REAL-TIME OBSTACLE AVOIDANCE
FOR MANIPULATORS AND MOBILE ROBOTS

O. Khatib

Artificial Intelligence Laboratory
Stanford University, Stanferd, CA 94305

Abstarct

Thrs paper presents a unique rcal-time obstacle avoidance
approach for manipulators and mobile robots based on the
“artificial potential field” concept. In this approach, col-
liston avordance, traditionally considered a high level plan-
ning problem, can be ¢f fectively distributed between di f[ferent
tevels of control, allowing real-tivne robot operations in a com-
plex environment. We have applicd this obstacle avoidance
scheme to robot arm using a new approach to the general prob-
tem of real-time manipulator control. We reformulated the
manipulator control problem as direct control of manipulator
motion in operational space--the space in which the task is
originally described--rather than as control of the task’s cor-
responding joint space motion obtained only ofter geometric
and kincmatic trans formation. This method has been imple-
mented in the COSMOS system for a PUMA 560 robot. Using
visual sensing, real-time collision avoidance demonstrations
on moving obstacles have been per formed.

Introduction

In previous research, robot collision avoidance has been a com-
ponent of higher levels of control in hicrarchical robot control
systems. 1t has been treated as a planning problem, and rescarch
in this arca has focused on the development of collision-free path
planning algorithms %512 Phese algorithms aim at providing
the low level control with a path that will enable the robot to
accomplish ils assigned task free from any risk of collision.

I'rom Lhis perspective, the funclion of Tow level control is limited
to the execution ol clementary operations for which the paths
have been precisely specified. The robot’s interaction with its
environmenl is then paced by Lhe time-cycle ol high level con-
Lrol, which is generally several orders of magnilude slower than
the response time of a Lypical robot. This places limits on the
robol’s real-time capabilities for precise, fast, and highly inter-
active operations in a cublered and evolving environment. We
will show, however, thal it is possible Lo greally extend the Mune-
tion of tow level control and to carry out more complex opera-
tions by coupling environment sensing lcedback with the lowest
tevel of control.

[ncreasing the capability of low level control has been the im-
petus for the work on real-lime obstacle avoidance that we dis-
cuss here. Collision avoidance at the low level of coulrol is not
intended to replace high level functions or Lo solve planning
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problems. The purpose here is Lo make belter use of low level
control capabilities in performing real-time operations. AL this
tow level of conbrol, the degree or level of compelence? will
remain less than that of higher level control.

The operational space formulation is the basis {or the applica-
tion of the potential field approach Lo robol manipulators. This
formulation has its roots in the work on end-clfeclor motion con-
trol and obsiacle avoidanee®7 Lhal we implemented for an MA23
manipulator al the Laboraloire d’Automalique de Montpellier
in 1978, The operalional space approach has been formalized
by constructing its basic Lool, the cqualions of motion in the
aperalional space of the manipulator end-effector. Details of this
work have been published clsewhere®?; we will briefly review
Lhe fundamentals of the operational space lormulalion.

Operational Space Formulation

An operationael coordinate system is a sct z of my independent
parameters describing the manipulator end-cffector position and
orientation in a Irame ol reference Rp.
manipulater,

I'or a non-redundant
these parameters form a set of conliguration

. . . 9 i
parameters in a domain of the operational space” and constitutbe,
therefore, a system of generalized coordinales.  The kinetice
energy of the holonomic articulated mechanism is a quadratic
form of the generalized velocitics:

T (=, &) (1)

where A(z) designates Lhe symmetric malrix of the quadratic

1
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form, t.c. the kinelic energy malrix.  Using the Lagrangian
formalism, the end-cffector equations ol motion are given by:

‘{((’)2) al
dt dx dx

where the Lagrangian L{z, &) is:

o (2)

Iz, z) = T(x, &) — Ux); {3)
and U(z) represents the potential energy of Lhe gravity. Fis the
operationnl foree vector. These cqualions can be developed®?
and written in the form:

M=) + plz, 2) + plz) = F;

(1)

where p(z, &) represents the cenlrifugal and Coriolis forees, p(=)
the gravity forces.



Control of the manipulator in operational space is based on
the selection of F' as a command veclor. In order to produce
this command veclor, specific lorces I' must be applied with
joint-based actualors. The relationship between F' and the joint
forces T is given by:

r=JT(q) F; (5)

where g is the veetor of the n joint coordinates, and J(q) the
Jacobian malrix.

The decoupling of Lthe end-effector motion in operational space
is achicved by using the lollowing structure of control:

F = Ma)F" + plz, &) + p(=); (8)
where F represents Lhe command veetor of the decoupled end-
cffector which becomes equivalent lo a single untt mass.

The extension of the operational space approach to redundant
manipulator control is discussed in [8,9].

The Artificial Potential Field Approach

We present this method in the ¢ontext ol manipulator collision
avoidance. Its applicalion to mobile robots is straightforward.
The philosophy of the artificial poteniial ficld approach can be
schematically deseribed as follows.

The manipulator moves in a field of forces. The position to be
reached s an atbractive pole for the end-ef fector, and obstacles
are repulsive sur faces for the manipulator parts.

Lol us first consider the collision avoidance problem of a
manipulator end-cffector with a single obstacle O. ' 24 desig-
nabes the goal position, the control of the manipulator end-
effector with respeet to the obstacle O can be achieved by sub-
jeeting it Lo the artificial polential ficld:

Uare(2) = Uz () + Up(z). (7}

This leads 1o the following expression of Lhe potential energy in
the Lagrangian (3):

U(=) = Uars(x) + Ug(); (8)

where Ug(e) represents the gravily potential encrgy. Using
Lagrange's equations (2), and taking into account the end-
cffector dynamic decoupling (6), the command veetor F* of the
decoupled end-effector that corresponds to applying the artificial
potential field Ugys (7) can be written as:

F'=Fg, +Fy;

(9)

with:
F:fa = —grad[Ux(,(m)]; (10)
F, = —grad{Uos(x));

F;d is an attractive force allowing the point x= of the end-

effector to rcach the goal position g4, and F:) represents a
Force Inducing an Artificial Repulsion from the Surface of
the obstacle (FIRAS, from the French), crealed by the potential
field Up(=x). F;d corresponds Lo the proportional term, <.e.
—k(x — 24), in a conventional PD servo, where & is Lthe position
gain. The atlractive potential field Ug, (=) is simply:
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Vs, () = —;—k(m _ ). (14)
Up(z) is sclected such thatl the artificial potential field U,,4(z) is
a positive continuous and differentiable function which attains
its zero minimum when 2 = x4. The articulated mechanical
system subjected to Uare(z) is stable. Asymplotic stabilization
ol the system is achicved by adding dissipative forces propor-
tional to &. Let & be the velocily gain; the Torces contribuling
to the end-ellector motion and stabilization arc of the form:

*
— | 3 D
Fgp, = —k{x — x4) - €. (12)
This command vector is inadequale to control the manipulator
for tasks thal involve large end-effector motion loward o goal
position wilhoul path specificalion. For such a task, it is better
for the end-cffector to move in a sbraight line, with an upper

speed limit.

Rewriting equation {12) leads to Lhe lollowing expression, which
can be inlerpreted as specifing a desired velocily veetor in a pure
velocity servo-control.

&g = ——(:z:d - :z:).

3

Letl Vi, designate the assigned speed limit. The limitation of
the end-cllector velocity magnitude can then be oblained® by:

(13)

"

Fa, = (i — vied) (14)

where:

Vmaz
NS
With this scheme, shown in Fiqure 1, the velocity vector &
is controlled to be pointed Loward the goal position while its
magnilude is limiled to Viae. The end-effector will then travel
al that speed, in a straight line, except during the acecleration

and deceleration segments or when it is inside Lhe repulsive
potential field regions of influence,

v = min(l,

)- (15)

fIRAS

v N
max Decouples o »
x{%,) End- Effector >

Figure 1. End-effector Control for a Goal Position

FIRAS Function

The artificial potential field Up(x) should be designed to meet
the manipulator stability condition and to create at each point
on the obstacle’s surlace a potential barrier which becomes neg-
ligible beyond that surface. Specifically, Ug{z) should be a
non-negative continuous and differentiable function whose value
tends to infinily as Lhe end-effector approaches the obstacle’s
surface. In order Lo avoid undesirable perturbing lorces beyond
the obstacle’s vieinity, the influence of this potential field must
be limited to a given region surrounding Lhe obstacle.



Using analytic cquations f(z) = 0 lor obstacle description, the
first artificial poleatial field funciion we used” was based on the
values of the lunction f(=):

i J(z) < f(=o);
if f(=) > f(=0)-

The region of influence of Lhis polential ficld is bounded by the
surfaces f{@) = 0 and f{z) = f(=0), where =g is a given pointin
the vicinily of the obstacle and 7 a constant gain. This polential
funciion can be oblained very simply in real-time sinee it does
nob require any distance calenlations. Iowever, this polential is
diflicull, to use for asymmetric obstacles, where the separation

Lol ks — 7hs)?
Uo(x):{a’ Ay ~ Fma !l (16)
)

belween an obstacle’s surface and equipotential surfaces can
vary widely,

Using the shortest distance to an obstacle O, we have proposed?
the following arlificial potential fickd:

1_ _l__)‘é7

1
Uo(g;)z {gn(}‘ Po
1

where gy represents Lhe limil distance of the potential ficld
influcnee and p, the shorbest distance Lo the obstacle 0.

Any point of the robot can be subjecled to the artificial potential
field. A Point Subjected to the Potential is called & PSP. The
control of a PSP with respect to an obstacle O Is achieved using
the FIRAS function:

il p < po;

. 17
if p > po; ()

if g < po; (18)
il p > po;
where g% denotes the partial derivative vector of the distance

from the PSP to the obstacle:
dp _ 3p dp
Be ‘0z ay

3p .y

oz, (19)

dz

Observing (6) and (9), the joinl forces corresponding to F(O,psp)
arc obtained using the Jacobian malrix associated with this
PSP, These lorces are given by:

F(O:PSP) = '[Z'Sp(q)A(m)F)(kO,psp)' (20)

Obstacle Geometric Modelling

Obstacles arc described by the composition of primftives. A
typical geornetrie model base inc lud(‘s primitives such 4s a point,
line, plane, ellipsoid, parallelepiped, cone, and cylinder. The
first artificial potential licld (16) requires analylic cquations for
the deseriplion of obslacles. For primitives such as a paral-
lelepiped, finite eylinder, and cone, we have developed analytice
equalions representing envelopes which best approximate the
primitives’ shapes. The surface, termed an n-cllipsold, is rep-
resented by the equation:

G G O =1 (z0)

and tends to a paradielepiped of dimensions (n,b,e) as = tends
4, as

to infinity. A good approximalion is oblained with n
shown in Vigure 2.

A eylinder of elfiplical cross seetion {e,b) nnd of length 2¢ ean
be approximated by the so-called n-cylinder cquation:

(:;_1)2 + (%)2 + [5)2" = [. (22)
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The analylie deseription of primitives is nol necessary for
the artificial polential ficld (17), since the conlinuily and
dilferentiablity requirement is on the shortest distance to the
obstacle. The primitives above, and more rencrally all convex
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Figure 2. An n-cllipsoid with n=4

primitives, comply with this requircment.

Determining the orthogonal distance to an n-cllipsoid or to an
n-cylinder requires the solution of a complicated system of equa-
tjons. To avoid this costly compulation, a varialional procedure
for the distance cvaluation has been developed. The distance
cxpressions for other primitives are presented in Appendices {
through I

Robot Obstacle Avoidance

An obstacle O; is deseribed by a set of primitives {P,}. The
superposition property (additivily) of potential ficlds enables the
control of a given point of the manipulator with respeet to this
obstacle by using the sum of the relevant gradicents:

* *
Foopw = 2 Fp,pom
2

(23)

Control of Lhis poinl lor scveral obstacles is obtained using:
*
=3 Flopmmr (24)

Tt is also feasible to have different points on the manipulator
controlled with respect to different obstacles. The resulting joint
force vector is given by:

Fobstaclcs = Z Ipsp A(m)

(25)

psp;y°

Speeifying an adequate number of PSPs enables the probection
of all of the manipulator’s parls. An example of a dynamice
simulation for n redundant 4 dof manipulator operaling in the
planc? is shown in the display of Figure 3. The artilicial polen-
tial ficld approach can be extended Lo moving obstacles, since
stability of the mechanism persists with a conlinuously lime-
varying potential (ield.

The manipulator abstacle avoidanee preblem has been formu-
lated in berms of collision avoidance of links, rather Lhan



Figure 3. Displacernent of a 4 dof Manipulator
Inside an [nclosure

points. Link collision avoidance is achicved by continuously con-
trolling Lhe link’s closest poind to the obslacle. AL most, n PSPs
then have (o be considered. Additional links can be artificially
intoduced or the length of the last link can be extended to
aceount for the manipulator tool or load. In an articulated
chain, a Link can be represented as the line segment defined
by the Carlesian positions of its two ncighboring joints. In a
frame of reference 12, a point m(x,y, z) of the link bounded by
mi{z1,¥1,21) and ma(z1,¥1,21) is deseribed by the parametric
equations:

z = %1 + Mg — z});
¥y =y + Myz — 1) (26)
z =2z + Mz — ).

The problem of obtaining the link’s shortest distance to a paral-
lelepiped can be reduced to that of finding the link’s closest
point to a vertex, edge, or face. The analytic expressions of the
link’s closest point, the distance, and ils partial derivatives are
given in Appendix 1. In Appendices 1! and TII these expressions
are given for a cylinder and a cone, respectively.

Joint Limit Avoidance

The potential field approach can be used to satisfy the
manipulator internal joint constraints. Lel g, and §; be respec-
tively the minimal and maximal bounds of the 7** joint coor-
dinate ¢;. g; can be kept within these boundarics by creating
barriers of potential at cach of the hyperplanes (¢ = QJ‘) and
{¢: = 7;)- The corresponding joinl [orces are:

1 Ly X .
r, =M mEgler e S ey (21)
q, 0, if B.’ > &(0);
and:
Iy = {_"'(5'.7 - ﬁ)f;*{v if p; < Puoyi (28)
N 0, it P; > i

where p, . and gy represent the distance limit of the polential
ficld influence. The distances p. and p; are defined by:
-

CIE (29)

Level of Competence

The complexily of Lasks thal can be achieved with this collision
avoidance approach is limited. In a clutiered environment, tocal
minhna can occur in Lhe resubllant polential field.  This can
lead to a stable positioning of the rebol, before reaching its
goal. While local procedures can be designed Lo exil from such
cortfligurations, limitations for complex tasks will remain. This
is because the approach has a local perspeetive of the robot
environment.

Nevertheless, the resulling potential field does provide the global
information necessary, and a collision-free path, i attainable,
can be found by linking the absolute minima of the polential.
Linking these minima requires, however, a computationally ex-
pensive exploralion of the potential field. This goes beyond the
real-lime control we are concerned with here, but can be con-
sidered as an integrated part of higher level control. Work on
high level collision-free path planning based on the potential
field concept, has been investigated by C. Buckley®.

Real-Time Implementation

Finally, the global control system integrating the potential ficld
concept with the operational space approach has the following
structure:

T = r'motio'n + Fobstuclcs + F;'oint— limit) (30)
where Thnation ¢an be developed [Khatib 1983] in the form:
Tmotion = J T (@M @)F 2, + B(a)[ad) + Cla)[&®] - gla) (31)

the matrices i}(q) , f)’(q), and g(gq) of the Coriolis, centrifugal
and gravity forces have the dimensions » X n{n — 1)/2, » X n,
and n X 1, respectively. {¢4] and [¢%] are defined by:

(9q] = (4302 4103 - Gn1 @ul’s (32)

28] __ [28 52 T

l¢°) = lay @@l
In Lhis control structure, dynamic decoupling of the end-effector
is oblained using the end-cffector dynamic paramelers (1515D1)
Ma), 3(q), Clq) and g¢(q), which arc conliguration depen-
dent.  1n real time, these parameters can be compubed al a
lower rate than that of the servo control. In addition, the in-
tegration of an operational position and velocily esltimalor al-
lows a reduction in the rate of end-cffector position computa-
tion, which involves evaluations of Lhe manipulalor geometric
model. This leads Lo a two-level control system archilecture!9:
o a low rale paramcler conluation level: updaling the

BEDP, the dacobian matrix and the geometric model;

e a high rale servo condrol level: computing the command

veclor using the estimator and the updaled dynamie
parameters.

The conbrol system architeclure is shown in Figure 4 where np
represenls the number of PSPs. The Jacobian matrices JZ;,,,
have common factors with the end-effeclor Jacobian matrix JL.

Thus, their evaluation does nol require significanl addilional

Applications

An experimental manipulator programming system COSMOS
(Control in Operational Space of a Manipulator-with-Obstacles
System), has been designed at the Stanford Artificial Intelligence
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Figure 4. Operational Space Control System Architccture

Laboralory for implementalion of the operational space con-
trol approach for the Unimation PUMA 560 arms. For these
manipulators, the ability to control joint torque is considerably
restricted by the nonlincarities and friction inherent in their
joint actuator/transmission systems. Therefore, the centrifugal
and Coriolis lorces have been ignored in the PUMA cund-cffector
dynamic model.

The COSMOS system is implemented on a PDP 11/45 inter-
faced to a PUMA 560. The PDP 11/23 and VAL are discon-
nected, and only the joint microprocessors in the PUMA control-
ler are used for motor current control. The PUMA is cquipped
with a six degree of freedom force wrish that is interfaced to the
PDP 11/45 via an A/D converter. The PUMA is also interfaced
to a Machine Intelligence Corporalion vision module.

In the current COSMOS implementation, the rale of the servo
control level is 125 Tz while the parameler cvaluation level
runs al 40 11z, With the new multiprocessor implementation
(PDP 11/45 and PDP 11/60), COSMOS is expected Lo achieve
a dynamic and kinemalic updale rale of 100 Iz and a servo
control rate of 300 Iz,

We have demonstrated real-time end-ellector motions both free
and consbrained, wilth the COSMOS system. These include
conlacl, slide, insertion, and compliance operations, as well as
real-time collision avoidance with links and moving obstacles3.

Summary and Discussion

We have deseribed the formulation and the implementation of
a real-time obslacle avoidance approach based on the artilicial
polential field concept, using analylic primitives for obstacle
geomelric modelling.  in this approach, collision avoidance,

renerally Lreated as high level planning, has been demonstrated
y E"’ Y
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to be an elleclive componenl of low level real-time control.
[Further, we have briefly presented our operalional space for-
mulation of manipulalor control which provides the basis for
this obstacle avoidance approach, and have deseribed the two-
level architeclure designed Lo inerease the real-lime performance
of the control system.

The integration of this low level control approach with a high
level planning system seems Lo be one of the more promising
solutions to Lhe obslacle avoidance problem in robot control.
With this approach, the problem may be treated in two stages:

¢ al high level control, generating a global strategy for the
manipulator’s path in terms of intermediale goals (rather
than finding an accurate collision-free path);

o  at the low level, producing the appropriate commands to

altain each of these goals, taking into account the detailed
geomelry and motion of manipulator and obstacle, and
making use of real-time obstacle sensing (low level vision
and proximity sensors).

By extending low level control capabilities and reducing the
high level path planning burden, the integration of this colli-
sion avoidance approach into a ronulti-level robotl control strue-
ture will improve the real-time performance of the overall robot
control system. Potential applications of this contro! approach
include moving obstacle avoidance, grasping collision avoidance,
and obstacle avoidance problems involving multi-manipulators
with multi-fingered hands.

Appendix I: Link Distance to a Parallelepiped

The axes of the frame of reference /2 are chosen to be the
parallclepiped axes of symmetry. [ is the link’s length and ()
designates the dol product.



Distance to a Vertex
The closest point m of Lhe line (26) to the verlex v is such that:

(vrmy) - (mims)

[
The fink’s closest poini m is identical Lo my il X < 0; it is
identical to my it X > 1 and il is given by (26) otherwise. The
shortest distance is therfore:

[p‘f _ )\2l2]|/2,
Py
P2y

A= : (A1 —1)

ro<x<;
A <0
A > 1

p == (/\1*2)

where py and py are Lhe distance to the verlex from g and mey,
respeclively. The distance partial derivalives ares

dp [JJ Y
PP

= ]T
Jdx )

z
- Al=3
: (A9
Distance to an Edge

By a projection in the plane perpendicular Lo the considered
cdge (zoy, yoz, or zox), Lhis problem ean be reduced to thal
of finding the distance to a vertex in the plane. This leads to
expressions similar to those of (A1-1)-(A1-3) with a sero partial
derivative of the distance w.r.t. the axis parallel to the edge.

Distance to a Face

In this case, the distance can be directly obtained by comparing
the absolute values of the coordinates of my and mg along the
axis perpendicular to the face. The partial derivative vector is
identical to the unit normal veetor of this face.

Appendix II: Link Distance to a Cylinder

The frame of reference R is chosen such that its z-axis is the
cylinder axis of symmetry and its origin is the cylinder center of
mass. r and k designate, respeclively, the cylinder radius and
height.

Distance to the Circular Surface

The closest point of the link (27) to the circular surface of the

cylinder can be deduced [rom the distance to a vertex considered
in the zoy planc and by allowing for Lhe radius r.

Distance to the Circular Edges

The closest distance to the eylinder circular edge can be ob-
tained from thal of the circular surface by taking into account
the relative z-coordinale of m to the circular edge i.e. {2+ h/2)
for the base and (z — h/2} for the top. The distance partial
derivative veelor resulls from the torus equation:

[2% + ¥ + (2 £ h/2)* — 1% = P*)F = 12%[p* — (2 = A/2)°].

(A2 —1)
This veclor is:
a3 z y zxh/2
B0 _ 2 (¥ ZER (42 2)
Oz PP P
with:
2 2 2 _ .2 _ o2
2+t (e W2~ —p (A2~ 3)

T owty? + (24 hf2)E 4 — p?

The distance to the planar surfaces is straightforward and can
be sitmply oblained as in Appendix I.
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Appendix II: Link Distance to a Cone

ln this ease, Lhe frame of reference f2is chosen such that ils
z-axis is the cone axis of symmelry and ils origin is the center
of the cone circular base. 7, h, and 3 represent, respectlively,
the cone base radiuas, height and half angle.

Distance to the Cone-Shaped Surface

The problem of loeating m(z,y, 2) is identical to that for the
cylinder case. The distance can be written as:

p = 2 sin(B) + (V57 T 47 — r)eos(B). (43 —1)
The partial derivatives come from the cquation:
2%+ y? =k (A3 —12)
where:
re = tan(B){h + p sin{f) — 2. (A3 —3)
They are:
% 2 Y Ly, (A3 — 4)

dz r, tan(B) r, tan(B) sin(f)
The problem of the distance to the cone circular edge is identical
to that of the cylinder circuiar edge in Appendix 1L The distance

to the cone verlex is solved as in Appendix L
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