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Abstract—Compliant control will be a prerequisite for hu-
manoid robotics if these robots are supposed to work safely
and robustly in human and/or dynamic environments. One
view of compliant control is that a robot should control a
minimal number of degrees-of-freedom (DOFs) directly, i.e.,
those relevant DOFs for the task, and keep the remaining DOFs
maximally compliant, usually in the null space of the task. This
view naturally leads to task space control. However, surprisingly
few implementations of task space control can be found in
actual humanoid robots. This paper makes a rst step towards
assessing the usefulness of task space controllers for humanoids
by investigating which choices of controllers are available and
what inherent control characteristics they have—this treatment
will concern position and orientation control, where the latter is
based on a quaternion formulation. Empirical evaluations on an
anthropomorphic Sarcos master arm illustrate the robustness of
the different controllers as well as the ease of implementing and
tuning them. Our extensive empirical results demonstrate that
simpler task space controllers, e.g., classical resolved motion
rate control or resolved acceleration control can be quite
advantageous in face of inevitable modeling errors in model-
based control, and that well chosen formulations are easy to
implement and quite robust, such that they are useful for
humanoids.

I. INTRODUCTION

One of the important goals in humanoid robotics is
to achieve control with similar compliance and robustness
towards unanticipated perturbations as humans have. For
instance, when stepping on an unforeseen obstacle, the stiff
PD control of many humanoids is likely to tip the robot out
of balance—the high compliance in a human foot, however,
would easily absorb this perturbation. Or, the collision with
a suddenly appearing child would make the robot fall and/or
hurt the child, partially due to the stiff control gains and lack
of back-drivability of most humanoid robot controllers—in
contrast, a human would absorb the impact much more softly
due to the compliance in all the body’s DOFs, and the risk
of injury would be reduced.

One potential component to achieve higher levels of
compliance is to avoid explicit position-based reference
trajectories, and rather work with velocity, acceleration, or,
ideally, force control. A second component is to control as
few DOFs of the robot as possible with explicit criteria,
but rather focus on only task relevant variables and leave
other DOFs to compliant redundancy resolution in the null
space of the task. This view naturally leads to task space
control [1]–[9]. While impressive results have been generated

with advanced task space controllers on simulated humanoid
robots [10], [11], there seems to be a lack of implementation
of these approaches on actual robots. Until a few years ago,
one of the potential reasons for this lack of applications
was simply the missing computational power to compute
the necessary ingredients of these controllers in real-time.
Another potential problem with task space controllers is their
vulnerability towards geometric and algorithm singularities
[12]–[14]. And a third issue with task space control is the
increased mathematical complexity and need for automatic
code generation tools to deal with this complexity. At last,
it is also not easy to tune task space controllers since task
space gains affect null space gains and performance in often
complex and non-intuitive ways.

However, since task space control seems to be such a
theoretically appealing and promising approach to compliant
control in humanoids, it seems to be time to examine existing
techniques in a more unied and empirical way such that pros
and cons can be highlighted. For this reason, this paper inves-
tigates a large number of task space controllers in actual im-
plementation of different test tasks on a seven DOF hydrauli-
cally actuated anthropomorphic robot arm (Sarcos Master
Arm). Unlike many existing robots with stiff joints, the joints
of Sarcos Master Arm are designed to be back-drivable
and compliant. We focus on the most prominent velocity-
based, acceleration-based, and force-based controllers in the
literature. All the controllers are formulated in a unied
notational framework, including quaternion-based orientation
control [15], [16]. Efcient implementations are achieved
using Featherstone’s spatial notation [17] in a Mathematica-
based automatic programming tool. The next sections rst
briey introduce all the controllers used in this paper, before
evaluating them in different task scenarios.

II. CONTROLLER FORMULATIONS

Consider the rigid body dynamics of a robot

M(q)q̈ + C(q, q̇) + g(q) = τ (1)

where q ∈ "n is the joint angle vector, M(q) is the inertia
matrix, C(q, q̇) is the Coriolis/centripetal vector, g(q) is the
gravity vector, and τ is the joint torque vector. We use the
following notation: x ∈ "m is the task coordinate vector, J
is the Jacobian matrix describing the differential relationship
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between x and q as

ẋ = J(q)q̇, (2)

J† is the pseudoinverse dened by J† = JT (JJT )−1, and J̄
denotes the inertia-weighted pseudoinverse dened by J̄ =
M−1JT (JM−1JT )−1.

We consider the following eight controllers (for more
details of each controller formulation, see [18] and the brief
explanations in the next sub-sections):

• Velocity based Control
1) Velocity based control with joint velocity integra-

tion
2) Velocity based control without joint velocity inte-

gration
• Acceleration based Control

3) Acceleration based control in [3]
4) Simplied acceleration control variation 1 (with

nullspace premultiplication of M)
5) Simplied acceleration control variation 2

(without nullspace premultiplication of M)
• Force based Control

6) Gauss control [7]
7) Dynamical decoupling control variation 1 (without

nullspace pre-multiplication of M)
8) Dynamical decoupling control variation 2 (with

nullspace pre-multiplication of M)

A. Velocity based Control
Velocity based control computes the desired joint veloc-

ities for a given endeffector velocity [1] in at least two
different ways:
1) Velocity based Control with Joint Velocity Integration:

In this classical base-line controller, given the reference task
space velocity command ẋr , the reference joint velocities q̇r

are obtained from the Liegeois’ null-space optimization [19]

ẋr = ẋd + Kp(xd − x) (3)
q̇r = J†ẋr − α(I − J†J)∇g (4)

where ẋd and xd are the desired task space velocities and
positions, respectively, Kp is a positive denite gain matrix,
α is a positive constant, and g(q) is a null space cost
function. In our work, g(q) is chosen to be

g(q) =
1
2
(q − qrest)T Kw(q − qrest) (5)

where Kw is a weighting positive denite diagonal matrix
and qrest is some rest (preferred) posture.

The reference joint accelerations q̈r and positions qr

are obtained by numerical differentiation and integration
of the reference joint velocities (4), respectively. The nal
control signal is calculated using the computed torque control
method with a PD controller as

τ = M(qr)q̈r + C(qr, q̇r) + g(qr)
+ Kq,d(q̇r − q̇) + Kq,p(qr − q) (6)

where Kq,d and Kq,p are positive denite gain matrices.

2) Velocity based Control without Joint Velocity Inte-
gration: As we wish to avoid explicit position reference
trajectories in joint space such that higher compliance can
be accomplished, an alternative controller formulations uses
equations (3)–(5) as before, but denes the control law as
a proper inverse dynamics controller with the addition of a
joint velocity feedback term as

τ = M(q)q̈r + C(q, q̇) + g(q) + Kq,d(q̇r − q̇) (7)

where the reference joint accelerations q̈r are calculated
through numerical differentiation.

B. Acceleration based Control

Instead of velocities, the acceleration based control com-
putes the desired joint accelerations for a given endeffector
reference, this time specied as a reference acceleration [3]–
[6]. Various versions of such controllers exist:
1) Acceleration based Controller in [3]: This approach

was proposed in [3]. For a given reference task space
acceleration

ẍr = ẍd + Kd(ẋd − ẋ) + Kp(xd − x), (8)

the control law is given by

τ = M
(
J†(ẍr − J̇q̇) + φN

)
+ C + g (9)

where

φN = (I−J†J)(ḣ+KNeN)−(J†J̇J†+J̇†)J(h−q̇)(10)
eN = (I−J†J)(h−q̇) (11)

h is a vector function h = −α∇g, and KN is a positive
denite matrix. Derivations of this more complex looking
control law can be found in [3] and [18].
2) Simplied Acceleration based Control Variation 1 (with

nullspace pre-multiplication of M): Given the complex
null space terms in the controller above [3], a simplied
acceleration based controller can be formulated as [18]:

τ =Mq̈r + C + g (12)

where

q̈r = J†(ẍr − J̇q̇) + (I − J†J)ξ2 (13)
ξ2 = −Kq,dq̇ − α∇g (14)

and ẍr = ẍd + Kdė + Kpe, where e = xd − x.
The nal control law is

τ =MJ†(ẍr − J̇q̇) + C + g + M(I − J†J)ξ2. (15)

Note that in this controller, the inertia matrix effectively
premultiplies the null space term, as seen in the last summand
in (15) above.
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3) Simplied Acceleration based Control Variation 2
(without nullspace pre-multiplication of M): In the previous
controller, a null space optimization term was introduced
in acceleration space as in (13). Pre-multiplying this null
space term with the inertia matrix M to obtain joint torques,
can, however, be problematic if the inertia matrix is not well
modeled. Thus, as a variant, we introduce a control law with
null space-projected PD control term, i.e., a torque (and not
an acceleration) null space command:

τ =Mq̈r + C + g + (I − J†J)ξ2 (16)
=MJ†(ẍr−J̇q̇)+C+g+(I−J†J)(−Kq,dq̇−α∇g)(17)

where

q̈r = J†(ẍr − J̇q̇) (18)
ξ2 = −Kq,dq̇− α∇g (19)

and ẍr = ẍd + Kdė + Kpe.

C. Force based Control

Force based control directly computes the desired joint
torques for a given endeffector reference command, given as
a force [7], [8]. Again, multiple versions can be considered:
1) Gauss Controller (Operational Space Controller in

[7]): A prominent framework for force based redundancy
resolution was proposed by Khatib [7]. The desired task
dynamics are specied as

M̄(x)ẍ + C̄(x, ẋ) + ḡ(x) = F (20)

where

M̄ = (JM−1JT )−1 (21)
C̄ = (JM−1JT )−1(JM−1C − J̇q̇) (22)
ḡ = (JM−1JT )−1JM−1g. (23)

From these equations, a control law for the desired task
space dynamics (20) is designed as

F = M̄ẍr + C̄ + ḡ (24)

where

ẍr = ẍd + Kp(ẋd − ẋ) + Kp(xd − x). (25)

The corresponding joint torque control law becomes

τ = JT F + (I − JT J̄T )τnull (26)

= MJ̄
(
ẍr−J̇q̇+JM−1(C+g)

)
+(I−JT J̄T )τnull(27)

where τnull = −Kq,dq̇ − α∇g. This control law has many
interesting characteristics [7], [8], [20], including that it
dynamically decouples task and null space dynamics, and
that it interferes with the natural dynamics of the robot is
a minimal way, according to the so-called Gauss principle
[21].

2) Dynamical Decoupling Controller Variation 1 (without
nullspace pre-multiplication of M, and compensation of C
and g in joint space): In the previous control law, Coriolis
and gravitational terms are compensated only in the task
space. Motivated by the discussions in [8], we suggested a
variant of force based control by pre-compensating Coriolis
and gravitational terms in joint space [18]:

τ =C+g+JTF + (I − JT J̄T )τnull

= MJ̄(ẍr − J̇q̇) + C + g + (I − JT J̄T )τnull (28)

where

F = (JM−1JT )−1(ẍr − J̇q̇) (29)
τnull = −Kq,dq̇ − α∇g. (30)

3) Dynamical Decoupling Controller Variation 2 (with
nullspace pre-multiplication of M, and compensation of C
and g in joint space): In (28) above, it is possible to choose
the null space vector τ null as

τnull = Mq̈0. (31)

With this choice of the null space vector, the control law
becomes

τ =C+g+JTF + (I − JT J̄T )Mq̈0

=C+g+JTF + M(I − J̄J)q̈0

= M
(
J̄(ẍr − J̇q̇) + (I − J̄J)q̈0

)
+ C + g (32)

where

F = (JM−1JT )−1(ẍr − J̇q̇) (33)
q̈0 = −Kq,dq̇ − α∇g. (34)

As already suggested in acceleration based control, the
omission of the pre-multiplication of the inertia matrix in
the null space term can add useful robustness in face of
modeling errors of M.

III. ORIENTATION CONTROL WITH QUATERNION
FEEDBACK

The enumeration of the controllers in the previous section
did not make any attempts to be specic about the nature
of the controlled task. In general, position and orientation
control need to be considered in task space (besides force
control, which we will not address explicitly here). While
task space position control is rather straightforward, orien-
tation control is more complex. An elegant and numerically
robust solution to this problem can be formulated with the
help of quaternions [15], instead of Euler angles or roll-
pitch-yaw angles which are frequently used in the robotics
literature. Quaternions have desirable properties, for exam-
ple, a) quaternion derivatives can be integrated over time
to obtain the resultant orientation representation, b) they
do not have singularities as in Euler angles, and c) it is
straightforward to convert between angular velocities and
quaternion derivatives.
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Let us denote a unit quaternion as

α =
[

η
ε

]
= [ η, ε1, ε2, ε3 ]T (35)

where η is the scalar part and ε is the vector part and η2 +
ε21 + ε22 + ε23 = 1. A spatial orientation can be described by
a rotation of ϕ about an unit vector of the axis r (||r|| = 1)
and represented in terms of a quaternion as

η = cos
(ϕ

2

)
and ε = r sin

(ϕ

2

)
. (36)

For orientation control, in [15], the orientation error is
formulated using the unit quaternion as1

eo = δε = ηdε − ηεd + [εd×]ε. (37)

where αd is the desired orientation and α is the current
orientation, both expressed as quaternions.

In velocity based control, given the desired task space
translatory velocities ṗd, positions pd, angular velocities
ωd and orientation αd (i.e., as a quaternion), the task
space translatory reference velocity ṗr and angular reference
velocity ωr are dened, respectively, as

ṗr = ṗd + Kp(pd − p) (38)
ωr = ωd − Koeo

= ωd − Ko(ηdε − ηεd + [εd×]ε) (39)

such that the augmented task space reference velocities are

ẋr =
[

ṗr

ωr

]
. (40)

With this re-denition, all the controllers in Section II-A can
be applied.

In analogy, in acceleration and force based control, the
task space translatory reference acceleration p̈r and angular
reference acceleration ω̇r are dened, respectively, as

p̈r = p̈d+ Kd(ṗd − ṗ) + Kp(pd − p) (41)
ω̇r = ω̇d+ Kω(ωd − ω)−Koeo

= ω̇d+ Kω(ωd − ω)−Ko(ηdε − ηεd + [εd×]ε).(42)

and the task space reference accelerations are augmented as

ẍr =
[

p̈r

ω̇r

]
. (43)

Then, all the controllers in Sections II-B and II-C can be
applied.

IV. ESTIMATION OF PHYSICALLY CONSISTENT RIGID
BODY PARAMETERS

For experimental evaluations, we used a Sarcos Master
Arm, a seven DOF hydraulically actuated anthropomorphic
robot arm (Figure 1). The joints of this robot are designed
to be back-drivable and compliant. In order to implement
the controllers introduced above, it is necessary to obtain

1Note that there is a sign change in the third term in this orientation error.
This is due to the difference of the representation of the angular velocity in
world and local coordinates.

Fig. 1. 7 degree-of-freedom hydraulic robot: Sarcos Master Arm

joint i link i joint i+1

ciOi

COM link i+1
mi

Ii

Fig. 2. Link inertial parameters and link coordinates for parameter
identication. m is the link mass, I is the inertia matrix about the local
link (joint-axis) coordinates, and c is the center of mass (COM) location in
the joint-axis coordinates.

the rigid body dynamics components in (1), which require
knowledge of the inertial parameters of each robot link.
Ideally, these parameters can be obtained from CAD data.
However, due to the signicant contribution of hydraulic
actuation in our robot, CAD data turned out to be a poor t to
model the robot dynamics, such that we resorted to numerical
parameter identication. While estimation techniques such as
[22] generate good inverse dynamics models for simple joint
space controllers like computed torque or classical inverse
dynamics control, they run into problems with complex task
space controllers, as investigated in this paper. The reason for
these problems is due to the ordinary least-squares procedure
employed for identifying the link parameters—this procedure
has no mechanism to ensure physical correctness of the
inertial parameters, i.e., positive mass parameters, positive-
denite inertia matrices, and the constraints imposed by the
parallel axis theorem in converting center-of-mass inertia to
joint-axis coordinate systems. As a result, it was possible to
obtain non-positive denite inertia matrix M(q) at certain
congurations of the robot, which destabilized some of the
suggested controllers.

In order to ensure physically consistent inertial parameters,
we derived the following nonlinear parameter estimation
method using a re-parametrization of the basic link parame-
ters. There are 11 parameters (10 inertial and 1 friction pa-
rameters) to be estimated for each DOF (see Figure 2), mass
m, three center of mass coefcients multiplied by the mass
mcx, mcy, mcz , six inertial parameters (in joint axis, not
center-of-mass coordinates) Ixx, Ixy, Ixz, Iyy, Iyz , Izz (cf.
[22]), and viscous friction d. These parameters are arranged

CONFIDENTIAL. Limited circulation. For review only.

Preprint submitted to 2007 IEEE/RSJ International Conference
on Intelligent Robots and Systems. Received April 9, 2007.



in an 11-dimensional vector θ as

θ = [m, mcx, mcy, mcz, Ixx, Ixy, Ixz, Iyy, Iyz , Izz, d]T

(44)
To ensure physical consistency, the constraints in (45)–

(50) need be satised for each DOF, which are derived
from the parallel axis theorem, a Cholesky decomposition
of the inertia matrix (positive denite inertia matrix around
the center of mass),and the need for positive mass and
friction parameters. Thus, one can conceive that the original
parameter vector θ was generated through a nonlinear trans-
formation from an 11-dimensional virtual parameter vector
θ̃ = [θ̃1, · · · , θ̃11]T .

θ1 = θ̃2
1 , θ2 = θ̃2

1 θ̃2, θ3 = θ̃2
1 θ̃3, θ4 = θ̃2

1 θ̃4 (45)

θ5 = θ̃2
5 + θ̃2

1

(
θ̃2
3 + θ̃2

4

)
(46)

θ6 = θ̃5θ̃6 − θ̃2
1 θ̃2θ̃3, θ7 = θ̃5θ̃7 − θ̃2

1 θ̃2θ̃4 (47)

θ8 = θ̃2
6 + θ̃2

8 + θ̃2
1

(
θ̃2
2 + θ̃2

4

)
(48)

θ9 = θ̃6θ̃7 + θ̃8θ̃9 − θ̃2
1 θ̃3θ̃4 (49)

θ10 = θ̃2
7 + θ̃2

9 + θ̃2
10 + θ̃2

1

(
θ̃2
2 + θ̃2

3

)
, θ11 = θ̃2

11 (50)

Given the above formulation, any arbitrary set of virtual
parameters gives rise to a physically consistent set of actual
parameters for the rigid body dynamics model. For a robotic
system with n DOFs, (45)–(50) are repeated for each DOF.
For parameter estimation, we replaced the least-squares ap-
proach of [22] by a nonlinear parameter estimation technique
with gradient descent, based on the above virtual parameters.
A more advanced parameter identication procedure using a
Bayesian approach is currently being developed [23].

V. EXPERIMENTAL EVALUATIONS

A. Benchmark Tasks
We empirically evaluated the performance and properties

of the various controllers introduced in the above sections.
As benchmark tasks, the following eight experiments were
considered:

• Tracking a “gure 8” pattern
1) gure 8, slow speed, high task space gain
2) gure 8, fast speed, high task space gain

• Drawing a “star-like” pattern
3) star-like pattern, slow speed, high task space gain
4) star-like pattern, fast speed, high task space gain
5) star-like pattern, slow speed, low task space gain
6) star-like pattern, fast speed, low task space gain

• Tracking a “gure 8” pattern with orientation control
7) gure 8 with orientation, slow speed, high task

space gain
8) gure 8 with orientation, fast speed, high task

space gain
In the experiments 1) and 2), the task is to track a planar
“gure 8” pattern in the vertical plane (height and width:
0.225m) in task space at two different speeds (slow speed:
4 seconds per cycle, fast speed: 2 seconds per cycle). In

the experiments 3)–6), the task is to draw a “star-like”
pattern in the vertical plane by rst pointing outwards from
the center and then inwards back to the center in eight
directions in a sequential manner (slow: 1 second and fast 0.5
seconds for each pointing movement). The desired pointing
movement is specied by a minimum-jerk trajectory. This
“star-like” pattern is often considered in biological human
motor control behavior experiments and has parts of rather
high acceleration. In the experiments 7) and 8), in addition
to the task of tracking a the desired position trajectory of the
“gure 8”, the endeffector’s orientation is also specied to
keep it at a xed desired posture.

In these experiments, for the high task space gain setting,
we used Kp = 10I, Ko = 50I for the velocity based
controllers, and Kp = 50I, Ko = 1000I and Kd =√

50I, Kω =
√

1000I for the acceleration and force based
controllers. For the low task space gain setting, we used
Kp = 5I, Ko = 25I for the velocity based controllers, and
Kp = 25I, Ko = 500I and Kd =

√
25I, Kω =

√
500I for

the acceleration and force based controllers2. We collected
the data of three runs for each experiment with the eight
controllers described in Section II, respectively.

B. Experimental Results
Figures 3–5 show examples of tracking results of the

experiments 1), 4) and 6) illustrating qualitative difference
among the eight controllers. The gray line is the target
trajectory and the solid line is the actual trajectory. Table
I shows the root mean squared (RMS) errors between the
actual and target task space trajectory (position), and Table
II shows the RMS orientation error of the experiments 7)
and 8). As an orientation error measure, the L2 norm of
the orientation error feedback term eo in (37) is considered.
In these tables, bold numbers indicate the best tracking
performance and italic numbers indicate the second best
tracking performance. A short video clip is attached to this
submission to show examples of the movement of the robot
with the simplied acceleration based control (controller
5) containing 1) demonstration of the level of compliance
and robustness of the control by manually perturbing the
robot during slow “gure 8” movement, 2) fast “gure 8”
movement, 3) fast star-like movement, 4) “gure 8” with
orientation control at slow speed demonstrating the effec-
tiveness of orientation control by placing a cup containing
water on the endeffector.

The experimental results can be summarized as follows:
• Overall performance comparison: As already ob-

served in a preliminary earlier study [18], the simplied
acceleration based control (controller 5) is the most
promising approach. The more comprehensive exper-
imental evaluation in this paper clearly demonstrates
the effectiveness of this approach in face of inevitable
modeling errors. In particular, the results of experi-
ment 6) (fast star-like pattern with low gain), which

2In the acceleration based controller 3) (Section II-B.1), we had to reduce
orientation gains because of instability, and Ko = 400I, Kω =

√
400I

are used in the experiments reported in this paper.
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is the most demanding task of all, showed that the
simplied acceleration based control (controller 5) still
achieves remarkably good tracking performance while
other acceleration/force based controllers’ performance
was signicantly degraded.

• Velocity based approach: Velocity based controllers
(controllers 1 and 2) achieved overall good performance.
However, as we have mentioned in [18], there is a prac-
tical limitation in the choice of the task space position
gain because the task space position gain effectively
appears as a task space damping gain due to numerical
differentiation of the joint space reference velocity (4).
This effect implies that a) we cannot increase position
gains too much to improve the tracking performance,
as it may lead to instability due to too large damping
gain, and b) the impedance behavior of the task space
dynamics cannot be easily specied because of this cou-
pling of task space position and damping gains. From a
subjective point of view, all velocity based controllers
“felt” highly overdamped and not very compliant when
manually perturbing the robot.

• Acceleration based controller in [3] (controller 3):
The experimental results demonstrated that we could not
achieve very good performance and we found that the
controller was not very robust and really hard to tune.
For orientation control, the choice of the orientation
gain of Ko = 1000I resulted in instability while the
same choice of the orientation gain worked well in
other acceleration and force based controllers. Also, this
controller was highly sensitive to noise form numerical
differentiation, which was generated when obtaining
time derivatives of Jacobin and pseudo-inverse matri-
ces. Subjectively, it felt that this controller is overly
complex, without that this controller would achieve
particularly useful control properties.

• Force based control with inertia-weighted pseudoin-
verse: Force based control approaches using the inertia-
weighted pseudoinverse have the desirable property
of dynamical decoupling between the task and null
space. However, in practice, performance of these force
based controllers (controllers 6–8) was not as good
as the simplied acceleration based control (controller
5). This effect is in particular due to inaccuracies of
the estimated inertia matrix, as this matrix and its
inverse are used in many different places of the control
law. Computationally, the calculation of the inertia-
weighted pseudoinverse requires explicit extraction of
the inertia matrix from the rigid body dynamics, which
is computationally expensive.

• Explicit use of the inertia matrix: The performance
of the algorithms which explicitly use the inertia matrix
(force based algorithms with inertia-weighted pseudoin-
verse (controllers 6-8) or controllers including nullspace
term premultplied by the inertia matrix (controllers 3,
4 and 8)) signicantly degrade especially in the tasks
with fast movements. This implies that these algorithms
require highly accurate inertia matrix estimation to be

successful.
• Orientation control with quaternion feedback: The

quaternion based orientation control was successfully
implemented for all controllers. We achieved good over-
all performance in the regulation of the desired posture
of the endeffector while tracking the gure 8 pattern
except for the controller 3 (the one which we could
not achieve good performance in position control tasks
mentioned above). We could place a cup containing wa-
ter on the endeffector without spilling water in the slow
gure 8 task by keeping the endeffector’s posture xed
while the endeffector was tracking the gure 8 pattern
(see Figure 6). However, we observed that the task space
position tracking performance was not as good as that
of controllers without orientation constraints.

VI. CONCLUSION

In this paper, we presented extensive empirical evaluations
of various task space control algorithms with redundancy
resolution, with the goal to provide a critical examination
of these controllers for their use in humanoid robotics. We
formulated all the controllers in a unied notational frame-
work, including quaternion-based orientation control. We
also introduced a parameter estimation algorithm for rigid
body dynamics that ensures physically consistent parameters
identication. Our experimental results demonstrate that the
simplied acceleration-based controller (controller 5) had the
overall best performance in terms of tracking results and
general robustness. It even worked surprisingly well for the
demanding task of the fast star-like movement with low task
space gain settings, in which the performance of many other
controllers signicantly degraded. This simplied accelera-
tion based controller is easy to implement in the framework
of efcient Newton-Euler rigid body dynamics formulations.
For that tasks that we investigated, more complex operational
space controllers like force based controllers, did not perform
very well. To achieve high quality results with these theoret-
ically very appealing methods, signicant emphasis must be
placed on accurate model identication of the robot, which
can be rather hard in complex humanoids.

Future work will address applications of the task space
control laws for balancing and locomotion control for biped
robots, including control situations with switching con-
straints and the integration of task space control with joint-
space based pattern generators.
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Fig. 3. Tracking results of slow gure 8 movement (4 seconds per period)
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Fig. 4. Tracking results of fast star movement (0.5 seconds for each pointing movement) with high gains
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Fig. 5. Tracking results of fast star movement (0.5 seconds for each pointing movement) with low gains

TABLE I
ROOT MEAN SQUARED (RMS) TRACKING ERROR [m] OF THE BENCHMARK TASKS USING DIFFERENT CONTROL LAWS AVERAGED OVER THREE

EXPERIMENTAL RUNS. THE BOLD NUMBERS INDICATE THE SMALLEST TRACKING ERROR AND THE ITALIC NUMBERS INDICATE THE SECOND

SMALLEST TRACKING ERROR FOR EACH TASK, RESPECTIVELY.

1) vel. w/ 2) vel. w/o 3) acc. 4) acc. 1 5) acc. 2 6) Gauss 7) dyn. dec. 1 8) dyn. dec. 2
integration integration w/ M w/o M w/o M w/ M

gure 8 (slow) 0.0100 0.0090 0.0312 0.0256 0.0080 0.0218 0.0191 0.0187
gure 8 (fast) 0.0144 0.0144 0.0322 0.0317 0.0258 0.0293 0.0325 0.0291

star (slow, high gain) 0.0072 0.0090 0.0323 0.0265 0.0074 0.0180 0.0178 0.0133
star (fast, high gain) 0.0117 0.0125 0.0351 0.0309 0.0144 0.0240 0.0246 0.0221
star (slow, low gain) 0.0153 0.0188 0.0662 0.0451 0.0155 0.0570 0.0405 0.0343
star (fast, low gain) 0.0209 0.0223 0.0685 0.0518 0.0197 0.0600 0.0439 0.0396

gure 8 w/ orient (slow) 0.0087 0.0087 0.0216 0.0177 0.0166 0.0194 0.0188 0.0251
gure 8 w/ orient (fast) 0.0160 0.0155 0.0314 0.0390 0.0380 0.0396 0.0405 0.0387

CONFIDENTIAL. Limited circulation. For review only.

Preprint submitted to 2007 IEEE/RSJ International Conference
on Intelligent Robots and Systems. Received April 9, 2007.



(a) t=0 sec (b) t=0.5 sec (c) t=1.0 sec (d) t=1.5 sec

(e) t=2.0 sec (f) t=2.5 sec (g) t=3.0 sec (h) t=3.5 sec
Fig. 6. Snapshots of slow gure 8 movement with orientation control. The task is to track the gure 8 pattern by keeping the endeffector’s posture xed.
In order to demonstrate orientation control, a cup lled with water was placed on the endeffector. See also an accompanied video to this submission.

TABLE II
ROOT MEAN SQUARED (RMS) ORIENTATION ERROR OF THE FIGURE 8 TASK WITH ORIENTATION CONTROL USING DIFFERENT CONTROL LAWS

AVERAGED OVER THREE EXPERIMENTAL RUNS. AS AN ORIENTATION ERROR MEASURE, THE L2 NORM OF THE ORIENTATION ERROR FEEDBACK TERM

eo = ηdε− ηεd + [εd×]ε IN (37) IS CONSIDERED. THE BOLD NUMBERS INDICATE THE SMALLEST TRACKING ERROR AND THE ITALIC NUMBERS

INDICATE THE SECOND SMALLEST TRACKING ERROR FOR EACH TASK, RESPECTIVELY.

1) vel. w/ 2) vel. w/o 3) acc. 4) acc. 1 5) acc. 2 6) Gauss 7) dyn. dec. 1 8) dyn. dec. 2
integration integration w/ M w/o M w/o M w/ M

gure 8 w/ orient (slow) 0.0219 0.0240 0.0751 0.0296 0.0260 0.0311 0.0307 0.0274
gure 8 w/ orient (fast) 0.0259 0.0299 0.0814 0.0428 0.0429 0.0455 0.0443 0.0393
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