
Physical simulation for monocular 3D model based tracking

Damien Jade Duff, Student Member, IEEE, Thomas Mörwald, Rustam Stolkin and Jeremy Wyatt

Abstract— The problem of model-based object tracking in
three dimensions is addressed. Most previous work on tracking
assumes simple motion models, and consequently tracking
typically fails in a variety of situations. Our insight is that
incorporating physics models of object behaviour improves
tracking performance in these cases. In particular it allows us
to handle tracking in the face of rigid body interactions where
there is also occlusion and fast object motion. We show how to
incorporate rigid body physics simulation into a particle filter.
We present two methods for this based on pose and force noise.
The improvements are tested on four videos of a robot pushing
an object, and results indicate that our approach performs
considerably better than a plain particle filter tracker, with the
force noise method producing the best results over the range
of test videos.

I. INTRODUCTION

Model-based tracking of pose is one of the most widely

addressed computer vision problems, with a particular im-

portance in contemporary cognitive robotics. Model-based

tracking typically fails, though, in a number of key situations

that are frequently encountered. These include failure due

to occlusion, or rapid target motion, which in turn causes

motion blur and is challenging for local search methods.

At this point the tracking often falls back on the dynamics

model, the component that specifies how the object can move

through space. Yet in most tracking methods the dynamics

model is simple and often wrong. One way to improve it is

to use a physics informed dynamics model. This is what we

do in this paper.

The main contribution of this paper is that we show how

to incorporate a dynamics model based on physical simu-

lation into an existing recursive monocular 3D model-based

particle-filter based tracker. We make the specific prediction

that by doing this we will improve the performance of the

tracker in situations where image information is insufficient

to disambiguate object motion using existing methods alone

(particularly when occlusion and motion occur).

Such improvements will have a positive impact in sce-

narios involving robotic manipulation of objects as well

as human-robot interaction where objects are frequently

obscured from view or knocked about. More broadly, we

see computer vision as potentially bound up with many other

problems in robotics, such as motion planning, which often

are addressed using simulation-based approaches too.

D.J.Duff, J.Wyatt & R.Stolkin are at the School of Computer Science,
University of Birmingham, B15 2TT, Birmingham, United Kingdom

T.Mörwald is at the Institute of Automation and Control, Vienna Univer-
sity of Technology, Gusshausstrasse 27-29 / E376 1040 Vienna, Austria

Emails: {D.J.Duff,J.L.Wyatt,R.Stolkin}@cs.bham.ac.uk,
moerwald@acin.tuwien.ac.at

Fig. 1. Top left: A view of the textured model tracked in experiments.
Top right: A view of the edge image extracted from a candidate image.
Bottom left: A projection of the edges of the textured model onto the image
(obtained by first projecting the texture from a key pose, extracting edges,
projecting the result onto the model surface and then reprojecting the edges
onto the image). Bottom right: A reconstruction of the pose of the object
with respect to the camera.

After reviewing related work, we briefly describe the

initial tracking framework that we build apon, as well as the

fundamentals of physical simulation. We show two ways to

incorporate a physics model into the particle filter. Lastly, we

present results detailing the differential performance of the

basic tracker and these different approaches to incorporating

physical simulation into that tracking framework.

Related work.: There has been some work on using

dynamics models of people while tracking them [1], [2]; it re-

mains unclear however as to whether the physical models can

provide an improvement over the use of motion capture data

alone; the scenario considered in the present paper allows

us to start investigating improvements with a probabilistic

dynamics based only on a standard rigid physical model.

Using physical models of deformable objects has also been

demonstrated from motion capture data [3] and as a way of

dealing with noise while tracking rigid objects [4]. In the area

of motion synthesis, related techniques may be found [5][6]

but these techniques need adapting to make them robust when

input poses are substituted for image data, which is what is

being described in this paper.

Finally, physics models have been used in two-

dimensional motion estimation of moving and colliding

objects [7]. In the present paper we consider real-time object

tracking in 3D.

II. OVERVIEW OF APPROACH

The model based object tracker extended in the present

paper is described more fully in [8], [9]1. The object tracker

is provided with a three dimensional object model. It uses

geometric edges to maintain initial track on the object

while it recovers the textures on surfaces of the object.

Consequently it is able to track both geometry edges and

texture edges. Fig. 1 shows a three dimensional object model

and illustrates how texture edges are projected to an image

for matching.

A particle filter framework is employed to recursively

sample candidate poses over time, which are accepted or

rejected probabilistically depending on an edge match score.

The edge matching process is accelerated using a GPU

programmed using OpenGL Shader Language.

In this paper we alter the probabilistic dynamics model

used by the particle filter by running candidate poses through

the physics simulator. We add noise to this process in one

of two ways - either by perturbing the pose after simulation,

or by introducing probabilistic forces into the simulation.

III. TEXTURE TRACKING FRAMEWORK

A. Model

In this paper, we are not concerned with the texture

recovery phase, rather the consequent object tracking phase.

As such we make use of a previously acquired textured object

model as seen in Fig. 1. The model consists of a quad- and

tri-mesh with texture stored as raster images.

B. Particle filtering

Particle filtering is sequential or recursive importance

sampling of the probability distribution that governs the

probability of an object state xti at a time ti given all

preceding observations of the object zt0:ti .

The form of that probability distribution is well known in

the context of recursive estimation. We state it here and then

describe it briefly:

p(xti |zt0:i) =
p(zti |xti)

p(zti)
p(xti |zt0:i−1

) (1)

=
p(zti |xti)

p(zti)

∫ ti

t0

p(xti |xti−1
, t∆)p(xti−1

|zt0:i−1
)dxti−1

This form separates the observation likelihood model from

the model for the evolution of state by assuming that the

current state depends on all previous states and observations

only through the previous state and that the current observa-

tions depend on all states and observations only through the

current one.

This allows us to express the probability of any current

pose in terms of the previous pose estimate p(xti−1
|zt0:t−1

),
the state evolution (or “dynamics”) model p(xti |xti−1

, t∆)
and likelihood of the current image p(zti |xti). Note that

in this paper we make the unusual step of allowing the

dynamics model to depend on the time elapsed between

timesteps t∆ = ti − ti−1, which allows us to use the same

1See also http://cogx.eu/data/cogx/publications/moerwald2009edge.pdf

notation as when discussing simulation, and to define extra

recursions.

We maintain an imperfect representation of the above dis-

tribution as a set of weighted hypothesis “particles” 〈xj , wj〉:

p(xti |zt0:i) ≈
∑

〈xj
ti
,w

j
ti
〉

w
j
ti
· δ(x− x

j
ti
) (2)

We use importance sampling to calculate the succeeding

probability distribution after time has passed and new ob-

servations have been made. In effect, importance sampling

allows us to approximate any probability distribution p(x)
by sampling from a different probability distribution (the

proposal distribution) and weighting the resulting samples.

Much of the time, analogous to Kalman filtering, the proposal

distribution is the prior over xti as calculated from the

previous distribution over pose (the second part of equation 1

above), via the probabilistic dynamics model. This is the case

in the particle filter employed in the present paper. Samples

are consequently weighting by the image likelihood (the first

part of equation 1 above).

Subsequently, resampling is performed to make all the

weights equal by sampling a number of particles proportional

to their weight. For each particle we use its weight to

calculate its number of successors N j (where Jb is the target

number of particles):

N j =
wj

∑

k w
k
Jb (3)

The union of the successor particles from the current distri-

bution make up the resampled distribution. The algorithm in

outline is therefore:

1. Resample {〈x0, w0〉...〈xJa , wJa〉} → {〈x0, 1〉...〈xJb , 1〉}.

2. Sample from dynamics x
j
ti
∼ p(xti |x

j
ti−1

, t∆).

3. Reweight by likelihood wj = p(zti |x
j
ti
).

4. If processing time remins, set t∆ = 0 and go to step 1.

Step 4 has been called recursive particle filtering [8] and

is a heuristic feature of the tracker that we are making use

of and enables the tracker to spend more time evaluating

potential hypotheses if time is available.

The dynamics model used in the current tracker is the

simplest possible, assuming a Gaussian distribution around

the previous pose, where the variance Σ is provided (and for

our purposes is a diagonal covariance matrix):

p1(xti |xti−1
, t∆) = N (xti−1

,Σ) (4)

Note that sampling from a Gaussian in rotation space is not

defined, since it is not a Euclidean space, but we take the

ad-hoc step of sampling the vector of the unit quaternion

representation of a rotation and renormalising.

More details about particle filtering can be found in [10],

[11], [12], [13].

C. Edge likelihood calculation & GPU acceleration

Details of the likelihood calculation can be found in [8],

[9]. In short, the number of matching edge pixels is counted

with respect to the predicted and actual number of edge

pixels in the image frame. See Fig. 1 for a broad illustration.

In order to do this calculation efficiently, GPU acceleration

is used to project texture edges into image space. But even

so, for efficiency’s sake a single key pose is chosen as a

heuristic average of the particles with highest likelihood,

from which the texture is projected and edges calculated.

These edges are then reprojected onto the object surface (this

step is needed to prevent thinning of edges) before the edge

pixels are reprojected back into the image. This means that

match calculations for hypotheses away from this key pose

tend to be less accurate - encouraging the tracked distribution

to become unimodal.

The number of recursions of the particle filter between

time steps (which coincide with the reception of new image

frames) although in theory a variable parameter, is in practice

fixed in advance for experiments. In typical application, for

stability it is fixed at 2, but in this work we vary it because

different numbers of recursions work better with different

dynamics models.

D. Multiple dynamics models I: Likelihood-rank selection

As mentioned previously, although the motivation for par-

ticle filters is probabilistic, in practice they employ imperfect

representations (samples) of uncertainty in the true pose.

One consequence of this is that good hypotheses, once

found, may be lost when passed through the dynamics model

probability distribution due to scattering - leading to jitter and

tracking instability. The problem is amplified if the likelihood

distribution is very peaky. The solution employed in the

tracking framework we use is to keep back some particles

from step to step based on the ranking rj of their likelihood

weights with respect to the size of the full distribution J

(with a parameter R to determine the cutoff rank). Further,

if more than one instance of a particle was created during

resampling, only one instance is kept back.

The way that we model this is as a distribution incorpo-

rating multiple probabilistic dynamics models - the Gaussian

dispersion model already mentioned in equation 4 and the

Dirac delta distribution δ():

p0(xti |xti−1
, t∆) = δ(xti−1

) (5)

The actual probability distribution used is a kind of combi-

nation of these two, which distribution being used depending

on the rank and resampling status of the particle in question:

pj(xti |xti−1
, t∆) =

{

p0(xti |xti−1
, t∆) if rj < R, 1st sample

p1(xti |xti−1
, t∆) otherwise

(6)

As such, the nature of the combination is procedural rather

than probabilistic, but it was found to work in practice in the

original tracking framework.

IV. INTEGRATION OF PHYSICAL SIMULATION

A. Physical simulation

The existing textured object model, by adding a mass and

density, as well as friction and restitution coefficients, can

become a dynamic rigid body that can be simulated in any

off-the-shelf physics simulator: in the case of the present

paper, PhysX [14]. We also include a ground plane in the

simulation. Physics simulators, given a starting state of the

physical system xti−1
and an elapsed time t∆ provide the

state of a physical system after that elapsed time xti .

The way that these simulators work, in principle, is

by specifying the physical system as a set of differential

equations:
d

dt
xt = F (t, xt, u) (7)

And solving for xt. Since in general we have no closed form,

we numerically integrate the above equation to produce a

“simulation function”:

xti = S(xti−1
, t∆, u) = xti−1

+

∫ t∆

0

F (s, xs, u)ds (8)

(u here represents any specified external forces acting on the

system).

In practice, however, physical simulation is much more

procedural. We need work to adapt the above method to solve

through collisions since the required timestep would need to

be exceedingly small to maintain stability (since even if it

were continuous, the function F must change very rapidly

with respect to xs between, for instance, states where colli-

sions occur or do not occur). As such in practice a mixture of

methods is often used. For instance, something like the above

method can be used to solve for free-flight and constrained

motion but collision detection and resolution routines to

deal with discrete world events involving new collisions

[15]. Indeed, constraints and collision detection/resolution

are often used interchangeabely for parts of the simulation,

but with different properties. However, we may still treat the

procedures as a black-box simulation function S .

B. Noise models

1) Simulation with pose noise: The most straightforward

way of incorporating a physical simulator into our proba-

bilistic sampling tracker is to use it to extend the dispersion

model. This method of sampling from the dynamics model

takes a previous pose hypothesis, puts it through the physical

simulator, and then adds Gaussian noise to its location:

p2(xti |xti−1
, t∆) = N (S(xti−1

, t∆, 0),Σ) (9)

It is important to note that our x contains only a 6-

dimensional representation of pose. Particles do not carry

an estimate of velocity with them. It would be possible to

add velocity to the state vector x, or to estimate it anew

for each particle. However, we treat the velocity as 0 at the

start of each run of the simulator (as a minimal iteration

on the existing method and to reduce the dimensionality of

the filter). This restricts the range of things that we can

model well (moving or bouncing objects, as found in [7],

are less likely to see success). However, the simulator is still

able to model stable, almost stable, or multistable physical

interactions. Indeed, the dynamics model tends to strongly

prefer transitions into lower energy states (for instance, a

transition from a box lying on its end to a box lying on its

side) since the Gaussian noise acts to perturb the physical

system while the dynamics acts to find the lower energy state.

2) Simulation with force noise: A different approach to

sampling is to randomize the input into the simulator rather

than the output. In our case, we perform sampling of an

external force acting on the object. We sample these forces by

uniformly sampling points on the surface of the object model,

Msurf , and creating a force applied at that point whose

direction and magnitude is acquired by sampling uniformly

from within the bounds of an ellipsoid AΣ.

p3(xti |xti−1
, t∆) = S(xti−1

, t∆, ui) (10)

ui =
−−−−−−−−−−−−−−−→
(uhead

i + utail
i)(uhead

i) (11)

utail
i ∼ U(Msurf), u

head
i ∼ U(AΣ) (12)

This approach has both the advantage and disadvantage of

allowing only feasible successor states to be sampled. By

sampling more inputs into the model and freeing up more

simulation parameters, any state is conceivably achievable. In

the present paper, since only forces are sampled, however,

behaviours such as rotating through the ground plane are

unachievable. Moreover, the effect of sampling transitions

only between stable states mentioned above is exaggerated

since physically impossible behaviour produces more ways

of transitioning between stable states.

3) Multiple dynamics models II: Mixture model: In order

to provide a probabilistically better grounded and more

general approach to combining dynamics models than the

likelihood-rank selection approach described above, we in-

troduce a mixture model approach to combining dynamics

models, of which we now have at least four to choose

from (No noise p0, Gaussian dispersion p1, Simulation with

Gaussian dispersion p2, force noise p3):

pM (xti |xti−1
, t∆) =

∑

k

πkpk(xti |xti−1
, t∆) (13)

Practically speaking this means that, while sampling, for each

particle a sub-model is chosen probabilistically according to

the mixture parameters πk. Likelihood-rank selection and

mixture approaches can also be combined, by assigning a

precedence to each sub-model and checking for them in order

of precedence.

V. EXPERIMENTAL SETUP

In order to test the above-described changes and compare

them to the pre-existing framework (which we consider to

be amongst the state of the art in object trackers), we ran the

various algorithms on 4 videos of an object being pushed by

a robotic finger, each about 10 seconds long at 30fps. We

analyse interesting time-slices in the tracking, particularly

those normally associated with loss of track in the pre-

existing framework. For example time-slices from the four

videos, see Figs. 2, 3, 4 and 5.

Three conditions without physics and seven conditions

with are presented here. The default tracking behaviour is

found in condition A, where Gaussian dispersion is used

and likelihood rank selection is performed to propogate

particles without noise, with a rank selection parameter

R = 0.25. Condition B is identical except that particles are

propogated without noise with a probability of 0.1 (i.e. the

mixture approach). Condition C has all particles undergoing

Gaussian noise with none kept back. The remaining condi-

tions involve simulation. Condition D uses simulation with

Gaussian dispersion, and likelihood-rank selection to keep

back particles without simulating or adding noise. Condition

E uses a mixture approach to keep back particles, while F

has no retention. Condition G is the force noise approach

with likelihood-rank selection for retaining particles without

noise. Condition H uses the mixture approach to propagate

particles without noise and I has no retention. Finally, condi-

tion J is a mixture of Gaussian dispersion noise, simulation

with Gaussian dispersion noise, and simulation with force

noise (π = 0.33 for each of these models), with likelihood-

rank selection retaining particles without adding noise with

a higher precedence.

The number of particles was set to the default of 100, Σ for

the translation component of pose was diag(0.04, 0.04, 0.04)
and for the rotation component was diag(40, 40, 40), the de-

faults for the tracker. During Gaussian dispersion, additional

dispersion is performed in the camera’s z-axis with a Σz of

0.06, since this dimension is the most ambiguous visually.

Image matching parameters were set to the default.

Experiments showed that the control conditions (using

Gaussian dispersion of particles) obtained better results when

the number of recursions is 2. For the novel simulation with

Gaussian noise method, one recursion sometimes produced

more accurate results, and subsequent recursions can only

reduce performance for the force-noise approach since sub-

sequent recursions do not invoke the simulation necessary to

observe move the particles. As such, we present the results

coming from using 2 recursions for conditions A-F, and one

recursion for the force-noise conditions G-J.

In order to evaluate the resulting videos numerically we

cannot simply count the number of successful tracks because

the choice is often a subjective one since a track can be

on a continuum anywhere from less to more successful. In

the absence of ground-truth there is no point attempting to

evaluate the values produced by the pose directly. Instead,

we opt to “label” videos by producing by hand a track

that matches the image and then evaluating tracker output

by calculating the distance between the vertices projected

onto the image by labeled poses and the vertices projected

by a candidate track. Since the tracker is probabilistic, its

behaviour is nondeterministic so we illustrate the distribution

of peformance over 40 trials in Fig. 6.

VI. RESULTS

A. Distracting edges, occlusion

In video 1, Fig. 2, the target object is pushed away from

the camera by a robot finger while a coloured occluding

Fig. 2. Video 1, phases 1.1,1.2 and 1.3 from top to bottom. Left: Gaussian perturbation, likelihood-rank retention, 2 recursions (condition A). Middle:
Simulation with Gaussian perturbation, likelihood-rank retention, 2 recursions (condition D). Right: Simulation with force noise, likelihood-rank retention,
1 recursion (condition G).

Fig. 3. Video 2, phases 2.1,2.2, 2.3 and 2.4 from top to bottom. Left: Gaussian perturbation, likelihood-rank retention, 2 recursions (condition C). Middle:
Simulation with Gaussian perturbation, likelihood-rank retention, 2 recursions (condition D). Right: Simulation with force noise, likelihood-rank retention,
2 recursions (condition G).

Fig. 4. Video 3, phases 3.1 and 3.2 from top to bottom. Left: Gaussian perturbation, likelihood-rank retention, 2 recursions (condition A). Middle:
Simulation with Gaussian perturbation, likelihood-rank retention, 2 recursions (condition D). Right: Simulation with force noise, likelihood-rank retention,
1 recursion (condition G).

Fig. 5. Video 4, phases 4.1,4.2 and 4.3 from top to bottom. Left: Gaussian perturbation, likelihood-rank retention, 2 recursions (condition A). Middle:
Simulation with Gaussian perturbation, likelihood-rank retention, 2 recursions (condition D). Right: Simulation with force noise, likelihood-rank retention,
1 recursion (condition G).

object (providing a very strong distracting edge) is passed in

front of it. We can see that allowing only feasible motions

to occur by using the force noise model prevents the track

from passing to other nearby edges, which is possible since

in this tracker occlusions are not considered explicitly. This

effect is also observed in the numerical results seen in Fig.

6, chart 1.2. However, allowing the simulator to be followed

by Gaussian perturbation results in physically inconsistent

motions being hypothesised and track subsequently locking

onto higher likelihood distractors. Thus, the simulation with

Gaussian noise condition is not much better than without

simulation in this case.

Furthermore, the numerical results show that the Gaussian

noise typically allows the tracker to recover track (1.3) on

this object after the occluder is removed, with the retention

scheme having a complex effect. But the effect of recovery

of track after it is lost is not robust, and, clearly, considering

the success of the force-noise condition, maintaining the

correct hypothesis throughout the tracking period leads to

better behaviour here.

B. Occlusion, tipping

Video 2, Fig. 3, shows a hand occluding the target object

(2.1), followed by the object being tipped away from the

camera (2.2), being pushed over (2.3) and later resting (2.4).

Again, force noise allows track to be maintained through the

occlusion. Simulation with dispersion noise also does slightly

better than the basic dispersion noise across all retention

conditions. However, after the occlusion, simulation with

Gaussian noise occasionally does not recover.

0

50

100

150

200

-2

-2

-2

-2

-2

-2

-1

-1

-1

-1

A
v

g
 P

ix
e

l
D

is
t Video 1.1 Initial Push

0

50

100

150

200

-2

-2

-2

-2

-2

-2

-1

-1

-1

-1

A
v

g
 P

ix
e

l
D

is
t Video 2.1 Hand Occlusion

0

50

100

150

200

-2

-2

-2

-2

-2

-2

-1

-1

-1

-1

A
v

g
 P

ix
e

l
D

is
t Video 1.2 Colour Occlusion

0

50

100

150

200

-2

-2

-2

-2

-2

-2

-1

-1

-1

-1

A
v

g
 P

ix
e

l
D

is
t Video 2.2 After Occlusion

0

50

100

150

200

-2

-2

-2

-2

-2

-2

-1

-1

-1

-1

A
v

g
 P

ix
e

l
D

is
t Video 1.3 After Occlusion

0

50

100

150

200

-2

-2

-2

-2

-2

-2

-1

-1

-1

-1

A
v

g
 P

ix
e

l
D

is
t Video 2.3 Tipped

0

50

100

150

200

-2

-2

-2

-2

-2

-2

-1

-1

-1

-1

A
v

g
 P

ix
e

l
D

is
t Video 4.1 Tipping

0

50

100

150

200

-2

-2

-2

-2

-2

-2

-1

-1

-1

-1

A
v

g
 P

ix
e

l
D

is
t Video 2.4 Resting

0

50

100

150

200

-2

-2

-2

-2

-2

-2

-1

-1

-1

-1

A
v

g
 P

ix
e

l
D

is
t Video 4.2 Tipped

0

50

100

150

200

-2

-2

-2

-2

-2

-2

-1

-1

-1

-1

A
v

g
 P

ix
e

l
D

is
t Video 3.1 Bottle Occlusion

0
50

100
150
200

A
:

O
/R

-2

B
:

O
/M

-2

C
:

O
-2

D
:

D
/R

-2

E
:

D
/M

-2

F
:

D
-2

G
:

F
/R

-1

H
:

F
/M

-1

I:
 F

-1

J:
 M

O
D

F
/R

-1

A
v

g
 P

ix
e

l
D

is
t

Algorithm Condition

Video 4.3 Resting

0
50

100
150
200

A
:

O
/R

-2

B
:

O
/M

-2

C
:

O
-2

D
:

D
/R

-2

E
:

D
/M

-2

F
:

D
-2

G
:

F
/R

-1

H
:

F
/M

-1

I:
 F

-1

J:
 M

O
D

F
/R

-1

A
v

g
 P

ix
e

l
D

is
t

Algorithm Condition

Video 3.2 Occluded Tip

Fig. 6. Numerical results. For each of 10 treatments, including 3 control
conditions, accuracy of track in image frame with respect to hand-labeled
poses for 12 time points from 4 videos, shown using box-whisker plots
(plotting 0th, 25th, 50th, 75th and 100th percentiles). Conditions are, from
left to right: A (O/R-2): Constant pose Gaussian dispersion with rank-
based retention of poses, 2 recursions. B (O/M-2): The same with mixture
model retention. C (O-2): The same, no retention. D (D/R-2): Simulation
+ Gaussian dispersion with rank-based retention of poses, 2 recursions.
E (D/M-2): The same, mixture model retention. F (D-2): The same, no
retention. G (F/R-1): Simulation with force noise, rank-based retention. H

(F/M-1): The same, mixture model retention. I (F-1): The same, no retention.
J (MODF/R-2): Mixture of all three dynamics models with rank retention, 2
recursions. Accuracy is expressed as average of Euclidean distance between
labeled and estimated vertices in image plane (unit: pixels), averaged over
40 trials.

It is also found that the use of one particle filter recursion

rather than two often tracks better through occlusions for

the simulation with Gaussian dispersion noise conditions

(results not shown here), but this effect is often canceled by

a reduction in effectiveness when the object is visible due to

the inability of the filter to sample the likelihood distribution

as well.

With respect to the subsequent tipping of the object, there

is a small interaction between retention scheme and dynamics

model in the Gaussian noise conditions (with and without

simulation). However, not losing track at all, as with the

force noise condition, leads to the best behaviour.

C. Occluded tipping

In video 3, Fig. 4, the robot finger pushes the target

behind a bottle (3.1) and tips it over while it is occluded

there (3.2). Again, physics simulation based approaches do

better at maintaining track under occlusion with force-noise

methods doing best. The tipping is exceedingly difficult to

track for conventional methods because of the combination

of occlusion and fast movement. However, the force-noise

condition is able to track it. The tracker does not actually

lock on to the tipped object, however, but some nearby edges

on the occluder; it’s success is down to, first, the ability of

the tracker to track the mostly occluded object starting to tip,

and its subsequent tendency to sample physically plausible

movements.

D. Tipping

Finally, in video 4, Fig. 5 the robot finger tips (4.1) the

target over (4.2). We also investigate the behaviour of the

tracker after the object has stayed at rest for six seconds

(4.3).

We can see here, that immediately after the tip, simulation-

based methods again perform better, and the force noise

methods consistently so. The techniques that don’t use a

physics model are sometimes not able to track this transition

but after sampling for several seconds are able to recover

track (4.3).

The better performance of both simulation conditions un-

der tipping is attributed to more directed sampling increasing

the probability of finding the new mode in the observation

likelihood when the object and consequently likelihood mode

moves very fast. Since the robot finger is not modeled, the

success of this effect does depend on the tracker being able to

maintain an unstable pose (i.e. with the object only slightly

tipped), since, if only stable poses are tracked, the sampler

may never be able to jump over the intervening space of

unstable poses into the correct neighbouring stable pose. It

is thought that the rank-retention heuristic contributes to this

stability, but in any case the noise models used are here

demonstrated to track unstable poses. However, much more

unstable poses than those explored in these experiments are

possible in practice. For example, if an object is lifted by

an modeled human hand, it might appear to the simulator to

“float” and so tracking it would require the sampler sampling

the necessary forces or displacements to keep it floating.

A further difficulty that the use of physical dynamics

overcomes in this scenario is that poses away from the pre-

vious best pose have a tendency towards a lower observation

likelihood because the edge matching algorithm obtains edge

surfaces from texture surfaces by reprojecting via that pose.

E. Mixture of dynamics models

The mixture approach (condition J, numerical results in

fig. 6), unexpectedly, seems to perform somewhere between

all of the other methods across all videos. It is important

to remember that the number of recursions of the particle

filter in this condition is only one, so that distractors already

have a weaker effect. However, even with 2 recursions,

this observation remains, on the whole, true. While the

success of the physics-based methods is often dependent

on the exclusion of physically implausible states, like the

simulation with Gaussian noise, the mixture model does

sample physically unlikely states; it is merely less likely to.

Beyond this analysis, the effect of different particle reten-

tion systems is smaller than the effect of different dynamics

models. Indeed, on the particular videos in these experiments

there is no clear winner amongst retention methods.

VII. SUMMARY AND FUTURE WORK

A. Summary

As hypothesised, improvement is possible in tracking

behaviour under occlusion and fast object movement by

incorporating simulation into the dynamics sampling process.

By restricting dynamics sampling to physically plausible

dynamics (force noise conditions) we eliminate false track

under occlusion and fast movement, but predict that it will

be difficult to track anything that can’t be simulated in our

closed-world model. Conversely, using physics only to guide

sampling allows us to track fast movement better, but remains

susceptible to distractors.

B. Future Work

More importantly, this method needs to be tested on a

wider variety of scenarios, particularly those that violate

the assumptions made here. There are three routes that

may be taken to mature this approach and deal with more

scenarios so that the benefits of including simulation are not

mutually exclusive between either tracking under occlusion

or robustness to physical model failure.

1) More realistic handling of simulation: In the first route,

the force noise used is incorporated in a way such that each

candidate simulation can experience the kind of forces that

they may occur in every-day interaction - such as stable

or stabilising forces, indeed intentional forces too - rather

than the perturbing forces currently used. This route would

expand the range of applicability of the more strict simulation

style, while still relying on the accuracy of the simulation

model. It would not require vast changes and can work well

in controlled conditions.

In robotic manipulation scenarios, there is accurate propri-

oceptive and intentional information regarding the location

of manipulators, which would come in useful during the

tipping scenario above, for instance. Experiments currently

in progress suggest that incorporating efferent information

about the finger location produces a small improvement

in the cases considered here, but not comparable to the

improvement obtained by using force noise. Propagating the

velocity may lead to improvements in some scenarios.

2) Change to sampling strategy: In the second route, we

would instead handle multiple dynamics models better by

allowing the tracker to sample physically implausible dy-

namics, either by reconstructing trajectories retrospectively

in light of the different models, or structuring the filter to

maintain different discrete hypotheses better.

With respect to multiple hypothesis maintenance, there are

many existing methods for explicitly maintaining multiple

hypotheses and targeting sampling (e.g. [16]). With respect

to retrospective trajectory reconstruction, it is possible to

calculate both physical and observational feasibility scores

for potential trajectories from a range of previous timepoints

using efficient sampling techniques, similar to the motion

estimation problem [7].

3) Learning: An alternative approach is to do away

with the fragile simulator and use learning to find a better

dynamics model [9]. However, learning does still tend to

produce fragile models and the same issues addressed in

the current paper need to be dealt with, in particular the

problems of generalisation and robustness. Contemporary

machine learning techniques are by themselves unfortunately

not yet capable of the degree of generalisation necessary to

deal with the same range of situations as human-designed

simulators, but that is the aim.

VIII. ACKNOWLEDGMENTS

We gratefully acknowledge the material support of the EU

FP6 IST Cognitive Systems Integrated Project (CoSy), FP6-

004250-IP, the EU FP7 IST Project CogX FP7-IST215181,

University of Birmingham School of Computer Science and

the UK Overseas Research Students Awards Scheme.

REFERENCES

[1] C. Wren and A. Pentland, “Dynamic models of human motion,” in
Proc. IEEE International Conference on Automatic Face and Gesture

Recognition (FG), Nara, Japan, 1998, pp. 22–27.
[2] M. Vondrak, L. Sigal, and O. C. Jenkins, “Physical simulation for

probabilistic motion tracking,” in Proc. IEEE Computer Society Conf.

on Computer Vision and Pattern Recognition (CVPR). Los Alamitos,
CA, USA: IEEE Computer Society, 2008, pp. 1–8.

[3] D. Metaxas and D. Terzopoulos, “Shape and nonrigid motion esti-
mation through physics-based synthesis,” IEEE Trans. Pattern Anal.

Machine Intell. (PAMI), vol. 15, no. 6, pp. 580–591, 1993.
[4] M. Chan, D. Metaxas, and S. Dickinson, “Physics-Based tracking of

3D objects in 2D image sequences,” in Proc. International Conference

on Pattern Recognition (CVPR), Seattle, 1994, pp. 432–436.
[5] J. Popovic, S. M. Seitz, M. Erdmann, Z. Popovic, and A. Witkin,

“Interactive manipulation of rigid body simulations,” in Proc. ACM

SIGGRAPH Annual Conference, New Orleans, 2000, pp. 209–218.
[6] K. S. Bhat, S. M. Seitz, J. Popovic, and P. K. Khosla, “Computing

the physical parameters of Rigid-Body motion from video,” in Proc.

European Conference on Computer Vision (ECCV) - LNCS, vol. 2350,
Copenhagen, 2002, pp. 551–565.

[7] D. J. Duff, J. Wyatt, and R. Stolkin, “Motion estimation using physical
simulation,” in Proc. IEEE International Conference on Robotics and

Automation (ICRA), Alaska, May 2010, pp. 1511–1517.
[8] T. Moerwald, M. Zillich, and M. Vincze, “Edge tracking of textured

objects with a recursive particle filter,” in International Conference on

Computer Graphics and Vision (GraphiCon), Moscow, Russia, Oct.
2009.

[9] T. Mörwald, M. Kopicki, R. Stolkin, J. Wyatt, S. Zurek, M. Zillich,
and M. Vincze, “Predicting the unobservable: Visual 3D tracking
with a probabilistic motion model,” in Proc. IEEE International

Conference on Robotics and Automation (ICRA), Shanghai, 2011, in
these proceedings.

[10] M. Isard and A. Blake, “CONDENSATION – conditional density
propagation for visual tracking,” International Journal of Computer

Vision, vol. 29, no. 1, pp. 5–28, 1998.
[11] K. Nummiaro, E. Koller-Meier, and L. V. Gool, “Object tracking with

an adaptive Color-Based particle filter,” in Proc. of the 24th DAGM

Symposium on Pattern Recognition - LNCS, vol. 2449, Zurich, 2002.
[12] S. Thrun, “Particle filters in robotics,” in Proc. Annual Conference on

Uncertainty in AI (UAI), Alberta, Canada, 2002.
[13] G. Klein and D. Murray, “Full-3d edge tracking with a particle lter,”

in Proc. 17th British Machine Vision Conference (BMVC), Edinburgh,
2006.

[14] “PhysX features,” May 2010. [Online]. Available: http:
//developer.nvidia.com/object/physxfeatures.html [Accessed: 2010-05-
07 12:13:05]

[15] A. Witkin and D. Baraff, “Physically based modeling: Siggraph
1997 course notes,” 1997. [Online]. Available: http://www.cs.cmu.
edu/∼baraff/sigcourse/ [Accessed: 2010-08-24 14:18:47]

[16] C. Chang, R. Ansari, and A. Khokhar, “Multiple object tracking with
kernel particle filter,” in Proceedings IEEE Conference on Computer

Vision and Pattern Recognition, San Diego, 2005.

