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Exponential Stabilization of Mobile Robots with 
Nonholonomic Constraints 

C. Canudas de Wit and 0. J. Sordalen 

Absfract-Tbis note presents an exponentially stable controller for a 
two-degree-of-freedom robot with nonholonomic constraints. Although 
this type of system is open-loop controllable, this system has been shown 
to be nonstabilizable via pure smooth feedback. In this note, a particular 
class of piecewise continuous controllers is shown to exponentially 
stabilize the mobile robot about the origin. This controller has the 
characteristic of not requiring infinite switching like other approaches, 
such as the sliding controller. Simulation results are also presented. 

I. INTRODUCTION 

Path-tracking precision is essential for wheeled mobile robots 
(WMR) performing tasks such as welding, painting, gluing, draw- 
ing, etc., where some point in the WMR is in contact with the 
navigation surface and the WMR is to accurately follow a given 
path. Also good path-following capabilities are required when 
the robot has to move in environments with clusters of obstacles. 
The problem of controlling mobile robots with nonholonomic 
constraints has been addressed from two points of view. 

1) Open-loop strategies that seek to find a bounded sequence 
of control inputs to steer the cart from any initial position to any 
other arbitrary configuration. The existence of such sequences 
has been indicated by [2]. Because these types of systems are 
locally controllable and reachable, [9] has proposed analytic 
tools based on Lie algebra and geometrical considerations to 
find the required control sequence. Reference [5] has worked on 
optimal sinusoid-type inputs for canonical systems, where con- 
trollability is obtained by first-order Lie brackets. Reference [ l l ]  
has extended this work to noncanonical forms, requiring a high 
degree of bracketing to achieve controllability. This proposal 
results in suboptimal sinusoid-type inputs. These strategies have 
been studied in connection with the motion planning of mobile 
robots. 

2) Closed-loop strategies consist of designing feedback loops 
stabilizing the cart about an arbitrary point in the state space. 
Although, the cart model is both locally controllable and reach- 
able, it has been shown by [12] and [71, based on the work of [6] 
and 111, that there is no pure smooth state feedback law (i.e., C”) 
that can locally stabilize this class of systems. Nonlinear con- 
trollers for tracking a moving virtual cart (or reference cart) 
were proposed by [SI and [12], among others. The requirement of 
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nonzero motion excludes the stabilization problem. Extension of 
the work of [12], including stopping phases, was studied by [131. 
He proposed a continuous state feedback law that also de- 
pended on an exogeneous time variable. This control scheme 
yields asymptotic stabilization of the origin with a rate of l/l. 
An alternative to time-dependent smooth controllers is the 
discontinuous or piecewise smooth controllers. Reference [lo] 
has proposed discontinuous controllers for Brockett’s well-known 
example [6] and for the rigid spacecraft in failure mode. Refer- 
ences [3] and 141 have presented a discontinuous controller for 
the knife-edge example. Their idea consists of first constructing 
an open-loop strategy to steer the system state from any initial 
condition to the origin. This results in a set of manifolds, which 
are then made invariant through a set of discontinuous feed- 
backs. 

In this note we propose a “piecewise” smooth controller to 
render the origin exponentially stable for any initial condition in 
the state space. The main difference, with respect to other 
approaches, can be summarized as follows: the proposed scheme 
does not seek to render the discontinuous surface invariant, as 
opposed to the principles of sliding control, rather making this 
surface nonattractive. This consequently avoids infinite switching 
in the control law and the undesirable “chattering” phenomena. 
Furthermore, this control law yields exponential stability, and 
the convergence can be chosen arbitrarily fast. 

rr. COORDINATE TRANSFORMATION 

i = COS e(V1 + u2)/2 = COS eu 
The kinematics of a cart with two driving wheels are given as 

y = sin @(U1 + u 2 ) / 2  = s i n h  

e = (U1 - u2)/(2c,) = w (1) 

where the state of the system (1) q = [x, y ,  elT is the position of 
the wheel axis center (x,y) and the cart orientation e with 
respect to the x-axis. The distance between the point (x, y )  and 
each of the wheel locations is c,. The velocities u1 and u2 are 
the tangent velocities of each wheel at its center of rotation (i.e., 
motor velocities times wheel radius). The control variables U and 
o are, respectively, the tangent and angular cart velocities, and 
are related to the wheel velocities in the following manner: 

U = [ : ] =  

1 1 
2 2 
1 1 

- - 

- -- 
2c, 2c, 

The stabilization of system (1) is understood as designing a 
control law u(q)  so that the closed-loop system 

converges for any initial condition,’ q(0) to an equilibrium point 
in d 

d = { ( x , y , e ) = ( 0 , 0 , 2 ~ ~ ) ;  n = o , - + _ i , + 2 , - - j .  

In general, the conditions for stabilization are not required to be 
global, but in this note we add this requirement. 
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Note that all points in @ are equivalent in terms of positioning 
and orienting the cart. 

Consider the following circle family 9: 

LP = ( ( x ,  y)  : x 2  + (y  - r ) 2  = r’) (4) 
as the set of circles with radius r = r(x,y). They pass through 
the origin and (x,y), and are centered on the y-axis with 

d X  
( x ,  y), defined as 

-= dy 0 in the origin. Let t& be the angle of the tangent of 9 at 

t& is taken by convention to belong to ( - P ,  P 1. Hence, ed has 
discontinuities on the y-axis with respect to x .  The discontinuity 
surface is defined as 

a =  { ( X , ~ , ~ ) : X = O , ~ Z O } .  (6) 

In view of these definitions, we introduce the following change 
of coordinates: 

a ( x , y ,  e )  = e - 2 ~ n ( e ) ,  e = 0 - 8d(x,y) (8) 

where a is the arc length, and the orientation error a E ( - P,  P ]  

is a periodic and piecewise continuous function with respect to 
e. n takes values in (0, f 1, k 2;-.,) in such a way that a belongs 
to ( -  T ,  T ] .  a is introduced so that all the elements in B are 
mapped into the unique point (a ,  a) = (0,O). 8 is the set of the 
points in q where a(q)  is discontinuous, i.e., 

8 = ((x,Y, e ) :  (Y(x,Y, e )  = P } .  (9) 

Note that a(x,y) defines the arc length from the origin to 
( x ,  y) along a circle centered on the y-axis and passes through 
these two points. a h ,  y) may be positive or negative, according 
to the sign of x .  In the degenerate case, when y = 0, we define 
a(x, 0) = 0, which makes a(x ,  y) continuous with respect to y. 
Discontinuities in a(x,y) only take place on the y-axis. An 
illustration of these definitions is shown in Fig. 1. 

Let us now introduce the function F( . ) :  R 3  -+ R x (- P,  T I ,  
mapping the state-space coordinates q E R3 into the two- 
dimensional space z E R X (- P ,  P ]  

This transformation has several useful properties, which are 
listed in the following lemma. 

Lemma I:  The mapping F(.):R3 -+ R X (- P,  P ]  has the fol- 
lowing properties. 

1) F(0)  = 0. 
2) a2(q),  a2(q), llF(q)1I2 are continuous in q. 
3) IKX,Y>~II 5 llzll I IaI + IaI. 

where 11. I )  denotes the Euclidean norm. 
Proofi The proof is simple and is left to the reader. 0 

Property 1 indicates the bijectivity between the equilibrium 
points in the q-space and the z-space. Property 2 indicates that 
the squares of the components of F ( - )  are continuous with 
respect to q. The last property results from the fact that the 

X 

Fig. 1. Illustration of the coordinate transformation. 

distance between two points on a circle is less than or equal to 
the arc length. These properties will later be useful in comparing 
the decreasing rates between these two quantities. 

111. CONTROL DESIGN AND STABILITY ANALYSIS 

This section proposes a piecewise smooth controller and ana- 
lyzes the stability of the closed-loop system. First, the stability 
analysis is performed in an open continuous subspace, and is 
then extended to the whole state-space, including discontinu- 
ities. 

A. Dynamics in the P-Space 

Let us first consider the case where q E q, where q is 
defined as the open set 1I’ = R3 - (9 U 8). F ( . )  is differen- 
tiable in 1Ir. 

In V we have 
dF 

as i = -4 = J ( q ) g ;  J ( q )  E R 2 x 3  (11) 

and J(q ) ,  with p = y/x, is given as 

together with (3), we get 

i = J(q)G(q)u = B(q)u;  B = [ :: y ]  (13) 

with 

bl = b,(q)  = cos e (4  - 1 )  + sin e (2 (1 - + ) + i) 

By noting that cos 8 = cos(a + e,), sin t9 = sin(a + 0,); and 
case, = (1 - p2)/(1 + p2),  sin 6, = 2p/(1 + p2) ,  we can 
rewrite b, as 

b l ( a , p ) = c o s a +  

+cosed($(l  - $) + ; ) ) h a .  (16) 

Lemma 2: The functions b,(q) have the following properties 
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for any x and y ,  with /3 = y/x: 

1)) b,i,(a) 5 b,(a,  0) bmax(a) 
2) b,( a ,  p )  is continuous in a 
3) limb,(a, p )  = l a  -+ 0 
4)lb2(q)a(q)l I N for some constant N > 0 

where 
7r 

b,,,(a) = cosa - --sinal 

&,,(a) = cosa + --sinal. 

2 

7r 

2 
Proofi See the Appendix. U 

The properties in Lemma 2 will be useful in establishing the 

Taking the following control law, with y > 0 and k > 0: 
exponential stability of the closed-loop equations. 

V =  -ybla  

w = -b2V - k a  

gives the following closed-loop equations: 

i = b v = -  1 Yb+ 

a = b2v + w = - k a  

which have the following solutions for a(t) and d t > :  

a(t)  = a(O)exp( - Y K ( ~ ) >  

a ( t )  = a(O)exp(-kt) 

with 

~ ( t )  = j 'bt(q(7))dT. 
0 

From these equations we have 

I I Z ( ~ ) I I ~  I IIz(o)I12exp( - 2 d t ) )  

where 

v ( t )  = min(yK(t), kt )  Vt 2 0 

which indicates bounds on the norm of z(t) in the continuous 
set v'. 

The following subsection extends the boundness of z(t) to the 
region including the discontinuities by showing that the discon- 
tinuous surfaces 9 and 8 are not invariant and that the norm 
of z ( t )  remains constant when traversing the discontinuous 
surfaces. Explicit bounds on the exponential convergence rate of 
the norm of z(t) are also given. 

B, Dynamic Behavior on the Surfaces 9 and 8 
Motion (or impossibility of motion) on the discontinuous 

surfaces a and 8 can be investigated by analyzing the direction 
of the vector field f ( q )  from (3) in the neighborhood of the 
discontinuities. 

Let us first consider the behavior on the surface 9. 
Lemma 3: Any trajectory q(t), solution of the closed-loop 

system 

4 = f ( 4 )  

cannot stay in 9 in a closed time interval I = [tl,t2], t 2  > t1. 
Proofi To prove that no motion is possible in 9, we can 

first compute f ( q )  in the neighborhood of 9 as 

f + ( q )  = lim f ( q )  = sin ev+ 

* + 0 +  ['""+I 
where 

7r 7r 
-cos e + -sin o)51yl 

e - -sin O ) ~ I Y  

2 
7r 97 

2 

- 1  COS ev- 
sin Ov- 

w 

___ 

1193 

2 
sgn(y) - k(B - 7r - 27rn) 

2 
- k ( 0  - 7r - 27rn) 

and then show that there is no convex combination of f - (q)  and 
f + ( q )  that makes q(t) stay in 9. In other words, there is not a 
q EB, 8 E [0, I] and p E R such that 

(24) P.h = V + ( q )  + (1 - S ) f - ( q )  
for all t E I, where fi indicates the directions of possible mo- 
tions in 9. Note that in order to remain in B during a time 
interval I ,  the cart should either perform a motion along the 
y-axis, a pure rotation at a fixed point y, or stand still. By 
allowing p to be equal to zero, which means that the cart stands 
still, these possibilities are represented by the following direc- 
tions: 

fl = [o, 1, olT or f 2  = [o, 0, 117 

The direction indicated by fl is equivalent to the situation 
where the cart is oriented in the y-direction, i.e., 13 is constant 
and equal to 90" or 270". In this case, it is simple to see that the 
last line in condition (24) cannot be satisfied. In the f2-direction, 
where we have a pure rotation, the first two lines in condition 

0 (24) cannot be verified for all t E Z. 
We have shown that trajectories q( t )  cannot stay in 8. 

However, it should be noticed that can be traversed. This is 
not the case for the surface 8, which is shown to be a repulsive 
discontinuity by the following lemma. 

Lemma 4: Any trajectory q(t), solution of the closed-loop 
system 

starting in 8, i.e., q(0) E 8, or in its neighborhood, will be 
repelled from 8. 

Proof: To prove this, we only need to show that for any 
q E 8, the projection of the vector field f ( q )  on the normal of 8 
points outwards from both sides of the surface. In other words, 
the inner products of f ( q )  and the outpointing normal at each 
side of the discontinuous surface are strictly positive. 

Let s (q )  = 0 denote the discontinuity surface 8 

4 = f ( 4 )  

s ( q )  = e - ed(x, y) - 2 ~ n  - n. 

Then the normal to s(q)  = 0 is 

2Y 
x 2  +y2 

x2 +y2 

2x 
-~ 

1 

1 
r 

Yr 
1 

- 
X -- 



1794 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 37, NO. 11, NOVEMBER 1992 

We define for q E 8 

-cos edyred 
-sin e d W d  f+(q)  = am+ f ( q )  = 

s + o  [ - ? @ d + k m - ]  

Then we have 
(f+, n )  = km- > 0 

(f-, -n) = km- > 0. 
(26) 

(27) 
This means that in the neighborhood of 8, or when q(0) E 8, 
the vector field f ( q )  will always have a component driving the 
system away from 8. This can also be seen by studying the 
"potential" function, V(s) = (1/2)s2. 

p=si = s  < n , f  *> = s.sgn(s)Zm-= 27rIsl 2 0. (28) 
Therefore, V ( t )  and, hence, Is(t)l  will always increase. 0 

C. Dynamics in the Complete Space 

Lemmas 1, 3, and 4 allow us to extend the properties of the 
dynamics of the closed-loop system to the space including dis- 
continuities. The following lemma summarizes these results. 

L e m m a 5  F o r a n y q ~ R ~ , ~ ~ R ~ ( - m - , m - ] , a n d V t 2 0 , w e  
have 

Ilz(t)ll I llz(0)lle-n(*) (29) 

Ila(t)ll I llu(0)lle-K(f) (30) 

Ila(t)ll I Ila(0)lle-k' (31) 
where ~ ( t )  and q( t )  are defined by (21) and (23). 

The following theorem establishes our main result. 
Theorem I: There are positive constants, T ,  vO(T),  a,(T), and 

€(TI,  so that the norm of z ( t )  satisfies 

I I Z ( ~ > I I ~  I a:(T)e-2vo(T)t ,  V t  2 o (32) 
where 1 > E ( T )  > 0; and ao(T), q,(T) are given as 

= min(y(1 - w?), k )  (33) 

u,(T) = max(la(0)leY('-'(T))T, Ia(0)l) (34) 
with arbitrary, positive constants y and k. 

and shows that when a approaches zero, bl(a!, p )  continuously 
tends towards one. Lemma 5 shows that a ( t )  decreases expo- 
nentially to zero. Therefore, for all t 2 T ,  there is a small 
enough E ( T )  so that 

Pro05 Lemma 2 gives upper and lower bounds on b ,( a!, p 

Ib?(cr(t), P ( t ) )  - 11 I € ( T ) ,  

1 - € ( T )  I b:(cY(t) ,  P ( t ) )  I 1 + E ( T ) ,  

V t  2 T 
which gives the following bounds on bf:  

V t  2 T .  
In view of Lemma 5, we have for all t 2 0 

la(t)l I la(0)le-K(f)  

where 

u,(T) = la(0) ley( l -E(T))T.  

And therefore 

llz(t)112 = a y t )  + a ! 2 ( t )  

s a;(T)e-2Y(l-E(T))f + a!2(0)e-2k' 

2 = a:(T)e-2ndT)'. 0 

< T ) ,  a!2(o))e-2 m"l- W))), kf  

It can now be established that exponential convergence of z ( t )  
to zero implies exponential convergence of the q-trajectories to 
any of the members of 6. 

Theorem 2: For any initial condition q(0) E R3, the solution 
q( t ) ,  t > 0, of the closed-loop system 

4 = f ( 4 )  

exponentially converges to any of the elements in 6 = 

{(0,0,27rn), 
Pro05 The proof will be based on the basic properties of 

the norms of q and 2. Note first, from Lemma 1, property 3, that 
the distance from ( x ,  y )  to the origin is upper bounded by the 
arc length la1 

n = 0,k I,* & e - . , } .  

Il(x(t), y(t))'1I2 I la(t)I2, V t  2 0. 

Since a( t )  tends exponentially towards zero, the norm of [ x ,  ylT 
will converge exponentially to zero. It remains to show that the 
cart orientation 0 converges to a point in 8. For this purpose, 
we recall that 0 can be written as a function of a! as (8) 

e ( t )  = a ( t )  + f&( t )  + 27rn 

where the variable n increments when the y-axis (or 9) is 
crossed from the right to the left, and decrements when B is 
traversed in the opposite direction. 

Since a( t )  tends exponentially to zero, the behavior of e ( t )  
will be determined by the behavior of e&). is by definition 
the tangent angle to the circles defined by 9, and a! is the error 
between the actual orientation and this tangent angle. Since 
a( t )  converges exponentially to zero, the motion of the cart will 
exponentially converge to a motion along one of the circles 
defined by 9. Theorem 1 showed that the distance (a( from the 
origin to the position of the cart along this circle, converges 
exponentially to zero. We, therefore, have the position of the 
cart exponentially tending towards the origin along a circle. 
Therefore, 6 d ( X ( t ) ,  y(tN exponentially converges to its limit 
ed(0,O) = 0. Since e(?> converges exponentially to e,, e ( t )  will 

0 
Corollary 1: The control inputs u(q)  and o(q) remain bounded 

for any q E R3. 
Proofi Boundness of U and o follows from the properties 1) 

and 4) of b,  and b2a listed in Lemma 2, and the fact that a and 
a! are bounded quantities. It should also be observed that both 
the inputs U and o tend towards zero as time goes to infinity. 

Theorem 1 gives bounds on the convergence rate qo and on 
the magnitude of the norm of z ( t ) ,  a,. Note, however, that 
when T is high, a, may describe a too-conservative bound on 
Ilz(t)ll since a, grows exponentially as T increases. Design 
guidelines for choosing the control gains can be established from 
Lemma 5 and Theorem 1. 

also converge exponentially to zero. 
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D. Design Guidelines 

A suitable design specification may be to give time intervals T, 
and Tu as the time needed to decrease a( t )  and d t ) ,  respec- 
tively, from their initial values a(0) and d o ) ,  to some specified 
values a(T,) and a(T,), relative to a(0) and d o ) ,  i.e., 

and 

where n, and n,  describe these desired rates. From these 
quantities it is straightforward to compute the corresponding 
value of k as 

1 
k = - - l n ( n , ) .  

Ta 

From T, on, when a is small, bounds on b:(a, /3) can be 
approximated as (the first property in Lemma 2) 

- 1 )  + &d). (35) 

Hence, V t  2 Tu, €(Tal can be taken as 

€(Tu)  = a 2 ( T u ) (  ; - 1) + n-la(T,)I 

where we have used that la(0)I I n-. eo can be chosen arbitrar- 
ily small by choosing n,  small enough. From Lemma 5, we can 
thus compute a value for y as 

Hence 

Y =  - 

Both the constants k and y are thus functions of T,, T,, n,, 
and n, .  For example, T, = 5T, = 5, n ,  = n, = 0.01 give 

k = 4.60, y = 1.35. 

E. Simulations 

Simulations were done by using the SIMNON package [17]. 
The constant k and y were chosen to 4.60 and 1.35, respectively. 
Fig. 2 shows the resulting paths in the xy-phase plane for several 
initial conditions corresponding to different points on the unit 
circle with an initial orientation angle O(0) = n-/2. We see that 

Y 

l 

0 

I 

z 

Fig. 2. Resulting paths when the cart is initially on the unit circle in the 
xy-plane with O(0) = ~ / 2 .  

P- 

Fig. 3. The resulting path in the xy-plane with q(0) = [ O ,  1, 0IT. 

all these phase trajectories are asymptotically stable and reach 
the origin by asymptotically tracking one of the circles in the 
path family 9. 

Fig. 3 shows the closed-loop resulting path for q(0) = [O, 1, 01’. 
Note that the cart starts at the discontinuity surface and 
asymptotically converges to the origin. This is a kind of parking 
maneuver. The shape of the path will vary with variations in the 
control gains k and y .  Fig. 4 shows another example where the 
cart starts at the left of the surface 9, q(0) = [ - 0.05,1, ../ZIT, 
and crosses it only once before reaching the origin. Fig. 5 shows 
the corresponding time histories of x(t>, y(t>, and O(t), illustrat- 
ing asymptotic convergence to 0. Fig. 6 illustrates the discontinu- 
ity in the inputs v and o, when the y-axis is crossed. We note 
that the inputs are bounded, and chattering is avoided. 

IV. CONCLUSIONS 

A piecewise smooth controller has been proposed for a mobile 
robot with two degrees of freedom. The particularity of this 
controller is that infinite high-frequency components and the 
well-known problem of “chattering” are avoided. The cart expo- 
nentially converges to the origin with zero orientation for any 
initial condition. This is achieved by letting the motion of the 
cart converge to one of the circles, which pass through the origin 
and are centered on the y-axis. The circles were chosen because 
they yield a new change of coordinates which is geometrically 
meaningful. However, other types of paths may also be possible. 
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Fig. 4. A path crossing the line of discontinuity, the y-axis. q(0) = 

[ - 0.05,1, v /2 lT .  

d 

r 
0 

I 

2 
I I 

4 6 

0.4 O f i  

1. 

0. Timet 

2 
I 
4 

I 

6 

Fig. 5. Timeplots of the position x ( t )  and y ( r )  and the orientation O ( t )  
for a path crossing the y-axis, see Fig. 4. 

Common for these paths is that they must pass through the 
origin with the desired derivative so that the desired orientation 
is asymptotically reached. 

APPENDIX 
PROOF OF LEMMA 2 

1) From (16) we have, with P = y / x  

b , ( a , p )  = c o s a + B ( p ) s i n a  (37) 

where 

6 B 
Fig. 6. Timeplots of the inputs, u(t) (tangential velocity) and d t )  
(rotational velocity), for a path crossing the y-axis; see Fig. 4. u(t)  and 
w ( t )  become discontinuous when x = 0, y # 0. 

= - 1 - (1 + -p)arctan 1 p P 

6, = e,( p)-2arctan( p ) .  

Here, we have used the fact that 

In order to find the maximum and minimum values of B( P ), we 
analyze the derivative, B‘( P )  

1 2  
B’( p )  = - 7 + ,arctan P - 

P P  

2 arctan P 
1) < o  vp. 

P 
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B’(0) = -(2/3). 
Since E’( P )  is negative for all P E R,  we find that 

lim B ( P )  I B(P)  I lim S ( P )  
P - - 9  p -  - m  

7T 
U 

7T 
-- < B ( ~ ) I  -. 

2 -  2 Honolulu, HI, Dec. 1990. 
Therefore, we get 

?r 7T 
cos a - -bin a1 I b,(a,  P )  I cos a + -Isin al. 

2 2 

2) From 1) we have that 

b,(a, P )  = cos a + E(  p)sin a 

where E( P )  is bounded. Since cos a and sin a are continuous 
in a ,  and B ( P )  is bounded, it is clear that bl(a, P )  is also 
continuous in a. 

3) By the continuity property from 2) we find. 

lim b,(a, P )  = lim cosa + lim E (  p)sin a = 1. 
a - 0  a - 0  a - 0  

4) From the definition of a(x,  y )  (7) we have 

arctan P .  U = re, = - arctan - = x- 
x2  + y2 Y 1 + P 2  

Y X P 
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[13] C. Samson, “Velocity and torque feedback control of a nonholo- 

nomic cart,” in Advanced Robot Controh Proc. Int. Workshop on 
Nonlinear and Adaptine Contr.: Issues in Robotics, Grenoble, Nov. 
21-23, 1990, vol. 162, C. Canudas de Wit, Ed. New York 
Springer-Verlag, 1991, 

[14] H. Elmqvist, K. J. Astrom, T. Schonthal, and B. Wittenmark, 
“SIMNON user’s guide for MS-DOS computers,” version 3.0, 
SSPA Systems, Goteborg, Sweden, Jan. 1990. 

A Simplified Approach to Bode’s Theorem for 
Continuous-Time and Discrete-Time Systems 

Bing-Fei Wu and Edmond A. Jonckheere 

From the definition of b, (15) we get Absbact-This note presents a simplified approach to Bode’s theorem 
for both continuous-time and discrete-time systems, along with some 
generalization. For continuous-time systems, the constraints of open-loop 
stability and roll-off at s = m are removed. A counterexample shows 
that, when the excess poles /zeros vanishes, the Bode integral drops 
from infinite to finite value when the open-loop gain crosses a critical 
value. A revised result is also developed in this note. The salient feature 
of this approach is that at no stage do we invoke either Cauchy’s 
theorem or the Poisson integral; the simplified proof relies only on 
elementary analysis. This approach carries over to the discrete-time case 
in a straightforward manner. 

(1 + P 2 ) x  2 i  p - sin 0 
2 P  

Ib,al = I COS e i (1  + P %  
1+p2 

P 
‘X- arctan PI 

arctan P 
Ib,ul = 12cos e arctan p - 2 sin e- I 

P 
Ib,ul I T ~ O S  61 + 2lsin 81 I ?r + 2 = N .  0 I. INTRODUCTION 
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Bode’s theorem [2, p. 2851 states that for an open-look stable 
transfer function with the difference between degrees of numer- 
ator and denominator at least 2, the integral over all frequencies 
of the natural log of the magnitude of the sensitivity function 
In IS( jo) l  vanishes. This result reveals that it is not, in general, 
possible to decrease IS( jo) l  below the threshold value of 1 over 
all frequencies. Freudenberg and Looze [4] extended Bode’s 
theorem to unstable open-loop systems. They showed that the 
integral of the log of the magnitude of the sensitivity function is 
proportional to the sum of the unstable open-loop poles. Kwak- 
ernaak and Sivan [8, pp. 440-4411 pointed out that if the 
open-loop system is asymptotically stable, then this integral 
could be zero, finite, or infinite, depending on the degree dif- 
ference between numerator and denominator of the open-loop 
transfer function. 

The main result of this note is a simplified derivation of two 
new Bode’s theorems. One is called revised generalized Bode’s 
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