The part s extra motion freedoms are exhibited
as rolling, slipping, and free flight.

This paper describes controllability, motion planning, and implemen-
tation of planar dynamic nonprehensile manipulation. We show that al-
most any planar object is controllable by point contact, and the con-
trolling robot requires only two degrees of freedom (a point translat-
ing in the plane). W then focus on a one-joint manipulator (with a
two-dimensional state space), and show that even this simplest of ro-
bots, by using slipping and rolling, can control a planar object to a full-
dimensional subset of its six-dimensional state space. We have developed
a one-joint robot to perform a variety of dynamic tasks, including snatch-
ing an object from a table, rolling an object on the surface of the arm,
and throwing and catching. Nonlinear optimization is used to plan robot
d object moti

trajectories that achieve the desi via coupling forces

through the nonprehensile contact.

1. Introduction

We are interested in using low-degree-of-freedom robots
to perform complex tasks by nonprehensile manipulation
(manipulation without a form- or force-closure grasp). By
not grasping, the robot can use gravitational, centrifugal, and
Coriolis forces as virtual motors to control more degrees of
freedom of a part. The part’s extra motion freedoms are ex-
hibited as rolling, slipping, and free flight. An example of dy-
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namic nonprehensile manipulation is shooting a basketball: the
ball is sent to the basket using rolling and free flight (Fig. 1).
The motion of the ball relative to the hand is induced by the
forces due to the acceleration of the contact constraint.

Dynamic nonprehensile manipulation offers several
potential benefits:

o New robot primitives. Nonprehensile manipulation pro-
vides an option for a robot when it must manipulate an
object too large or too heavy to be grasped and lifted.

o Simpler manipulators. The structure of the manipulator
can be simplified by eliminating the gripper.

o Flexibility. Grippers are often designed to grasp parts of
particular shapes and sizes. With nonprehensile mani-
pulation, if the robot can apply a force to the part, it can
manipulate the part. Nonprehensile manipulation allows
a manipulator to control multiple parts simultaneous-
ly, using whatever surfaces of the manipulator are
available.

o Increased workspace size. We usually define the work-
space of a robot as the kinematic workspace of its end
effector. In some situations, a more useful concept is
the set of reachable states for an object manipulated by
the robot. If the robot can throw the object to points
outside its kinematic workspace, the size of the robot’s
workspace is effectively increased.

o Increased workspace dimensionality. When an object is
carried with a grasp, the manipulator must have at least
as many degrees of freedom as has the object we want
to control. If we allow the object to move relative to the
manipulator, we can control more degrees of freedom
than the manipulator itself has. This is underactuated
manipulation. It is not always necessary to attach a mo-
tor to every degree of freedom we would like to control.
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Fig. 1. Shooting a basketball using rolling contact.

These benefits come at the expense of increased complexity
in planning and control. For example, planning for pick-
and-place manipulation requires only a kinematic model of
the world; dynamic manipulation requires a dynamic model.
Dynamic nonprehensile manipulation transfers some of the
complexity of a robot system from hardware (grippers, joints,
and actuators) to planning and control.

In this paper, we study controllability and motion planning
for planar nonprehensile manipulation with a dynamic model.
The controllability problem is to characterize the object’s
accessible state space during nonprehensile manipulation. We
begin by assuming no constraints on the motion of the robot,
and we show that almost any planar object is controllable by
dynamic pushing with point contact. The controlling robot
requires only two degrees of freedom (a point translating in
the plane). We then focus on a one-joint manipulator (with a
two-dimensional state space), and show that even this simplest
of robots, by using slipping and rolling, can control an object
to a full-dimensional subset of its six-dimensional state space.

The motion-planning problem is to find a manipulator
trajectory to transfer the object to the goal state using
frictional, gravitational, and dynamic forces. This is a kind of
“dynamic pick-and-place.” By using a sequence of different
manipulation phases, such as rolling and free flight, the robot
can control more degrees of freedom of the object. We use
nonlinear optimization to solve for a manipulator trajectory that
satisfies dynamic constraints and force-inequality constraints
at the nonprehensile contact. The resulting trajectory takes
the object to the goal state while locally minimizing a
given objective function. We have successfully implemented
trajectories found by the motion planner on a one-joint direct-
drive arm to perform a variety of dynamic tasks, such as
snatching an object from a table, rolling an object on the surface
of the arm, and throwing and catching.

This work pursues a minimalist approach to robotic
manipulation. We are motivated by the academic interest
to understand the simplest mechanisms capable of perfor-
ming a given task and the economic motive to construct
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simpler, cheaper robots. Simple robots employing dynamic
nonprehensile manipulation have been successfully used for
parts-feeding tasks in industry (Boothroyd, Poli, and Murch
1982; Hitakawa 1988). Dynamic manipulation may also be
useful in space, where dynamic effects dominate.

1.1. Relation to Previous Work

Our previous work on underactuated nonprehensile mani-
pulation has focused on quasi-static pushing. By analyzing the
mechanics of pushing, we have shown:

o A two-degrees-of-freedom robot (a point translating in
the plane) can push an object arbitrarily closely along
any path in the object’s three-dimensional configuration
space, unless the object is a frictionless disk centered at
its center of mass (Lynch and Mason 1996).

o A single revolute joint, operating above a fixed-speed
conveyor, can move any polygon from any initial
configuration upstream of the joint to a specified goal
configuration on the conveyor by using pushing and
conveyor drift (Akella et al. 1995).

During quasi-static pushing, the state of a pushed object is
simply its configuration, and its motion is subject to a set of
nonholonomic velocity constraints arising from limits on the
forces that can be applied by pushing. In this sense, pushing
an object is similar to more familiar kinematic nonholonomic
systems with rolling constraints. Examples include dextrous
manipulation and wheeled mobile robots.

Dynamic nonprehensile manipulation resembles pushing,
but now we have second-order dynamics and second-order
nonholonomic constraints. There is also a drift term corre-
sponding to the object’s motion when no control force is
applied. The problems studied in this paper can be thought
of as dynamic pushing where support friction is negligible.

1.2. Overview

The work described in this paper draws on previous work
in nonprehensile manipulation, motion planning and control
for nonholonomic systems, optimal trajectory planning, and
minimalism in robotics. We touch on some related work in
these areas in Section 2. Section 3 provides some definitions.
The reachable state space of an object during dynamic non-
prehensile manipulation is studied in Section 4. Section 5
describes a dynamic motion planner, and Section 6 presents
some experiments in dynamic manipulation with a one-joint
robot.

This paper presents early work on dynamic underactuated
nonprehensile manipulation, to begin to understand its basic
properties and to test experimental feasibility. In the conclu-
sion, we discuss future directions.
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2. Related Work

2.1. Nonprehensile Manipulation

Koditschek (1993) has provided a thoughtful review of seminal
works in the area of dynamic manipulation. Some examples of
dynamic nonprehensile manipulation are discussed below.

2.1.1. Parts Reorienting

Using a dynamic simulator that takes careful account of friction
(Erdmann 1994), Erdmann (1995) designed the acceleration of
a flat palm to “stand up” a block resting on it. Similarly, Arai
and Khatib (1994) used dynamic forces to roll a cube sitting
on a paddle held by a PUMA robot arm. The paddle has three-
degrees-of-motion freedom in the vertical plane. The paddle
first imparts an angular velocity to the object, causing it to
begin to roll about the desired edge, then accelerates downward
to decrease the impact at the end of the roll. The approach
assumes no slip at the rolling contact.

In this paper, we address the problem of planning
such trajectories automatically, explicitly considering friction
constraints and manipulator kinematic and dynamic con-
straints, especially for low-degree-of-freedom manipulators.

2.1.2. Throwing

Leaming approaches have been applied to improve a robot’s
ability to throw (Aboaf, Atkeson, and Reinkensmeyer 1987,
Schneider and Brown 1993). Throwing a club using a dynamic
grasp was previously reported by Mason and Lynch (1993a,
1993b). (A dynamic grasp is defined as a manipulator ac-
celeration such that the dynamic load keeps the object fixed to
the manipulator as it moves.) Positioning an object allowed to
slide freely on a supporting surface has been studied by Huang,
Krotkov, and Mason (1995) and Zhu and colleagues (1996).

2.1.3. Caiching

Burridge, Rizzi, and Koditschek (1995) described three
different “mirror laws” for controlled juggling, catching, and
palming a ball with a planar paddle. By switching control
laws from juggling to catching to palming, the robot transitions
from juggling the ball to balancing it on the paddle. Hove and
Slotine’s (1991) catching robot uses visual data to estimate the
flight of a ball, matches the trajectory of the end effector to that
of the ball, and then grabs the ball.

In this paper, the catching surface is motionless, and the
object’s arrival state at the end of flight is chosen to make the
catch robust.

2.1.4. Batting

Batting combines catching and throwing into a single collision.
Robot juggling by batting has been demonstrated for one or
two pucks with a planar juggler (Biihler and Koditschek 1990),

a ball in space (Aboaf, Drucker, and Atkeson 1989; Rizzi
and Koditschek 1992), and two balls in space (Rizzi and
Koditschek 1993). The problem of batting a planar polygon
to a desired stable orientation was addressed by Zumel and
Erdmann (1994). Schaal and Atkeson (1993) used batting in
their “devil sticking” robot. Andersson (1989) built a machine
to play Ping-Pong, which is an adversarial form of batting.

2.1.5. Pushing

Mason (1986) discovered a simple rule for determining the
rotation sense of a pushed object that depends on the center of
friction of the object, not its precise support distribution. This
result has been used and extended by many to plan parallel-jaw
grasps, to construct parts feeders, and to plan pushing paths
among obstacles. See the work by Lynch and Mason (1996)
for an extensive bibliography of work on pushing.

2.1.6. Others

Other examples of nonprehensile manipulation include tray-
tilting to position polygonal parts sliding in a tray (Erdmann
and Mason 1988) and to orient polyhedral parts rolling on a
rough surface (Erdmann, Mason, and Vanek 1993); using robot
fingers to rotate a polyhedral part about an edge (Sawasaki,
Inaba, and Inoue 1989) or pivot it about a vertex (Aiyama,
Inaba, and Inoue 1993) in contact with a floor; cooperative
manipulation by two nonprehensile palms (Erdmann 1995;
Zumel and Erdmann 1996) or two frictionless pins (Abell
and Erdmann 1995); positioning and orienting parts on a
vibrating support surface (Bohringer et al. 1995; Reznik and
Canny 1998); and various forms of whole-arm manipulation
(Salisbury 1987; Trinkle et al. 1993).

2.2, Motion Planning and Control of Underactuated
Systems

Results from nonlinear control theory are useful in charac-
terizing the controllability of nonholonomically constrained
robot systems. Good introductions to the field of nonlinear
geometric control theory are provided by Isidori (1989) and
Nijmeijer and van der Schaft (1990), and the text by Boothby
(1986) is an excellent introduction to many of the differential
geometric concepts in nonlinear control. The Lie algebra
rank condition, an important nonlinear analog to the Kalman
controllability rank condition of linear control theory, and
its implications are discussed by Brockett (1976), Haynes
and Hermes (1970), Hermann and Krener (1977), Jurdjevic
(1972), Sussmann and Jurdjevic (1972), and Sussmann (1983).
Although there is no general necessary and sufficient condition
for the controllability of nonlinear systems, Sussmann (1987)
derived a general sufficient condition for small-time local
controllability. Even if a nonholonomic system is fully con-
trollable, however, Brockett (1983) showed that it may not
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stabilizable to a single equilibrium point using time-invariant
smooth state feedback. This suggests the use of algorithmic
or nonsmooth control. Introductions to nonholonomic motion
planning and the use of nonlinear control theory in robotics are
given by Latombe (1991), Murray, Li, and Sastry (1994), and
Li and Canny (1993).

Dynamic nonprehensile manipulation is closely related to
the problem of controlling the position and orientation of a
hovercraft with thrusters (Manikonda and Krishnaprasad 1997)
and controlling the motion of an unactuated joint of a robot
arm. As shown by Oriolo and Nakamura (1991), unactuated
robot joints typically result in nonintegrable second-order
constraints. Research on controlling unactuated joints by dy-
namic coupling includes controlling the swinging motion of

a high-bar robot (Takashima 1991) or the Acrobot (Hauser

and Murray 1990; Spong 1994); the control of running and
hopping robots (Berkemeier and Fearing 1992); controlling
the base of a mobile robot by motions of the end effector (De
Luca, Mattone, and Oriolo 1996); a series of papers by Arai
and colleagues (Arai and Tachi 1991; Arai, Tanie, and Tachi
1993), and related work by Bergerman, Lee, and Xu (1995),
examining controllability and describing control algorithms
for manipulators with some joints equipped only with brakes.
Control of unactuated joints without brakes was studied by
Suzuki, Koinuma, and Nakamura (1996), Arai (1996), and
Lynch and colleagues (1998).

One distinguishing feature of nonprehensile manipulation
is that contact forces are unilateral, while most controllability
analyses assume bidirectional controls. One exception is the
work by Goodwine and Burdick (1996), which is based on
Sussmann’s (1987) general theorem. In this paper, we dem-
onstrate controllability using unilateral contact forces.

Other researchers have studied underactuated manipulation
using kinematic coupling instead of dynamic coupling.
Examples include pivoting an object within a grasp (Brock
1988; Carlisle et al. 1994; Rao, Kriegman, and Goldberg
1995); rolling an object between two palms (Bicchi and
Sorrentino 1995); rolling a ball on a plane or another ball (Li
and Canny 1990); and controlling an n-link planar manipulator
with only two motors using nonholonomic gears (Serdalen,
Nakamura, and Chung 1994). Perhaps the most common
example of underactuated manipulation is assembly, where
robots possessing just a few degrees of freedom are required
to assemble a set of parts with a larger number of degrees of
freedom (Koditschek 1991; Ferbach and Rit 1996). Wheeled
mobile robots are perhaps the most heavily studied type of
kinematically constrained nonholonomic system (Laumond
1986; Barraquand and Latombe 1993; Laumond et al. 1994).

The snakeboard is an interesting nonholonomic system that
is similar to a skateboard, except the directions of the front
and rear wheels can be controlled independently. By shifting
his or her weight, the rider produces motion of the snakeboard
through rolling of the wheels. A simplified model of the snake-
hoard has been studied by Ostrowski and colleagues (1995).

Lynch and Mason / Dynamic Nonprehensile Manipulation 67

A common property of underactuated systems is the inabil-
ity to independently drive all state variables to their desired
values using time-invariant smooth state feedback (Brockett
1983). Thus some sort of time-varying or nonsmooth feedback
law, or open-loop control, is required. Strategies for generating
open-loop controls for systems with nonholonomic constraints
have been proposed by Murray and Sastry (1993), Lafferiere
and Sussmann (1991), Sussmann (1993), Sontag (1993), and
Leonard and Krishnaprasad (1995). The problem is simpli-
fied when the nonholonomic system possesses a certain struc-
ture, such as differential flatness (Fliess et al. 1995; Murray,
Rathinam, and Sluis 1995). Divelbiss and Wen (1993) and
Fernandes, Gurvits, and Li (1994) proposed an iterative optimi-
zation approach akin to Newton’s method, where the controls
are given by finite Fourier series. At each step, the coefficients
of the Fourier terms are adjusted to minimize a merit function.
In the work of Divelbiss and Wen, the merit function was given
by the error at the final state and the potential functions repre-
senting obstacles. They illustrated the approach by planning
the motion of a tractor pulling a trailer. Fernandes, Gurvits,
and Li (1994) used a merit-function quadratic in the Fourier
coefficients and the error at the final state. They presented ex-
amples of controlling the attitude of a falling cat and a space
platform/manipulator system.

The approach to trajectory planning for dynamic non-
prehensile manipulation employed in this paper is an iterative
optimization technique similar to these works. An important
characteristic of the trajectory-planning problem for dynamic
nonprehensile manipulation is the inequality constraints
imposed by unilateral frictional contact. A closely related
approach that handles inequality constraints was recently
proposed by Zefran, Desai, and Kumar (1996).

2.3. Optimal Trajectory Planning

The problem of finding open-loop controls for nonholo-
nomically constrained systems is related to the optimal
trajectory-planning problem for fully actuated systems. To
increase productivity, much work has focused on time-opti-
mal trajectory planning (Shin and McKay 1985; Bobrow,
Dubowsky, and Gibson 1985; Shiller and Dubowsky 1991;
Canny et al. 1988; Donald and Xavier 1989). Objective func-
tions other than time have also been considered (Witkin and
Kass 1988; Yen and Nagurka 1988; De Luca, Lanari, and
Oriolo 1991; Chen 1991; Martin and Bobrow 1997). In these
works, robot motions are typically represented as finite-dimen-
sional polynomials, Fourier series, or splines, and the problem
is converted into a nonlinear optimization.

2.4. Minimalism

Canny and Goldberg (1994) argue that RISC (reduced intricacy
in sensing and control) robotics using simple devices results in
cheaper, more flexible systems. The minimalist approach to
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Fig. 2. Notation for dynamic nonprehensile manipulation. The
object can be pushed at any point on its perimeter I".

robotics is the attempt to find the simplest systems capable of
performing a given task or class of tasks, where the complexity
of a system may be measured in terms of the sensors, effectors,
computation, communication, and so forth (Bohringer et al.
1995). This paper explores minimal actuator solutions to
dynamic manipulation tasks.

3. Definitions and Assumptions

All problems considered in this paper are planar. The planar
object O can be contacted anywhere along its closed, piece-
wise-smooth perimeter T (Fig. 2). Friction between the robot
and the object conforms to Coulomb’s law.

The configuration space of the object is C = SE(2) =
R2? x SO(2). An object frame X is fixed to the center of
mass of the object. Coordinates in this frame are (x,y, ).
The configuration of ¢ in the inertial world frame Xy is
written q = (X ,w,®, )" . The state space of the object is
the tangent bundle T'C, and the object’s state is given by (q, q).
The tangent space at (q, q) is written T(q,q)TC.

Generalized forces £ = (£, f;, 7) T are written in the
object frame Y. A pure force is a force with a zero torque
component (7 = 0), and a pure torque is a force with a zero
linear component (fy =f, =0) . A force direction f=

A T
(/; s %) is defined as f/|f]. The force sphere is the two-

dimensional unit sphere S? of all force directions.

4. Accessibility

This section studies the accessible state space of a planar object
O during dynamic nonprehensile manipulation. We consider

two kinds of control forces: unilateral contact forces fixed in
the object frame (Section 4.1) and forces arising from contact
with a one-joint robot (Section 4.2).

Using notation from Sussmann (1983) and Nijmeijer and
van der Schaft (1990), we define R (q,q,T) to be the
object’s reachable state space from (q,q) at time 7 > 0
by object trajectories remaining in the neighborhood W of
(q,4) at times ¢ € [0,T]. Define R¥ (q,4,< T) =
Uo<i<r R” (a,4, 7). Then the system (or simply the object)
is small-time accessible from (q,q) if RY (q,4,< T)
contains a nonempty open set of TC for any neighborhood
W of (q,9) and all T > 0. The object is small-time
locally controllable from (q,¢) if R¥ (q,q,< T) contains
a neighborhood of (q,q) for any neighborhood W and all
T > 0. The object is controllable from (q,q) if, for any
(a1, 1) € TC, there exists a finite time T such that (qi, ;) €
R"¢(q,q,T). The phrase “from (q,¢)” can be eliminated
from each of these definitions if the condition is satisfied for
all (q,4)-

We begin (in Section 4.1) by examining the case of no
constraints on the motion of the manipulator M, which
can contact any point on the object’s perimeter I.  With
this assumption, we demonstrate sufficient conditions for the
controllability of the object by pushing and batting. The control
forces for this system correspond to unilateral, body-fixed
forces from point contact with the object. These forces are
similar to those obtained with thrusters.

Because of the difficulty of breaking contact and re-
contacting a moving object, we then include manipulator
motion constraints in the analysis (Section 4.2). We study the
simplest possible case: a single-degree-of-freedom robot that
maintains point contact with the object as it moves. Control
forces arise from the frictionless contact. We show that a one-
degree-of-freedom revolute robot, with just a two-dimensional
state space, can take a planar object to a six-dimensional subset
of its six-dimensional state space by using slipping and rolling.
In other words, the equality constraints on the state of the
manipulator (the pivot remains fixed) usually do not translate
to equality constraints on the state of the object.

4.1. No Manipulator Constraints

To visualize the control system with no manipulator con-
straints, imagine an object floating on an air table that may
be tilted to yield a gravitational acceleration in the plane of
the table. The object is pushed or batted by a manipulator.
Alternatively, the object can be considered to be a planar free-
flying rigid body with gas jets attached to its perimeter. The
angle that the gas jets can take with respect to the normal of
the perimeter is determined by the friction coefficient 4.
The control system is written

(qaq) =X0(q>Q) +u-Xi(qYQ)y i€ {11 . vn})
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where Xy is a drift vector field, u is a nonnegative scalar
control, and X; is the control vector field, where i chooses
which of the r control vector fields is used. (Note that only one
control force is applied at a time, and ¥ must be nonnegative
due to unilateral contact. The control is determined by both
u and i, but usually we refer to u as the control input.) The
vector field X;, i € {1,...,n}, corresponds to a unit force

f; fixed in the object frame 0, arising from point contact on
the perimeter I'. The set of force directions U; f; is denoted F.
For simplicity, the mass m and radius of gyration p (where the
inertia is mp?) of O are assumed to be unit.

We consider two control sets: U,, the set of nonnegative
inputs |0, 00), and Uy, the discrete set {0,1}. While we are
typically interested in the case # € U,, which corresponds to
the usual assumption in grasping that grasp forces can be as
large as necessary to maintain the grasp, several of the results
also apply to the case u € U;. To state these results in
full generality, we note when they apply to u € Uy. Unless
otherwise noted, the control set U, is assumed.

The state of O is (g, @) = (xw ,yw,¢w,xw,yw,¢w)
the tangent vector is (q,q) = (%w ,yw,¢w,xw ,yw,¢w) .
The drift field Xo is written (%, ,Jw , ®,,,0,g,0)7, where g
is the gravitational acceleration (possibly zero).

We begin by checking accessibility for a single control
vector field, n = 1. To test for small-time accessibility, we
examine the Lie algebra of the system’s vector fields. If V' is
a family of vector fields (corresponding to constant controls)
on a manifold M, then the accessibility Lie algebra L(V) is
the smallest subalgebra of vector fields on M containing V.
(For a finite family V, defining Bo(V) = V and Byy1 (V) =

VYU {[Vi, V] for all ¥;,¥; € By(V)}, where the Lie
bracket (V;, ¥; ] is given at each p € M as

BV (p) 6V(p)

Vi Vil(p) = Vi(p) — Vi (),

recall that the Lie algebra L (V) is spanned by elements of
B., (V).) The tangent vectors of L (V) at p are L (V) (p).

Then the system satisfies the Lie algebra rank condition at
p, and therefore is small-time accessible from p, if L(V)(p) is
the tangent space TpM (Hermann and Krener 1977; Sussmann
1987). Note that V' need not be symmetric for small-time
accessibility; in particular, if ¥ is an element of V, it is not
necessary that —¥ also belongto V. Such symmetries are often
required for small-time local controllability.

For the case of n = 1, we study the Lie algebra of the
vector fields Xy and X;. Without loss of generality, as-
sume the unit-control force f; is (0,f,7)7 in the object
frame T, so the control vector field X; is written
(0,0,0, —, sin @, ,f; cosd,,,7)T. We define the Lie brack-
et vector fields:

Xo
X -

[XOyXl] s
X1, X0, X1] | »

Lynch and Mason / Dynamic Nonprehensile Manipulation 69

X4 [‘le LYOa WO»XI] ] ] s

X = X,%, X, X,X] ],

X = lXD; [Xh[le[XOa[XO)Xl] ”” .
W find that

det(X1 Xo X3 X4 X5 XG) = _16f;7'8‘
indicating that these six vector fields s

the cmtient space
T(q,q)TC at any state (q,q), provided f, # O (the control

must not be a pure torque) and 7 # 0 (the control must not
be a pure force through the center of mass). Note that a pure
torque is not possible by frictional contact with the perimeter
of a bounded object.

The tangent vectors X (q,q), X3(q,9), and X5(q,q)
span the acceleration space at (q, q), and X (q, q), X4 (q, q),
and X; (q, §) span the velocity space.

PROPOSITION 1. The planar object O is small-time acces-
sible for the control set Uy, with or without gravity, if and only
if F contains a force direction that is neither a pure force nor a
pure torque.

Proposition 1 implies that all planar objects are small-
time accessible by point contact, except for a frictionless disk
centered at its center of mass. For such an object, all contacts
with its perimeter produce zero torque.

Clearly, n = 1 is never sufficient for controllability; the
angular velocity of the object can only change in one direction.
It can be shown that n = 2 is sufficient for controllability,
provided the signs of 7, and 7, are opposite.

PROPOSITION 2. The planar object O is controllable, in
zero gravity (for the control set Uy) or nonzero gravity (for
the control set Uy,), if and only if F contains force directions
fl and fz such that 7; > 0, 7o < 0, and at least one force
direction f, € F has a nonzero linear component.

Proof. The conditions of the proposition are clearly necessary.
The conditions are shown to be sufficient in the appendix. O

Proposition 2 implies that any object is controllable by point
contact with its perimeter T, except for a frictionless disk
centered at its center of mass. In fact, if friction is nonzero,
Proposition 2 implies that the object is controllable from a
single point of contact (Fig. 3).

THEOREM 1. For any planar object O with a closed,
piecewise-smooth curve I" of available contact points, there
exists a pushing contact point on I' such that the object is
controllable in zero gravity (for the control set Uy) or nonzero
gravity (for the control set U, ), provided the friction coefficient
at the contact is nonzero.

Proof. The radius function r : T — R measures the dis-
tance from the center of mass to points on the object’s perimeter
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Fig. 3. The object is controllable by pushing at the contact
point shown for any nonzero friction coefficient. An example
friction cone is illustrated. Both positive and negative torques
can be applied through the contact, making the object control-
lable by Proposition 2.

I. Assume the curve I is parameterized by s. At each point
TI'(s) where dr(I'(s))/ds = 0, the contact normal of I" passes
through the center of mass. (If dr(I'(s))/ds is discontinuous
at s, such as at a vertex of a polygon, the contact normal can be
chosen as any value in the range defined by the normals as we
approach s from both directions.) There are at least two such
points, because " is closed and r(T') attains at least one local
maximum and one local minimum. If T is not a single point,
there is at least one point I'(s) at which dr(T'(s))/ds = 0 and
7(T'(s)) # O for any center-of-mass location. If #(I'(s)) # 0,
dr(T'(s))/ds = 0, and the friction coefficient is nonzero, then
the center of mass is in the interior of the friction cone and pos-
itive and negative torques can be applied from I'(s). Applying
Proposition 2, the proof is complete. O

We now consider conditions for small-time local con-
trollability at a state (q, 0). The object O is small-time locally
controllable at (q, 0) if, given any neighborhood W of (q, 0),
(q, 0) is interior to the set of states reachable by trajectories
remaining in /. One consequence of this property is that the
object can follow any path in its configuration space arbitrarily
closely by staying sufficiently close to zero velocity.

PROPOSITION 3. In the presence of gravity or other dis-
turbance forces, the planar object O is small-time locally
controllable at all states (g, 0) for the control set U, if and
only if the set of force directions F positively spans the force
sphere (i.e., there is no closed hemisphere of the force sphere
containing all force directions in F). A minimum of four force
directions (n > 4) is necessary.

The proof of Proposition 3 is straightforward and can be
found in the work of Lynch (1996). This is the familiar condi-
tion for a force-closure grasp of a planar object; the difference
is that for a grasp, all contacts are simultaneously active. We
can directly apply various theorems regarding the existence of

positive grasps.

THUEOREM 2. Any planar object O with a closed, piecewise-
smooth curve I of available contact points is small-time locally
controllable at all states (q, 0) for the control set U, , with or

Fig. 4. Without gravity, the object is small-time locally control-
lable at any state (q, 0) by the three unilateral forces shown.

without gravity or other disturbance forces, unless the contact
is frictionless and T is a circle.

Proof. See the works of Mishra, Schwartz, and Sharir (1987)
and Markenscoff, Ni, and Papadimitriou (1990). O

Tighter sufficient conditions on the set of force directions F
can be found for small-time local controllability in zero gravity
(Proposition 5) and for subsets of the zero-velocity space in the
presence of gravity (Proposition 4).

PROPOSITION 4. The planar object O is small-time locally
controllable ata state (q, 0) for the control set U, if the negated
gravitational force direction, expressed in the object’s frame
Y0, is in the interior of CHg2 (.7:' ), the convex hull of the force
directions  on the force sphere.

If the condition of Proposition 4 is satisfied, » > 3 and
the object is small-time locally controllable on the simply
connected three-dimensional subset of its configuration space
{d€C| bpin < by < Opay }, for a suitably defined world
frame Zyy. This is just the angle range for stable equilibrium
if all contacts were acting simultaneously.

Proposition 5 addresses small-time local controllability in
zero gravity, and is relevant to controlling the position and
attitude of a free-flying planar robot with gas jets, a hovercraft
with a single rotating thruster (Manikonda and Krishnaprasad
1997), or an unactuated joint of an underactuated manipulator
(Arai 1996; Lynch et al. 1998).

PROPOSITION 5. In the absence of gravity, with the control
set Uy, the object O is small-time locally controllable at any
state (q, 0) if the set of force directions F positively spans a
great circle of the force sphere that does not lie in the 7 — 0
plane.

REMARK. The condition of Proposition 5 is satisfied by
any set of three or more force lines that intersect at a single
point, provided the force lines positively span the plane and the
intersection point is not at the object’s center of mass (Fig. 4).

Proof. Consider the system (Lewis and Murray 1997):

((:L q) = Xﬂ(qy Q) + ule (qy q) + uQXZ(qy q)~
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where u1,us € [—1, 1], and the bracket terms

X3 [Xo, X1]

Xy = [X,X9 ,

Xs = [X1,[X,X) ],

Xs = [Xo,[Xn,[X0,X5) ]] .

Now we give some definitions that are necessary to apply
Sussmann’s (1987) sufficient condition for small-time local
controllability. For a bracket term B, we define J;(B) as the
number of times X; appears in B, and the degree of B is
ot 0 0i(B). We call B a “bad” bracket if 5o(B) is odd and
d;(B) is even for all i € {1,...,n}; we call B a “good”
bracket otherwise. A “bad” bracket B is “neutralized” at a
state p it B, evaluated at p, is the linear combination of “good”
brackets of lower degree evaluated at p. Sussmann proved
that if the system satisfies the Lie algebra rank condition at p,
and all “bad” brackets evaluated at p are neutralized, then the
system is small-time locally controllable at p.

Consider the control vector fields X3 = (0,0,0,cosd,,,
sing,,,0)7 and X; = (0,0,0,0,0,1)7. The force f; acts
through the center of mass along the z-axis of the object frame
Yo and f; is a pure torque. Calculating the brackets defined
above, we find that det(X; X; X3 X4 X5 Xg) = 1; the
Lie algebra rank condition is satisfied. Because we only use
brackets up to degree four, the only “bad” brackets to be
neutralized are the drift field (which vanishes at ¢ = 0)
and the “bad” brackets of degree three: [Xi,|Xo, X1]] and
[Xf_), [Xg, ,Xg]]. In this case,

lev [X07X1” = [‘X27 ['XO?X2” = (0r0707 0’07 O)Tw

and the system is small-time locally controllable at states
(q,0).

The forces f; and f, define a plane orthogonal to the 7 = 0
plane in the three-dimensional body-fixed force space, and the
controls uy,uy € [—1,1] define a compact, convex subset
of this plane containing the origin in the interior (relative to
the plane). By Sussmann’s (1987) Proposition 2.3, small-
time local controllability for this system implies small-time
local controllability for the bang-bang system with controls
uy,uy € {—1,1}. Scaling, small-time local controllability
holds for any compact, convex set of control forces that
contains a neighborhood of the origin in this plane, and
Sussmann’s proposition indicates that the extremal forces alone
are sufficient. Therefore, any set of control forces that positi-
vely spans a plane orthogonal to the 7 = 0 plane (equivalently,
any set of force directions that positively spans a great circle
of the force sphere orthogonal to the 7 = 0 plane) also yields
small-time local controllability.

Now consider a force f; in the y-direction of the object fra-
me Lo with some torque about the center of mass, and
its corresponding vector field Xo = (0, 0, 0, —sing,,,
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cosg,,, 7)¥. Then X, i = 1,...,6, satisty the Lie algebra
rank condition, provided 7 is not zero. The “bad” brackets

Il

[Xl 3 [XO)XIH
(X2, (X0, X2]]

(0,0,0,0,0,0)7,
(0,0,0, 27 cos ¢,,, —27 sin ¢,,,0)

Il

are clearly neutralized (the latter being a multiple of X3), and
the system is small-time locally controllable. The two forces
f; and f> can span any plane that is neither the 7 = 0 plane
nor orthogonal to the 7 = 0 plane. As above, any set of forces
that positively spans the same plane also yields small-time local
controllability.

Taking the two cases together, we see that small-time local
controllability holds, provided the set of force directions F
positively spans a great circle of the force sphere that does not
lieinthe 7 = O plane. O

If the object is a frictionless disk not centered at its center
of mass, contact with the perimeter I' defines a great circle
of force directions that does not lie in the 7 = 0 plane.
Proposition 5 therefore allows us to strengthen Theorem 2 for
the case of zero gravity.

THEOREM 3. In the absence of gravity, with the control set
Ua, any planar object O with a closed, piecewise-smooth curve
T of available contact points is small-time locally controllable
at all states (q, 0), unless the contact is frictionless and I' is a
circle centered at the object’s center of mass.

Proposition 5 implies that three force directions are
sufficient for small-time local controllability in the absence
of gravity.! In contrast, a force-closure grasp requires at least
fourunilateral force directions. Furthermore, we cannot simply
grasp and rotate a frictionless disk, but if the disk is not centered
at its center of mass, then Theorem 3 indicates that the position
and orientation of the object are locally controllable by point-
contact pushing in zero gravity. In this sense, dynamic pushing
is a more complete primitive for planar manipulation.

Theorem 3 implies that a two-degrees-of-freedom point ro-
bot, which can translate freely in the plane, can dynamically
push an object to closely follow any path in its three-dimensional
configuration space. In general, the robot will have to move
between distant contacts on the object to make it follow the de-
sired path. Because transit between distant contacts takes time,
the object will no longer be small-time locally controllable, but
it can still be pushed to closely follow any path. In other words,
there exists a time 7 > 0 such that R¥ (q, 0, < T) contains
a neighborhood of (g, 0) for all (g, 0) and any neighborhood
W of (q,0).

1. Recent work by Lewis (1997) and Manikonda and Krishnaprasad
(1997) indicates that a single bidirectional force (equivalently, two
opposing unilateral forces) is insufficient, meaning that three unilateral
force directions are also necessary.
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4.2. With Manipulator Constraints

The results of the previous section address the theoretical
capabilities of dynamic nonprehensile manipulation from the
viewpoint of the object alone. Just as important, however,
are properties of the manipulator that is controlling the object.
While an object may be controllable by point contact, the
manipulator may not be able to achieve the contacts and
motions necessary to bring the object to the desired state.

We would like to understand the global reachability proper-
ties of a manipulator/object system—given the kinematic and
dynamic specifications of a manipulator M, the mass, inertia,
and shape of an object O, the friction between them, and
their initial state, where can the manipulator take the object?
Unfortunately, such a question appears to be very difficult to
answer, so we are forced to look locally. Because the contact
is nonprehensile, in any neighborhood of a manipulator/object
state, the best we can hope for is small-time accessibility in the
absence of gravity.

Proposition 1 says that a single control force, fixed in the
object frame, is sufficient for small-time accessibility. This
indicates that a one-degree-of-freedom manipulator may be
sufficient for small-time accessibility. This would imply that
even the simplest of robots is capable of performing interesting
dynamic manipulation in the plane—the object’s reachable
state space is a full-dimensional subset of its six-dimensional
state space.

We examine this possibility for a single prismatic joint and
a single revolute joint.2 Note that Proposition 1 cannot be
directly applied to these systems, as the control forces are not
fixed in the object frame.

4.2.1. Example 1: A Single Prismatic Join!

Consider the system of Figure 5. The manipulator M is a
single prismatic joint, and the object O is a unit-mass rod in
point contact with M at an angle ¢, € (0,7). The distance
trom the contact to the rod’s center of mass is 7, and the rod’s
radius of gyration is p C (0,00). The rod represents an arbi-
trary polygon in vertex contact with the manipulator.

The configuration of the system is @' = (q,ym) € C',
where y,, is the position of M in the world frame Xyy. The
state space of the system is the eight-dimensional manifold
7C' — R® x SO(2) x R*. We assume that the manipula-
tor stays in contact with the rod endpoint at all times, and
it may apply zero force (simply “following” the rod) or a
nonzero force. The three-dimensional submanifold of contact
configurations is {q’ € C'|F(d') = yw —ym —rsing,, = 0}.

The conditions that O remain in contact with M are:

dF (q' (1))

a3V,

dt

2. Sign errors were propagated through the equations in this section in
earlier work (Lynch 1996).

Fig. 5. A one-degree-of-freedom prismatic robot manipulating
arod. The rod represents an arbitrary polygon in vertex
contact.

d*F(d' ()

dr =0

Frdmann (1984, 1994) refers to these constraints as the
first and second variation constraints, respectively. These
constraints state that the velocity and acceleration of the system
normal to the constraint surface must be zero. For the system
of Figure 5, these constraints are written:

dF (4'(1)

a

PFW)) . .
g e

—Vm — ré&w cos¢p, =0,

+ Hon sind, — b, cosd,) = 0.

Q)]
(The state variables’ dependence on time is omitted for clarity.)
Assuming the contact is frictionless, the acceleration of © must
satisfy the constraints

o))
)

%, = 0,
Jwrcoso,, + p2¢w

Il

Equation (2) constrains the direction of the contact force, and
eq. (3) constrains the force to pass through the contact point.
Using Equations (1)~(3), we solve for the acceleration of O as
a function of the manipulator control y,, and the system state

(d,4):

v = 0,

Jw = K,

. —r

¢w = ;{K cos ¢w ’

where the contact force K is given by

.. V2.
K:PZ(,Vm —¢wrS1n¢w).
p2+ricos? o,
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Treating K as the control input, the control system is
(9,d) = Xo(q,q) + KX1(q,q), where the drift vector field
Xo(q,q) and the control vector field X1(q, §) (which are the
projections of the vector fields on the system state space T'C'
to vector fields on the object’s state space 7'C) are as follows:

Xo(a, @) = (i ,Jw,4,0,0,0)7,
XI(Q'q) = (0,0,0,0,1,~;’-§COS¢W)T.

The drift field is written without a gravity term, but one can be
included without changing the results here.

It is clear that O is not accessible as eq. (2) integrates
to yield the velocity constraint X,, = ¢; and the position
constraint x,, = c1f + ¢2. The situation is (locally) similar
with slipping contact and nonzero friction, except the applied
force is constrained to act along a friction-cone edge instead of
the contact normal.

We might ask instead if the rod is small-time accessible
on its reduced state space (Y, ,9, ,Vw,®, ). Constructing
the vector fields X, = [Xo, X1, Xz = [X1,[Xo, X1]],
and Xy = [X1,[Xo,[Xo,X1]]], and projecting to the
reduced tangent space, we see that these vector fields span if
—4r* cos? ¢, sin? ¢,, /p® # 0. This determinant is zero if
r = 0 (the contact is coincident with the rod’s center of mass)
or cosd, = 0orsing, = 0. Taking higher-order brackets
shows that the rod is small-time accessible on its reduced state
space (provided r # 0) unless ¢,, = 0 and cos¢,, = O (the
rod is perpendicular to the robot’s surface). In this case, the rod
cannot be rotated.

If there is nonzero friction at the contact between the rod
and the manipulator, and the contact is not initially slipping,
then in general the rod is small-time accessible on its full
state space (Lynch 1996). This derives from the fact that the
linear direction of the force applied to the rod, within the
friction cone, is a function of the manipulator’s acceleration
(and the state of the system). This gives control over the
linear direction of the applied force, not just the magnitude as
in the slipping case. Of course, the rod must undergo both
sticking and slipping contact phases for it to be small-time
accessible; otherwise, the configuration of the rod is confined
to a four-dimensional set where the endpoint is pinned to the
manipulator.

4.2.2. Example 2: A Single Revolute Joint

Now consider the system of Figure 6. The manipulator M is a
single revolute joint, and the object O is a rod as before. The
configuration of the system is g’ = (q, §) € C’, where 8 is the
angle of the revolute joint. Assuming the single link is thin,
the three-dimensional submanifold of contact configurations
is given by {q’ € C' | F(¢') = cosO( — rsing,)
+sin@(rcos ¢, — x,) = 0}. After collecting acceleration,
centrifugal, and Coriolis terms, the second variation constraint
1s written:
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Fig. 6. A one-degree-of-freedom revolute robot manipulating
arod.

F (/1)
dr?
%, (—sin8) + J, (cos ) + ¢,, (—rcos(¢,, — 6)) +
B(rcos(¢,, — ) — x, cosb — y,, sin ) +
bulrsin(g,, - 0) +
& (rsin(¢,, — 6) +x, sin® — y,, cos ) +
6, 0(—2rsin(¢,, — 6)) +
6%, (—2cos8) + By, (—2sin ).

=0=

“@

Assuming the contact is frictionless, we have constraints on
the linear direction (eq. (5)) and the point of application (eq.
(6)) of the contact force:

X, cos@+3, sind = 0,
Juwrcos(d, —0)+ d,picosd = 0.

®
(6)

Solving egs. (4)(6) for the acceleration of the object in terms
of the control 8 and the system state (q, '), we get

Xw» = —Ksiné, @
Jw = Kcosé, (8)
éw = —;rEK COS(¢W - 0)1 (9)

where the contact force X is

0(6(~rcos(¢,, — ) +x,, cosf+y, sinf) +
b (~rsin(,, — ) +

52(—rsin(¢w —8) — x,, sinf + y,, cos§) +
., 0(2rsin($,, — 6)) +
6%, (2cos6) +

6y, (25in8))/(r* cos*(4,, — 6) + p?).

K:

(10)

Equations (7)~9) have the structure we expect—the force is
normal to the manipulator link, and the torque about the center
of mass of O depends on the angle between the object and
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the manipulator. The equations also show that even for this
simplest of systems, the force K is a complex function of the
state and control 6.

Rearranging eq. (10), we get the form § = 9,1,,/, +
KOconror , Where 6,1,1, is the acceleration of the robot needed
to stay in contact with the rod while applying zero force, and
Bsomiror 1 the additional acceleration of the robot required to
apply a unit force to the rod:

baye = (6 (~rsin(@, —0)) +
92(—r sin(¢,, — 6) — x, sin@+ y,, cos ) +
,,6(2rsin(¢, — 6)) + 6%, (2cosb) +
0y, (25in 6))/(r cos(e,, — ) — x,, cosf —
Yw siné),
- 2+ r?cos®(¢, —6)
()mnlral

p*(—rcos(¢,, —0) +x, cos@+y, sinf)

The denominator of these expressions is zero when the contact
point of the rod is at the robot’s pivot point. At this singularity,
the robot cannot apply a force (Ocon,,o; ) or maintain contact
with a moving rod (O ).

Treating the force X as the control input, the control system
on the state space TC' is (¢',q') = Xo(q', &)+ KX1(d', '),
where the drift and control vector fields are written

Xo(qlvql) = (xw 7.}}W7(‘bw79 070 0 éd’lﬂ )T3
Xi(d,q) = (0,0,0,0,—sin6,cosd, - cos(¢w —-0),

Bt:ontrol ) .

Because the acceleration of the object is a function of the
manipulator state (6, #), and not just its acceleration 6, we
cannot immediately project the vector fields to vector fields
on the object’s state space TC as we did with the prismatic
joint. We must look at the vector fields Xy and X3, and their
Lie brackets, on the full state manifold TC'. After we have
constructed the Lie brackets, we can look at their projection to
TC to determine the accessibility of the object O.

As in the proof of Proposition 1, we construct the vector
tields

X, = P(O:Xll ’

Xy = [Xla [XO»XI] ] )

Xy = [Xl_v [Xo, [XO,Xl} ” ’

X: = X, X, Xo, X X1) 1],

Xo = [Xo,[Xn, o, [Xo, o, 1] ]]]] -

These vector fields are highly complex trigonometric func-
tions. To completely answer the question of small-time ac-

cessibility, we must consider even higher-order bracket terms.
Owing to the complexity of the bracket terms, we focus on the
particular case of zero-velocity states (q', 0).

Evaluated at zero velocity and projected to T'C, the vector
fields X; ... X take the form (0,a)”, (—a, 0)7, (0,b)7,
(=b,0)7, (0,¢)7, (~c,0)7, where a,b, and c are three-
vectors and O is the zero three-vector. Because of this form,
it is sufficient to look at det(a b c) to determine accessibility.
The determinant is 4r>h, where A is a complex trigonometric
function of the configuration of the system. Thus, from a
zero-velocity state, these vector fields span unless » = 0 (the
contact is coincident with the rod’s center of mass) or & = 0.
Because & = 0 defines a lower-dimensional manifold of the
configuration space, the rod is small-time accessible from a
generic configuration.

For the particular case ¢,, = m/2 and 6 = 0 (the rod is
perpendicular to the robot), we have A = —2/p*z2, which is
undefined atx,, = 0. This corresponds to a contact point at the
pivot of the robot, so the robot cannot apply a force and the rod
is not small-time accessible. Otherwise, we have small-time
accessibility provided r # 0.

We conjecture that by taking higher-order Lie brackets, a
rod with r # 0 can be shown to be small-time accessible at
all states such that the contact point does not coincide with
the pivot of the manipulator. Unlike the case of a frictionless
prismatic joint, we have accessibility with a frictionless
revolute joint because the force angle varies with the joint
angle 8, giving the robot some control over the direction of
the applied force.

4.2.3. Discussion

The example above shows that even a one-degree-of-freedom
revolute robot can take an object to a six-dimensional subset of
its state space by using slipping and rolling between the robot
and the object. We should therefore be able to do interesting
planar dynamic manipulation with even the simplest of robots.
The four state-equality constraints of the robot link (pivot point
is fixed) do not translate to state-equality constraints for the
object.

The examples above only consider polygonal edge-vertex
contacts. Smooth objects and manipulators can be handled
by modifying the constraints. Smooth surfaces may result in
other hindrances to small-time accessibility; for example, a
frictionless disk centered at its center of mass can never be
small-time accessible by any type of contact.

The system is dynamically singular at a system state
(d',q") if the set of motion directions of O loses rank on
T(qqTC. (The object may still be accessible if the system
can break the dynamic singularity at some time 7".) Figure 7
gives examples of dynamically singular systems.

In short, the object is not small-time accessible if (1) the
linear force direction is fixed in the world frame (as with
a frictionless prismatic joint); (2) the force always passes
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frictionless

1%

(c)

(a) (b)
Fig. 7. Dynamically singular nonprehensile systems. (a) The
system is initially at rest. At this configuration, any accele-
ration of the prismatic joint either results in zero force applied
to the object, or a force through the center of mass. This dyna-
mic singularity is unstable. (b) If the object is initially at rest
in line contact with the manipulator, no acceleration of the
manipulator can cause the object to rotate. Even if the robot
has two or more prismatic joints, the system may be singular
with line contact. (c) If the disk is frictionless and centered at

its center of mass, the system is dynamically singular at every
state. The angular velocity of the disk cannot be changed.

through the object’s center of mass (as with a frictionless disk,
or if the center of mass of the object is coincident with the
contact point); or (3) the robot cannot apply a force (as when
the contact point coincides with the robot pivot).

Although we have shown that the accessible state space may
be tull-dimensional, it appears extremely difficult to calculate
the shape of the accessible state space from a given state.
Ideally, we would have a representation similar to a robot’s
kinematic workspace.

4.3. Algorithmic Control

The differential geometric approach to reachability yields little
insight into how to generate controls to reach a goal state. Here
we describe an intuitive approach to controlling the degrees of
freedom of the object using algorithmic control, which is the
basis of the planner described in Section 5.

The idea behind algorithmic control is to control a subset
of the state variables at any given time, but to switch between
subsets so the goal state is reached. For example, a unicycle
can be driven to the zero state by first reorienting it so that it
points toward the origin, then driving it to the origin, and finally
reorienting it to the zero angle. In general, we must account for
drift in the variables that are not being directly controlled.

In the context of dynamic nonprehensile manipulation, we
can define the following control phases (Fig. 8):

1. Dynamic grasp. An object is in a dynamic grasp if it
makes line contact with the manipulator and the mani-
pulator accelerates such that the object remains fixed
against it. With a dynamic grasp, up to min(2n, 6) of
the object’s state variables can be directly controlled by
an n-joint manipulator.
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Fig. 8. Manipulation phases (left to right): dynamic grasp,
slip, roll, and free flight.

2. Slip. Controlled slip provides control of two more state
variables: the slipping distance and the slipping velocity.

3. Roll. Rolling provides control of two more state variab-
les: the rolling angle and angular velocity.

4. Free flight. After the object is released, it follows a
one-dimensional path through its state space, paramete-
rized by its time of flight.

A control algorithm can sequence these phases. The dimension
of the accessible state space is the sum of the independent
freedoms of each phase, up to a maximum of six.

Example 1. An n-degree-of-freedom manipulator carries an
object with a dynamic grasp, allows it to begin rolling, and
then releases it. The dimension of the accessible state space of
the object is upper-bounded by min(2n + 2+ 1, 6). The “con-
trols” are the state of the robot and the roll angle and velocity
at release, and the time of flight (assuming the arrival time at
the goal state can be chosen freely).

5. Motion Planning

For a given initial state of the object and the manipulator, the
planning problem is to find a manipulator trajectory to take
the object to the goal state using frictional, gravitational, and
dynamic forces. We are especially interested in the following
dynamic tasks:

1. Snatch: transfer an object initially at rest on a table to
rest on the manipulator. The manipulator accelerates
into the object, transferring control of the object from
the table to the manipulator. ’

2. Throw: throw the object to a desired goal state. The
object is carried with a dynamic grasp and released
instantaneously (no slipping or rolling) at a state where
the free-flight dynamics will take the object to the goal
state (possibly a catch).

3. Roll: roll a polygonal object on the manipulator from
one statically stable edge to another statically stable
edge.

4. Rolling throw: allow the object to begin rolling be-
fore throwing it. By controlling the roll angle and ve-
locity before the release, the dimension of the object’s
accessible state space is increased by two.
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The manipulation phases in these tasks are dynamic grasp, roll,
and free flight. Slipping contact is not used. The object is a
polygon in point or line contact with the manipulator.

To solve these problems, we cast trajectory planning as
a constrained nonlinear optimization problem, where the
system’s initial state and goal state (or state manifold) are
specified as constraints to the optimization. The trajectory
is also subject to a set of nonlinear equality and inequality
constraints arising from constraints on the manipulator motion
and the dynamics governing the object’s motion relative to
the manipulator. Because dynamic nonprehensile manipulation
relies on friction between the object and the manipulator,
and friction coefficients are often uncertain and varying, the
optimization is usually asked to minimize the required friction
coefficient for successful manipulation. Unlike other work on
optimizing the time or energy of a robot’s motion, we are more
concerned with making the manipulation maximally robust to
variations in the friction coefficient.

5.1. Problem Specification

Every task is assumed to consist of a sequence of manipulation
phases made up of one or more of the following: a (dynamic)
grasp phase g, a roll phase r, and a flight phase /. The
nonlinear program is written to handle any sequence of
manipulation phases S from the simple finite-state machine:

S — ABC, A —gle, B—rlrgle, C — fle,

where ¢ is the empty string. With this notation, a throw (as
defined above) is denoted gf, a roll is denoted grg, and a
rolling throw is denoted grf. A snatch can be either g or rg.
We assume that there is no rebound from the impact at the
end of a roll (the transition from r to g). The instant the new
edge contacts, if the dynamic grasp conditions are met, then
the object is assumed to be in a dynamic grasp.

The times of the manipulation phases are t;; for the first
dynamic-grasp phase g, t,o; for the rolling phase r, ¢, for the
second g phase, and 7.y, for the flight phase f. If a phase is
omitted, its corresponding time duration is zero. We also define
the cumulative times Tg] = ta, Ton = Tgl + toott , T, g2 =
Toolt + tg2, and Tpgw = Toa + tpiigh - Finally, we define
T = Ty, where T is the total time the manipulator is in contact
with the object during the manipulation.

The manipulation primitives—the snatch, the roll, the
throw, and the rolling throw—can be composed or “glued”
together. The glue between primitives is a static equilibrium
carry of the object.

In the next three subsections, we describe the three
fundamental elements of the nonlinear program: the design
variables, the constraints, and the objective function.

X3
segment 0 ®  segment5
\ X Xg
X S ¢
X2
L] * L]
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0 4 t 4 4 t T

Fig. 9. A cubic B-spline trajectory with nine knot points and
six segments.

5.1.1. Design lariables

The design variables consist of the variables x specifying
the trajectory of the manipulator over the interval [0, T); the
times of each phase of the manipulation, %1, tou , %2, and
tige  (some subset of these will be applicable based on the
problem specification); and the required friction coefficient u
between the manipulator and the object. These variables are
not independent; the trajectory of the manipulator implicitly
defines the time of each phase. However, the problem formula-
tion is much simpler if we make each of these variables explicit
and constrain them to be dynamically consistent. Although
we cannot control the friction coefficient 4, it is convenient
to represent u as a design variable and enforce the resulting
friction constraints.

Many different finite parameterizations of manipula-
tor trajectories have been explored, including polynomials,
Fourier bases, summed Fourier and polynomial functions,
splines, and piecewise-constant acceleration segments. After
some experimentation, we decided to represent trajectories as
uniform cubic B-splines (Bartels, Beatty, and Barsky 1987;
Chen 1991).

For an n-joint robot, x = (x*,x2, ... x"), where X’ is the
vector of knot points for the cubic B-spline position history of
joint ¢. The time of each knot point x]‘: is given by #;, and the
knot points are evenly spaced in time. The position of the joint
passes “near” the knot points; the actual position at each time
is obtained by taking a weighted sum of the four knot points
that are closest in time. The weighting basis functions are
cubic polynomials of time. Therefore, the position is C? and
piecewise cubic, the velocity is C! and piecewise quadratic,
and the acceleration is C% and piecewise linear (constant jerk
segments); see Figure 9.

5.1.2. Constraints

Constraints in the optimization are determined by limitations
on the motion of the manipulator and constraints on the
object’s motion. Object motion constraints include inequality
constraints due to Coulomb friction, and equality constraints
due to Newton’s laws. To simplify the notation, the depen-
dencies of the constraints on the design variables is omitted.
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Manipulator Constraints  Constraints on the manipula-
tor’s motion include the following:

1. Position constraints: ¢ € [0, T}, and
p(8(#) <0,

where O is the arm configuration and p is a vector-
valued function representing joint limits and obstacles.
2. Joint velocity constraints: ¢ € [0, 7], and

Omin < O(f) < Opar -
3. Joint torque constraints: ¢ € [0, T], and
Tmin < T(t) < Toax

where 7(¢) is the torque to move the arm and the object
along the trajectory.
4. Initial state constraints:

6(0) = 8y, 6(0) = 6.

Object Constraints  During a dynamic grasp or rolling
phase, contact friction constraints must be enforced to prevent
slipping or breaking contact. These force constraints encode
the unilateral nature of contact (forces can only be applied into
the object) and the finite friction coefficient u.

To maintain a dynamic grasp, the sum of the negated
gravitational vector —g and the manipulator’s acceleration,
measured in the object frame, must fall inside an acceleration
cone A. The cone A is determined by the line contact and
the friction coefficient u, and it lives in the three-dimensional
space of body-centered accelerations (two linear components
and one angular component).> The cone is bounded by four
edges, a;, az, a3, and a4, numbered so that the interior of the
cone lies to the left as we move from a; to ag, and so forth.
(These edges correspond to the accelerations of the object from
forces through the endpoints of the line contact and on the
boundaries of the friction cone; see Figure 10.) The magnitude
of these vectors is not important, but for concreteness, assume
they are unit vectors. We now form the 3 x 4 matrix

A, =(agxa;|agxaz|ay xaz|a xay),

where each column of A, is an outward-pointing normal to
a face of the acceleration cone A. The acceleration of the
manipulator must have a nonpositive dot product with each
column vector of A,.

3. More generally, we can talk about a force cone in the body-fixed
force space, but for the particular case of a planar object with a coor-
dinate frame attached to the center of mass, the two representations are
equivalent.
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N PR PR

Fig. 10. The contact forces on the left map to the acceleration
cone on the right, expressed in the object frame 3~ O. To
maintain the dynamic grasp, the manipulator acceleration
(measured in )  O) must lie inside the acceleration cone.

We recognize five types of object constraints.
1. Dynamic grasp constraints (dynamic grasp phase):

AL (34 (81 6() +3, (0)) () ~g) <0,

where g is the gravitational acceleration, and i is 1 or 2,
depending on the current dynamic grasp phase. During
a dynamic grasp phase, J,; and .']g,», the manipulator
Jacobian and its time derivative, are measured at the
center of mass of the object, so that all accelerations can
be represented in the object frame .

During rolling contact, a single point of the object is in
contact with the manipulator, so A is a planar acceleration cone
(now measured in the world frame X,4), bounded by the two
edges a; and a, (from forces on the left and right edges of the
friction cone, respectively). Define the vector a; normal to
the plane of this cone: a; = a, x a;. We form the matrix
A, = (ap x a; | a, x ay ), where each column of A, lies
in the (a;,a, ) plane and is an outward-pointing normal to an
edge of the acceleration cone. The acceleration of the object
must have a nonpositive dot product with each column vector
of A,.

The object acceleration 8,y = (o ; Arolty » %rot )7
(measured at its center of mass) required to maintain the rolling
contact is determined by assuming a pin joint at the contact and
finding the object acceleration consistent with the motion of the
manipulator. The acceleration a = (ay , a,, a)” at the contact
point on the robot (including negated gravity) is given by

a=1J,(6()6() +3,(6() 6(1) — g,
where J, and J, are measured at the contact point on
the manipulator The constraint that the linear acceleration

(ax ,a,) matches the acceleration of the contact point on the
object is expressed

(a,nay) = _w2r + (—ryaroll » Fx Groll ) + (arall,x y Qroil,y ),
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(@rolt, x> Ao, y)

Fig. 11. Rolling notation.

where o is the angular velocity of the object and r = (r,7y)
is the vector from the center of mass of the object to the
contact point in the world frame (Fig. 11). This gives us two
constraints on the object acceleration aroy; the third is that aron
must result from a force through the contact point:

1
Qroll — ;E(rxaroll,y — 1y Qroll x )7

where p is the object’s radius of gyration. After a little

manipulation, we get

a(p? +13) + ayrery + @ (p? 413 +17)

Aroll, =
roli,x p2 +r3 +r3 y
. ‘ ay(p2+r§)+axr,ry+ryw2(p2+rf+r§)
i1, -
oy prritr} '
_ IxGroity — NyArollx
Ol = ————g——.

p

Now we can write the rolling friction constraints:

2. Rolling-friction constraints (rolling phase only):
Ala, <0.
3. Roll-angle constraints (rolling phase only):
Uin SV () < Vi

where y is the angle of the object relative to the
manipulator. This constraint prevents the object from
penetrating the manipulator during the rolling phase.

4. Roll-completed constraint (for rolls only):

14 (Tm” ) = ¥ goal
5. Release-state constraints (for throws only):
s ((L (.17 tﬂight ) =0.

These constraints specify that the object reaches the
goal submanifold by free flight, where (q,q) is the

release state and tyigp  is the time of flight. The goal
submanifold is usually specified by goal values of some
subset of the state variables.

In principle, the manipulator constraints (1)~(3) and object
constraints (1)—~(3) should be satisfied at all times during their
domain of applicability. In practice, the constraints are only
enforced at p uniformly sampled points during each manipu-
lation phase. In the examples here, p is chosen between 20
and 50.

5.1.3. Objective Function

In most of our problems, we minimize the required friction
coefficient 1 between the object and manipulator to make the
manipulation maximally robust to variations in friction. (An
exception is the roll of Section 6.3, which minimizes the impact
velocity at the end of the roll.) If friction in the actual system
is high, we can fix the value of the friction coefficient in the
optimization and instead minimize functions such as energy or
time.

5.2. Sequential Quadratic Programming

Sequential quadratic programming (SQP) is used to solve the
nonlinear program. A generalization of Newton’s method for
unconstrained optimization, SQP finds a step away from the
current iterate by minimizing a quadratic model of the problem.
At each iteration, SQP determines the direction to step by
solving a quadratic subprogram, where the objective function
is a quadratic approximation at the current point and nonlinear
constraints are linearized.
The constrained nonlinear program can be written

min f(x)
subject to ¢;(x) < 0, i€Z,
C; (x) = 0, i€g,

where z € R™ is the iterate, f is the objective function, each
c; is a constraint mapping R™ to R, and Z and £ are index
sets for inequality and equality constraints, respectively. The
Lagrangian function is defined as

Lx,A) =f{x) + Z Aici(x),

i€TUE
where the 4 ; are the Lagrange multipliers. At each iterate, the

direction of the step is computed by a quadratic programming
subproblem of the form

min V() d + -12—dTde
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subject to ¢;(xx) + Vei()'d <

<0, i€l
ci(n) + Ve (u )T d

0, i€é,

Il

where x; is the current iterate, the constraints ¢; are local linear
approximations, and H is a positive definite estimate of the
Hessian of the Lagrangian (fo L(xx,4x)). The solution dy to

this subproblem defines the direction of descent. The distance
moved in the step direction is determined by a line search to
minimize a merit function consisting of the objective function
and a penalty function based on the violation of the constraints.

To solve SQP problems, we used CFSQP (C code for
Feasible Sequential Quadratic Programming, as described by
Lawrence, Zhou, and Tits (1994), using the code due to
Schittkowski (1986) to solve each quadratic programming
subproblem. CFSQP is a variant of the general approach
described above, and it is unique in that it maintains “feasible”
iterates during the optimization—once an iterate is found
that satisfies all linear constraints and nonlinear inequality
constraints, all subsequent iterates will also satisfy these
constraints. For problems without an rg subsequence, this
property ensures that each iterate in the solution process
corresponds to a physically valid motion, though the goal state
may not be achieved.

As with all iterative optimization routines, SQP finds a
local optimum which is not necessarily the global optimum.
In addition, the finite-dimensional parameterization of the
manipulator trajectory artificially limits the space of possible
trajectories. The particular local optimum achieved by SQP
depends on the shape of the feasible space and the initial guess.
This problem can be alleviated by solving with many different
initial guesses and choosing the best solution.

5.3. Putting It Together

A dynamic task is specified by a geometric description of the
polygonal object, along with its mass, center of mass, and
radius of gyration p; the initial state and the desired goal state;
and the sequence of manipulation phases to use (e.g., g, rg,
qf, grg, or grf). A guess is also required to initialize the
optimization. The motion of the object during rolling phases is
simulated using fourth-order Runge-Kutta. The SQP strategy
requires gradients of the constraints with respect to the design
variables, and these are calculated using finite differences. All
tunctions are implemented in C on a Sun SPARC 20.

6. Experiments

Although the planner of Section 5 can be applied to any robot,
motivated by the results of Section 4, our experiments have
been with a single-joint robot. We built a one-degree-of-free-
dom arm powered by an NSK direct-drive motor (Fig. 12).
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Fig. 12. The NSK direct-drive arm.

The hollow aluminum arm is centrally mounted and is 122 cm
long, with a 10-cm-square cross section. It also has a “palm”
mounted at a 45-degree angle. The top surfaces of the arm and
the palm are used as manipulation surfaces. To increase friction
and damping on these surfaces, they have been covered with a
soft, 5-mm-thick foam.

Because dynamic manipulation requires precise trajectory
following, we have carefully modeled the response of the NSK
motor. As a result, we obtain good open-loop tracking of
the planned arm trajectories (Lynch 1996). Small feedback
corrections are also used.

Trajectories specified by the planner are implemented
directly on the robot, without modification. In some cases,
however, effects that are not modeled in the planner cause
the plans to fail when they are implemented on the robot.
For example, the planner assumes that if the dynamic grasp
constraints are satisfied at the end of a roll (an rg sequence),
then the object is immediately in a dynamic grasp. Impact is not
modeled. Also, the planner’s rigid-body assumption is violated
by the soft foam, which has the effect of slightly rounding a
rolling vertex. When these unmodeled effects cause a plan to
fail, the problem specification can be modified to compensate.
An example of this is described in Section 6.3.

To execute a throw, the arm is maximally decelerated at
the release point. This causes the object to be released nearly
instantaneously. If the arm is also to catch the object, it follows
a bang-bang trajectory to reach the catching configuration.
Catches are made robust by the soft foam (which minimizes
rebound) and by appropriately choosing the object’s impact
state with the immobile arm. It is possible to choose the
object’s arrival state such that the impact immediately cancels
the object’s pre-impact velocity (Lynch 1996).

We now describe a snatch, throw, roll, and rolling throw. The
test objects are lightweight, and made of wood. More details
can be found in an earlier work (Lynch 1996), and a video of
some of the experiments is available (Lynch and Mason 1997).
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Fig. 13. A snatch: the trajectory found by the optimization. The required friction coefficient is 0.609. The plots show the angle
of the arm (ARMPOS) and the angle of the object (OBJPOS) relative to it. The time between frames is not constant, so an equal
number of frames of the roll and dynamic grasp phases can be seen. The clock indicates the time of each frame, and the previous

T

three frames create a motion blur.

Fig. 14. A snatch: implementation on the robot.
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Fig. 15. A throw: the required friction coefficient is 0.156.
6.1. A Snatch 6.2. A Throw

Using the phase sequence rg, the optimization finds the
snatching trajectory shown in Figure 13 after 200 iterations
and 120 sec. The trajectory consists of nine knot points, and
the required friction coefficient x is 0.609. The initial guess
is for the arm to remain motionless, but the constraints of
the optimization pull it toward a solution where the palm ac-
celerates into the wooden block. The goal is any statically
stable configuration after the roll has been completed.

The implementation on the arm works consistently
(Fig. 14). If the same trajectory is slowed down too much, the
block is simply pushed off the table, and if it is sped up too
much, the block is thrown.

After snatching the wooden block, the arm reorients it on the
palm by throwing and catching it. Using the phase sequence
gf, the optimization finds the trajectory shown in Figures 15
and 16 after 98 iterations and 13 sec. The trajectory consists of
seven knot points and the required friction coefficient is 0.156.
The goal state is a catching configuration where the block is
over-rotated to counteract its angular velocity. The catching
position of the arm (palm is horizontal) is specified.
Interestingly, the solution is to “double-pump” before
throwing. Path reversals (spiraling through the state space) are
often necessary to minimize the required friction. In this exam-
ple, the throw could be accomplished without oscillation, but
a larger friction coefficient would be required to prevent the
block from slipping off before reaching the release state.
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Fig. 16. A throw: implementation on the robot.

This is an example of composing a snatch and a throw. The
throw and catch is experimentally robust, but occasionally the
catch fails if the block tilts slightly out of the plane during the
snatch.

6.3. A Roll

The manipulation phase sequence is grg, where the duration
of the final g phase is zero. In other words, the arm stops mo-
ving as soon as the object has finished its roll, and this final
configuration is statically stable.

The nine-knot rolling trajectory of Figures 17, 18, and 19
takes 32 sec and 55 iterations to find. The object is a 27-cm-
square frame. Note the windup before the roll, which has the
effect of “throwing” the square over its rolling vertex. In this
example, the contact friction u is set to 1.5 and the objective
is to minimize the squared impact velocity at the end of the
roll. The solution yields an impact velocity of 3.1 rad/sec. The
implementation is robust, and the rebound on impact is small.

We limit the angle of the arm at the end of the roll to be
greater than or equal to —0.3 rad. This constraint is active in
the solution. Without this constraint, the solution is to end the
roll with the arm at —7/4 rad and the center of mass of the
square balanced over the rolling vertex. While this solution
minimizes the impact velocity (zero), it is not experimentally
robust.

6.4. A Rolling Throw

In this example, a wooden cube (7.6 cm on each side) is
thrown with an angular velocity different from that of the arm
at release. This is only possible with a rolling throw. Here the
block rotates half a revolution clockwise before landing on the
arm in the same position. Notice that the block does not begin
to roll when the arm is at its nadir; centrifugal and gravitational
forces combine to begin the roll. The nine-knot trajectory in
Figure 20 takes 54 iterations and 35 sec to find. The required
friction coefficient is 1.011. Examining the geometry of the
object, we see that the friction coefficient must be greater than
1.0 to apply a clockwise torque to the object through the rolling
vertex at the beginning of the roll, indicating that the solution
is nearly optimal.

The rolling throw is the dynamic task most sensitive to
trajectory error, as any error in the roll is propagated to the
flight phase. While rolling throws are fairly repeatable, the
accuracy is generally less than that of a throw. The imple-
mentation is shown in Figure 21.

7. Conclusion and Future Work

Dynamic underactuated nonprehensile manipulation exploits
dynamic effects to achieve interesting behaviors with simple
robots. This paper has studied its theoretical properties and
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Fig. 18. A roll: the initial guess, solution, and intermediate iterates.
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Fig. 19. A roll: implementation on the robot.

O

0 ms

™

113 ms

<

226 ms

A @
339 ms 452 ms 566 ms
606 ms 646 ms 686 ms
726 ms 766 ms 1083 ms

0.5 rad/div

—— ARMPOS
~ ~ - OBJPOS
/

\
\
\
\

\

0.2 s/div

1 rad/s/div

S
AY
AY
—— ARMVEL]Y,
~ T~ OBJVEL |

0.2 s/div

Fig. 20. A rolling throw: the trajectory found by the optimization.
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Fig. 21. A rolling throw: implementation on the robot.

presented a dynamic manipulation planner that has been suc-
cessfully implemented on a real robot to perform a variety of
dynamic tasks. Although the one-joint robot is a very simple
system, it is a flexible test bed for research on dynamic non-
holonomic manipulation using rolling, slipping, and free-flight
manipulation phases.

There is much more work to be done. Future work should
address feedback stabilization of the dynamic manipulation
trajectories, possibly using vision or force feedback; automatic
planning of manipulation-phase sequences; a more detailed
analysis of the geometry of accessible states; using repeated
contacts (batting) to increase the accessible state space;
nonprehensile manipulation with more complex contact
geometry and spatial parts; and tractable approaches to
complete and globally optimal manipulation planning.

Appendix: Controls with Two Force
Directions

In this appendix, we prove the sufficiency of Proposition 2
by adapting the results of Lynch (1998). We consider the
minimum number of force directions (two) that satisfies the
conditions of the proposmon f1 and f2, not both pure torques,
such that 7; > 0,72 < 0. (Alternatlvely, we could consider
three force directions, f; = (0,0,1)7, f2 = (0,0, -1)7,

and f3 any unit force with a nonzero lmear component, but
this system can approximate the minimal system, so it suffices
to prove sufficiency with the minimal system.) Without loss
of generality, let f; = (£,0,1)T (4 = Dand f, =
(facosf, fosing, 1)T. (Simply define the z-axis of the
object frame 2¢ to align with the linear component of f; and
choose the unit length appropriately,) If f, # 0, the angle of
the linear component of f; is / in the object frame ¥o. The
corresponding unit forces are fj, f2, with linear components

e

We first prove the sufficiency of Proposition 2 for the zero-
gravity case with the control set Uy (Section A.1). We then
modify the proof for the case of nonzero gravity with the
control set U, (Section A.2).

We will find the following lemma useful.

LEMMA 1. Consider a body-fixed force f, with a linear
magnitude f = , /f2 + f2 > 0and torque 7 # 0, applied to
O for atime . Define the smooth function m¢ (¢, wy) that maps

the application time ¢ and the initial angular velocity wy of O
to the magnitude of the total linear impulse delivered during
the application (linear forces integrated over 7). Then for any
range of initial angular velocities (— Omax ; Omax ), Omax > 0,
there exists a time 7 > 0 such that dme (¢, ) /3¢ > 0 for

me(t, ax) restricted to t € (0, T), @ € (—Opmax s Omax )-

Proof. The idea behind the lemma is simple. If the object
does not rotate, the total linear impulse is ft. Rotation of the
object, and therefore rotation of the force in the world frame
2, leads to some cancellation in the linear force components,
giving a total linear impulse less than ft. If the rotation of the
object during the application is less than 7 /2, however, clearly
mg (¢, wp) is monotonic with ¢ (the cosine of the angle between
any two instantaneous forces is positive). The magnitude of the
angular velocity during the force application is upper-bounded
by |wo| + T|7|, so there always exists a T > 0 found by

T —|wo| + v/@ + 27r|7'

2|T|

s
(Jool +TI7)T = 3 =

such that dmg (¢, wp)/d¢t > O forall £ € (0,T).

More formally, from a state (0,0,0,v,v,,wp)7, the
equations of motion during the application ofa force (0, 7)7
are given by

o) = 7
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Fig. 22. The total linear impulse delivered to O as a function
of its initial angular velocity ey and the time of application ¢
of the constant force (£, f,,1)T, where /2 +f3 =1

X (1)

Feos () = feost o=+ on),

2

Gty = fsing, () =fsin(G + ou)
Integrating, we obtain expressions for %, (t) and y, (t) in
terms of Fresnel mtegrals and mg(t, o) = (% (£) — 3w (0))?
+ (4w (£) = 1 (0))%)%. We find that dme(t, o) /3t — fast
approaches 0 from above, for any wy, verifying the lemma for
any given (—Omax , Omax )- An example plot of mg(t, wp) for
f = 7 = 11is shown in Figure 22. O

A.1. Zero Gravity

Now we are ready to prove that the object is controllable in
zero gravity using the unit forces 1, and £, (the control set Uy).
It is sufficient to show the following:

1. The object is controllable on its velocity space, the
quotient space TC/C. Any velocity is attainable from
any other velocity.

2. The object is controllable on its three-dimensional zero
velocity section Z = {(q,0)|q € C}. The object can
be moved from any (q,0) to any other (qz,0).

Using these properties, the object O can be brought to a
zero-velocity state (q1,0) (Property 1), moved to an arbitrary
zerovelocity state (qz, 0) (Property 2), and accelerated to the
goal (qg,d3). This last step is possible because, by Property
1, there is some control %(-) to take O from zero velocity to the

goal velocity 3. Applying the control inverse from (q3,q3),
we obtain the zero-velocity state (qz,0).

Property 1: The object is controllable on its velocity space,
the quotient space TC/C. Any velocity is attainable from any
other velocity.

We decouple the proof of this property by showing that the
object’s angular velocity can be changed arbitrarily without
changing the linear velocity, and the linear velocity can be
changed arbitrarily without changing the angular velocity. We
begin with the former.

There exists a Aw > 0, for any initial angular velocity ¢w,
such that two applications of the unit force f1 (respectively fz),
for times #; and ¢, can change the angular velocity to any
value in the open interval (¢, , ¢, +Aw) (respectively, (¢, —
Aw, ¢,,)) without changing the linear velocity. By patching
together open sets, O can be moved from (1 , w1 ,ébwl) to
(xwl vywl )¢w2) for anyxwl y,vwl 7¢u1 ) Pw2 -

Consider f; (similar reasoning holds for f2) applied for
a time #; at an initial angular velocity @;. By Lemma 1,
there exists a neighborhood W of (0, ;) such that for all
(t,w) € W, am; (t,w)/dt > 0 (m; does not achieve a
local maximum or minimum, and the constant my, contours
never become parallel to the t-axis). Therefore, we can choose
t; from an open interval (0, T) such that (#;, ;) ¢ W and
there exists a (f2,wy + ,71) € W (where w; + 1171 is the
angular velocity after application of i'l for time #) such that
mg (h,01) = my (t2, 01 + t,71). In other words, the total
linear impulse delivered by the first application can be exactly
matched by the linear impulse of the second application. By
allowing the object to rotate sufficiently between applications,
the linear impulses cancel, restoring the original linear velocity,
while the angular velocity is transferred to a point of an open
interval (@), ®; + Aw) parameterized by £, € (0, 7).

Note that if ¢; is chosen to exactly zero the angular velocity
after the first application (f, = —@; /71, w1 < 0), O cannot
rotate to the angle for the second application. We simply avoid
such a value of #1, possibly creating the two open #; intervals
(0, -(01/?1) and (—w;/f'l, T).

To see that the linear velocity can be changed arbitrarily
without changing the angular velocity, first assume the object
is always rotating. The unit forces f, and f, can be applied in
pairs such that their total torque impulses cancel and their linear
components sum to yield a net change of velocity in the desired
direction. Because the object is rotating, the linear components
of f1 and f2 can take any direction in the world frame Xyy.

Finally, the object can be maneuvered to any desired
velocity by first transferring it to the desired linear velocity
(possibly after giving the object an initial angular velocity) and
then transferring it to the desired angular velocity.

Property 2: The object is controllable on its three-
dimensional space Z of zero-velocity states. The object can
be moved from any zero-velocity state (qi,0) to any other

(q2» 0)'
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This can be proven by demonstrating that f, and f; are
sufficient to steer O from any zero-velocity state (q,0) to
a neighborhood of q on the three-dimensional zero-velocity
section Z. By patching together neighborhoods, O can be
moved from any (q1, 0) to any (q2,0). (Construct any curve
in Z connecting these two states. Each point on the curve is in
the interior of its open accessible set. These open sets comprise
an open cover of the curve, and because the curve is compact,
there is a finite subcover.)

To greatly simplify the discussion, we first consider the
limiting case where control forces are applied in short bursts
(impulses) such that the motion of the object during the
application of a control force is zero. We then relax this
assumption. The magnitudes of the linear impulses delivered
during applications of f; and f; are € and fa¢, respectively,
and the angular impulses are € and —e, respectively, where
¢ is a small positive value. Consider the following four-step
sequence beginning with the object at (0, 0):

1. Apply an f; impulse and allow the object to drift for time
7/¢. The new state is (m,0, 7, ¢,0,¢)7 .

2. Apply an f, impulse, canceling the object’s linear
velocity and doubling its angular velocity. Allow the
object to rotate in place an angle y,, where y; can
be chosen arbitrarily. The new state is (m,0,7 +
¥1,0,0,2¢)7.

3. Apply an f, impulse and allow the object to drift for
time m/c. The new state is (7w + wfacos(m + y,
+B), mhsin(r + yy + B), 21 + yy, faecos(m + v,

tB), hesin(m +yy + B), )"

4. Apply an f, impulse, stopping the object’s motion. The
final state is ( + 7fa cos(m + w1 + B), mhasin(m + y,
+ﬂ),27|' + '/’1:0:070)1'

The final set of configurations R; reachable from the
zero configuration 0 is a one-dimensional curve on Z,
parameterized by y/;, given by f(w,,0) = (7(1 — f2 cos(y,
+8)), —7fasin(y,+8), w1)T . The mapping f is independent
of €; —c¢ determines only the time of motion. We consider v,
to be the control. Repeating the sequence from each point of
R, we obtain a reachable set R;,, and repeating again from
each point of Ry, we obtain a set of reachable configurations

Rizs = {f(w3, /(w2 /w1, O)wy, w2, vs € S'}onZ:

(m(1 = facos(yy + B) + cosy (1 — facos(yy + B))
+fasiny, sin(yy +8) + cos(y, +y,)
x (1 - fycos(y3 + B)) +fasin(yy + y5) sin(ys +8)),

w(~f2sin(y, +B) +siny; (1 - f2 cos(y, +48))
facosy, sin(yy + B) +sin(y; +w,)(1 - fo
cos(ys 1 B)) — f2cos(yy + ya)sin(ys + B)),
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Fig. 23. The reachable set Ryp3 for f; = (1,0,1),
f2 = (0.5,0,—1)T. Note that the twisted tube wraps around
at ¢,, = 2m and that (0,0, 0) is in the interior.

pit v tys)

(Note that angles are modulo 27.)

We wish to show that this set contains a neighborhood of
the origin on Z. First we observe that by choosing v, =
¥q = w3 = 2m/3, the object returns to the zero configuration
(0,0,0)T. We will define this point in the three-dimensional
control space as ¥p = (21/3,2n/3,2r/3)T. To show that
(0,0,0)7 is in the interior of Ri23 on Z, we look at the
determinant of the Jacobian matrix of R;23,

Xy 9x,

Xy

P N
g'lfx 3'/’2 g!"3
det | 2= 5= 7 | = 72 (14 2-2f cos B) siny,.
3be 6. 3
W, ovs s

The determinant is nonzero at g unless 143 — 2f> cos f =
0. This equation holds only when f = 1,8 = 0; that is,
f, = (1,0, —1)7. Forany other choice of f5, the set Ry 23 gives
a neighborhood of reachable configurations of (0, 0, 0)7 on Z.
Figure 23 shows the reachable set R123 for f = 0.5,8 = 0.
If f, = (1,0,—-1)7, the reachable configuration space
by the control sequence above is a one-dimensional curve,
regardless of the number of applications of the sequence.
Therefore we modify the control sequence above by prepend-
ing it with the following two steps (assume the object begins at

(0,0)):

e Applyan fy impulse and allow the object to drift for time
7 /€. The new state is (7,0, 7,€,0,¢)7.
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e Apply an f, impulse, stopping the object’s motion. The
new state is (, 0,7,0,0,0)7.

Then, continuing with the four steps described previously,
the final reachable curve is f(y4,0) = (wcosy,, wsiny,,
w, + m)7. Applying the complete six-step control sequence
two more times, We get Rizg — {f(Ws,f (W2, f(¥1,0)))]
Vi ¥, ¥s € Sl} onZ:

(m(cos (1 — cosy,) + siny, siny,
+cos(yry + y) cosyg —sin(y, + yy) sinyy),

m(siny, (1 — cosy,) — cosy siny,
+sin(y; + yy) cosyz + cos(y, + ) sinys),

witystys )l

The control Wo = (57/3,57/3,5m/3)T returns the object
to (0,0,0)7. The determinant of the Jacobian is —72 sin y,
indicating that this control is nonsingular—R;23 contains a
neighborhood of (0, 0,0)7 on Z.

We have shown that by applying controls in a neighborhood
¥V of Wy in the control space, the object O, starting
from the zero-velocity configuration (0,0,0)”, can reach a
neighborhood W of (0,0,0)” on Z using impulses. W is
invariant to q when expressed in the object frame £, so from
any configuration q on Z, O can reach a neighborhood of
configurations of q on Z.

Finally, we replace the impulses with the unit-control forces
f1 fg Consider the first two steps of the four-step control
sequence. The impulse of the first step is approximated by
an application of f, for a time 7/2 (linear impulse is m; =
m; (T/2,0)), free rotation of the object by an angle J, and
another application for a time T'/2 (linear impulse is m, =
mg (T/2, Tt /2)). The second step is approximated by
an application of f, for a time T (linear impulse is m3 =
my, (T, T71)). The total torque impulses of the two steps are
equal For small values of T, & can be chosen so that the
total linear impulse of the two steps are equal, thus zeroing
the linear velocity after the two steps. (Note that m; + my >
ms > m; > mo, and & allows partial cancellation between
my and my. As T — 0,5 — 0.) Thus the final velocity is
(0,0,2T7,)7, identical to the impulse case where ¢ = T'7;.
The configuration-error vector (due to motion of the object
during the force application and the linear velocity error during
the motion between steps 1 and 2) is e1(y, T), smooth in y/,
and T,and e;(y,,T) = 0as T — 0.

Continuing in an analogous manner for steps 3 and 4 (the
object returns to zero velocity after step 4), and repeating the
sequence twice more, we get a smooth final configuration
error e123(W1, Wy, ¥a, T) such that eros(yy, ¥, v3,7) —
0asT > 0. Forany W € Rjzs above, where W is
a neighborhood of (0,0,0)7 on Z, we can define the set

W' = {w+e123(y1, W2, ¥3, T)lw € W}, where 1, y5, 3
are the controls (for the impulse case) that take the object
to w. By choosing T small enough, W’ also contains a
neighborhood of (0,0,0)7 on Z. Therefore, the object O can
reach a neighborhood of any initial configuration q on Z with
unit-control forces, and O is controllable on its zero-velocity
section.

This completes the proof for the case of zero gravity and the
control set Uj.

A.2. Nonzero Gravity

We now introduce nonzero gravity with the control set U, (the
control forces are uf, and uf,, where u € [0,00)). Scaling,
we can choose gravity g > 0 to be as small as desired. The
proof for the zero-gravity case is easily modified.

Property 1 holds simply by adding applications of f; and
f, during the control sequence such that their torque impulses
cancel while their linear impulses sum to exactly cancel the
change in linear velocity due to gravity (g7, where T is the
total time of the maneuver). Similarly, Property 2 holds by
adding applications of f and f5 during each control sequence
to cancel the change in velocity due to gravity. This introduces
a position error at the end of the sequence that goes to zero as g
goes to zero. By choosing g sufficiently small, from any q on
Z, the object can reach a neighborhood of g on Z. Finally,
Properties 1 and 2 are sufficient to prove that the reachable
state space from any (q, q) is the entire state space 7'C in zero
gravity. Because the effect of gravity can be made arbitrarily
small, this also holds with nonzero gravity and the control
set U, .
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