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Abstract

We present a model, composed of hierarchy of artificial
neural networks, for robot learning by demonstration.
The model is implemented in a dynamic simulation of a
41 degrees of freedom humanoid for reproducing 3D hu-
man motion of the arm. Results show that the model
requires few information about the desired trajectory
and learns on-line the relevant features of movement.
It can generalize across a small set of data to produce
a qualitatively good reproduction of the demonstrated
trajectory. Finally, it is shown that reproduction of
the trajectory after learning is robust against pertur-
bations.

1 Introduction

Robot teaching by demonstration makes an increasing
body of robotics research. A large part of these ef-
forts focus on assembly task-learning. Movements of
a human performing object moving/stacking tasks are
recorded, either using video images [1, 2] or using a ma-
nipulandum, for measuring directly the joint torques
[3, 4]. Data are then analyzed to determine the torques
required for an industrial robot arm to reproduce the
motions with similar precision. A major issue in robot
teaching by demonstration is to define an algorithm
which can remove inconsistencies across the demonstra-
tions, while keeping enough information to allow repro-
duction of fine features of the movement [5]. As the
level of precision of data segmentation is highly task-
dependent, it requires the development of adaptive and
learning algorithms [6].

Human ability to imitate oustands that of all other an-
imals [7]. Human imitation ranges from gross repro-
duction of general body postures (pantomine) to pre-
cise reproduction of joint motions (as in dance, surgery,
etc). Recent trends in robotics takes inspiration in
studies of human imitation to develop architectures
for visuo-motor control and learning in robots which
would show some of the flexibility of natural systems
[8, 9, 10, 2, 11, 12]. In [9, 13], we developed a biologi-
cally plausible model of human imitation. In this paper,
we discuss the potential of this model for controlling a
3 degrees of freedom robot arm.

0-7803-6612-3/01/$10.0000 2001 | EEE

2 The model
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Figure 1: The architecture consists of seven modules which give
an abstract and high-level representation of corresponding brain ar-
eas involved in visuo-motor processing. The seven modules are: the
attentional and temporal cortex modules, the primary motor cortex
and spinal cord modules, the premotor cortex and cerebellum mod-

ule, and the decision module.

This work builds upon our general model of learning by
imitation ([9, 13]), see Figure 1. The model is biologi-
cally inspired in its function, as its composite modules
have functionalities similar to that of specific brain re-
gions, and in its structure, as the modules are composed
of artificial neural architectures. It is loosely based on
neurological findings in primates and incorporates ab-
stract models of some brain areas involved in visuo-
motor control, namely the temporal cortex (TC), the
spinal cord, the primary motor cortex (M1), the pre-
motor area (PM) and the cerebellum.

In this paper, we briefly describe the parts of the model
important for the specific implementation. The reader
can refer to [9] for a detailed description.
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2.1 Data provgss

The visual module performs four levels of processing of
the dath) transformation of frame of reference, from
extrinsic to intrinsic, 2) filtering of small and noisy mo-
tions, 3) segmentation of the motion, based on changes
in velocity and movement direction, and 4) parameter-
ization of the movements in terms of speed and direc-
tion. In the experiments reported in this paper, see
Section 3, data are recorded in joint angles, and, thus,
step 1 is not performed.

Filtering of small motions

Input data to this module are all recorded joint angu-
lar trajectories of arm movement. We apply a threshold
function (see Equation 1) to the position trajectory of
each degree of freedom (DOF) to eliminate small move-
ments, due to the interaction torques across the body.
These small movements are noise to us, as we wish to
recognize and model only the key features of voluntary
movements.

Letl))  be the angular displacemeantstofijpint

t. DM D™ and ‘Dare the maximal, minimal and mean
values &f ; over the whole trial. The high-pass filter
eliminates from further processing into segmentation
(see below) all joint trajedbgaiésh are such that

Segmentation

Data are segmented to detect the starts and stops of
voluntary motion and changes in direction of move-
ment, following Equations 2, 3 and 4. The segmen-
tation process depends on a set of 3 parameters per
DOF. These are the minimfifth displacement ; (in joint
angle) for detecting a motion, the minimum time win-
dowT@uring which no displacemédf greater than

has been observed. Siffeeedi degrees of freedom
havefftirent dynamic properties,fitrerio their di

lengths and muscular compositferemve applied di
segmentation parameters to each. These properties are
calculated as follows.

pi
% =8 pi_pr @
J J

0} =207 (3)

To = 2- Tyith T suéh that  ;(T)=D; (4)

Parameterization

After segmentation, the speed and direction of move-
ment of each joint is coded in the output of the TC
neurons to the PM neurons There are two neurons per
degree of freedom (DOF) per joint, coding for positive
and negative direction of movement, respectively. Let
yTC(t) be the output of B ticuend, n

the series of time steps at which the segmentation has
occurred, then

yi ©(t;) = Dy(tr) — Di(te—1) (5)

and k is sudh that =tpangd > 1.

Figure 2 shows segmentation of the trajectory of the
shoulder joints (flexor/extensor, abduction/adduction)
of the left arm during drawing of a figure eight. Figure
2 shows the speed input coded by the neurons after
segmentation.
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Figure 2: Top: Trajectory  of shoulderoij nt
(SFE=flexion/extensi on) during drawing of a gtire eight.
(Bottomy)

lowing segmentation. The output is

Vertical bars show the time steps of segmentation.
Output of tHérBurons fol
proportional to the value of the speed of the motion at the time of

the segmentation.

2.2 Motonvp

In our model, motor control is hierarchical and is com-
posed of (from lowest level to higheststdwel)
modespinal combtor cortex (M1), premotor cortex
(PM) and cerebellum modules.

Spinal cord module

The module receives excitatory input from the M1 neu-
rons (defining the amplitude and speed of the move-
ment for each DOF) and outputs to the muscle model
which then computes joint torques sent to the dynamic
simulation. It is composed of fixed neural circuits, one
for each DOF for each joint, which produce an oscilla-
tion of that joint, following [14].

The neurons of the spinal cord module are modeled as
leaky-integrators, which compute the average firing fre-
quency [15]. According to this model, the mean mem-
brane potemtiaf a neulgeceiving input from

M1 nodgs governed by the equation

T - dmz/dt =-—m; + 211)1-,3-3:]- (6)
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where; = (1 + e(™it%))~! represents the neuron s
short-term average firingh fieqhennguron S
bias, 7; is a time constant associated with the passive
properties of thé neuron s membrane, and w;; is the
synaptic weight of a connectid from neuron ; to neu-
ron N ;. In the model, a neuron in the spinal cord re-
ceives input from all other neurons and from neurons
in M1 module.

Muscle torques Each DOF of each joint is con-
trolled by a pair of muscles which receive input from
corresponding pair of motor neurons in the spinal cord
module. A muscle is simulated as a combination of
a spring and a damper [16]. The torque exerted on
each joint is determined by a pair of opposed flexor
and extensor muscles. These muscles can be contracted
by input signals from motor neurons, which increase
their spring constant, and therefore reduce their rest-
ing length. The torque acting at a particular joint is
therefore determined by the motoneuron ddtivities (
and)Mof the opposed flexor and:extensor muscles

T=a(My— M, +B(M;+ M, +7)Ap +50¢  (7)

wherd\is tlierelice between the actual angle
of the joint and the angle at rest (zero in our experi-
ments). Theedi ffidents a, B, v, and § deter-
mine, respectively, the giinesslpamti the tonic

stiffness, and the dffinjemgofahe muscles.

M1 and PM modules

M1 module conbtdimrefatipe body. It is
composed of 3-neuron networks for each DOF of each
joint for independently regulating the amplitude (two
nodes) and the frequency (one node) of the oscillation
of the corresponding joint DOF, similar to [14].

The PM module creates a direct mapping between the
parameterization of the observed movement in TC, fol-
lowing visual segmentation, and that used for motor
control in M1. PM nodes receive sensory feedback, in
terms of joint angle position, from the spinal cord mod-
ule. yf (t) is the angle of degreegéflifmeedom b l.
The term &(y;,y,.“ - r /8)) in equation 2.2 compares
the actual dev1a,t1013m)fthﬁ'ntvatar and the

deviation of the human arm, given by y T'C for corre-

sponding direction dbfijolidn . This term
modulates the amplitude or speed of the movement, by
increasing or decreasing (for smaller or larger speed) the
output of the PM and consecutively of the M1 nodes
(and finally the torque sent to the motor neurons).

The network TC-PM-M1 consists of a Dynamical Re-
current Associative Memory Architecture (DRAMA)
[17]. Similarly to time delay networks [18], each con-
nection is associated with two parameters, a weight w;;

IThe term lekC

the movement. We map it into a measure of position by multi-
plication with the factor (7/8).

is a measure of the speed at the beginning of

and a time parameter 7;;. Weights correspond to the
synaptic strength, while the time parameter specifies a
synaptic delay, that is a delay on the time required to
propagate the activity from one neuron to the other. It
is a fully connected network (all nodes in PM are con-
nected to all nodes in TC and to all nodes in M1, nodes
in TC and M1 are not interconnected) with asymmet-
rical connections (w;; = wj;) and self-connections on
each unit.

If (w, 7) and (w, tad are the weights of the connec-

tions between M1 and PM, and between TC and PM
modules respectively, if y{ ¢ is the output of TC neu-
ron for direction ofkofokiement b [, then y]M 1

the output of M1 neuron of dg¢§tae of freedom

lis:

1 /dt _Tl l; +
™
Z wzl yz (TllJ ) yz ) 6(yis ’ qu;c g) (8)

and y"M, the output of keuroalule PM

d PM/dt = —Tll?lly +
o
szlk i (T”k y ) 5(%553/[7;0 g) (9)

The function é(z, B is a threshold function that out-
puts 1 when = H and 0 otherwise.

The sets of weights @ and w define the mapping be-
tween the visual representation and the torques sent to
the muscles. The relationship & = f(w) is a first or-
der approximation of the inverse dynamics calculation.
In previous experiments, all connection parameters (w)
and temporal (7) were modulated by learning, see [9].
In the experiments reported here, this mapping is fixed
and follows a first order relationship, such that for ac-
tivation of degree of §iftidom b I, represented by
activity in nefimoM 1, némddM and neuron

k in TC, we have

Wi (t) = I, (t) - wa, (10)

where Ij, (t) is the moment of inertia of the limb [ using
DOF The moment of inertia varies depending on
the position of the limb attached to this limb. Here we
consider only the shoulder/elbow complex. In a first
approximation, we estimate

I, (t) = I, (o), 1 = 0,1 (11)

I, (t) = L1, (to)-(D§)  — Do)} 1=2 (12)

to is the time at which the arm is in the relaxed position
(aligned along the body). ! = 0,1,2 are the 3 DOFs
(SFE, SAA, SHR) of théssbomld&Fanfl

the elbow.
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Cerebellum and Decision modules

Learning of the complete movement is done in the cere-
bellum module. This module is a DRAMA architec-
ture. It receives input from the PM module and learns
the time series of activity of neurons in PM, which
represent the sequence of motions after segmentation.
Learning consists of updating the parameters of the
connection between cerebellum and PM modules (w
and 1) following Hebbian rules, given by Equations 13

and 14.
(5w]-,~(t) = a-y,-(t) . yj(t) (13)
Tji t—1)- Wit =+ y;_(tt)
Tji(t) = ¢ S0 i) - git)  (14)

Wy
Lii 41

whereis a constant factor
incremented.

Finally, the decision module controls the transition be-
tween observing and reproducing the motor sequences,
i.e., it inhibits PM neural activity due to TC (visual)
input to flow downwards to M1 (for motor activation).
It is implemented as a set of if-then rules and has no
direct biological inspiration.

by which the weights are

23 3-D bondanad
muoad

stmbtonfo a hu-

The model is implemented in a dynamic simulation of
a 41 degrees of freedom (DOF) avatar [19] (see Figure 3
right). Shoulders, hips, wrists, ankles and head have 3
DOFs. Elbows and knee have one. The trunk is made
of three segments with 2 DOFs each. All limbs are at-
tached by hinge joints. The external force applied to
each joint is gravity. Balance is handled by support-
ing the;kdpsund contact is not modeled. There is

no collision avoidance module. The dynamics model
is derived from the Newton-Euler formulation of Rigid
Body Dynamics.

3 Experiments

Data for these experiments are recordings of human
arm motion, gathered using a Sarcos SenSuit (see Fig-
ure 3 left). The complete SenSuit is worn like an ex-
oskeleton which, for most movements, does not restrict
the motion while an array of lifhttwseight Hall-e

sors reliably records the positions of 35 degrees of free-
dom (DOF) of the human body. In the experiments, we
used only recordings of the 3 degrees of freedom (DOF)
of the shoulder joint (flexion, abduction and humeral
rotation) and of the elbow joint. Data are captured at
a frame rate of 100Hz.

Because of space constraints, we present here the
model s implementation on one set of data. These are
recordings of left arm movement for five repetitions of
drawing a figure eight. Data were segmented following
the algorithm of Section 2.1, as shown in Figure 2. The
model was presented with the whole trajectory once

Fxutrainer [—|[5][x]

Figurd

tem. (Right) Simulation of 4 1 degrees of freedom humanoid.

(Left) Subject weari ng the Sarcos sensuit recording sys-

(composed of 6 repetitions of the complete movement).
The amplitude and speed of the movement varies
over the repetitions. The model was let reproduce
the trajectory both during training and after learn-
ing. Figure 5 shows superimposed human subject and
avatar trajectories of shoulder (SFE=flexor/extensor,
SAA=abduction/adduction) and elbow (EB) joints
during training. Figure 4 shows the values of the
torques sent to the same 3 DOFs of the avatar during
the training phase. In this example, only these 3 DOFs
received active control for reproducing a desired trajec-
tory (after segmentation). The remaining joints of the
arm and of the rest of the body were kept immobile,
receiving torques to cancel the internal perturbations
due to the motions of other joints and (i.e. y7¢ = 0 for
these joints).

150
w 100 F
[N
%]
)
0 L
0 5 10 15 20 25 30
100
P sot
)
0
0 5 10 15 20 25 30
80
0 60
Waol
=)
20
0
\ \ ‘ ‘ ‘ ‘
0 5 10 15 20 25 30
Time (sec)
Figure 4: Torjue sent to the shoulder joints,

(SFE=flexoy/extenso},
bowgi nt (EB) during the reproduction of Bure ei

(SAA= abduction/adduction) and el-
ght with the

left arm.
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Figuré Tyectory of the shoul derpi nts, (SFE=flexor/extenso},
(SAA= abduction/adducti on)and el bowgi nt (EB) during the repro-

duction of fgure ei  ght with the left arm.

Results show that the system follows closely the
demonstrated trajectory during training, mapping the
changes in amplitude and speed. The model manages
to extract on-line the main features of the movement,
while dismissing most of the (from our point of view)
unimportant fine structure of the movement and noise
(from the recording system). Figure 6 shows the in-
crease of neural firing during training. After two pre-
sentations of the movement, the network has general-
ized. That is, it has learned to recognize the four main
features of the movement and to represent those with
a specific neural firingegatterinodel-node2-
node3-node2. Note that the nodes code for the com-
bined movement of the 3 DOFs (SFE/SAA/EB) and
not for each joint separately. For clarity of the figure,
we show only the SFE joint superimposed to the neural
firing rate.

The same pattern of node firing is activated during the
4 remaining presentations of the movement, showing
that the network recognizes correctly the movement.
During training on the 4 last movements, the network
adjusts the parameters (the 7;; from equation 14) of
these nddeserconnections to better represent the
precedence and time lag between each sub-movement.
After training, the model produce a movement which
presents the main sub-features of the training move-
ment (see Figures 7 and 8). Amplitude and speed
of this reproduced movement represents the weighted
combination of that of the six demonstrations.
Robustness in the face of perturbation is an important
criteria for a robotics system. We tested thé model s
robustness after training, by applying an external force
during rehearsal of the trajectory. Figures 7 and 8
show the trajectory of SFE and EB DOFs when ap-
plying a vertical force on the wrist of 200 and 1200
Newton respectively. Results show that the system re-

covers quickly to both constraintstfedthis due
to the PID control term (d(y;,y " - @ /8))) of equa-

tion 2.2. The desired trajectory (y/“) is obtained by
rehearsal of the activity of neurons in the TC module
(feeding back the activity from PM neurons).

SFE (deg)

. . . . . . . , .
0 2 4 6 8 10 12 14 16 18 20
Time (sec)

Neural Firing rate
T T T

. . . . . .
0 2 4 6 8 10 12 14 16 18 20
Time (sec)

Figuré

Firing rate of the neurons in the cerebellum module during

training.

£8 (deg)
8 3 8 &

5 8
SFE (deg)

5 © 7 s 9 1 n )
Time (sec) Time (sec)

Figurd Tjectory of the shoul der pi nts (SFE=flexor/extensoy
and elbowgi nt (EB) during rehearsal after training. Solid line: de-
sired trjectory, dashed 1 ine: trjectory after perturbati on (vertical

force o2 0Kg) lasting 0.2 seconds.

4 Conclusion

This paper presented a biologically inspired model of
human imitation. The model was implemented in a dy-
namic simulation of a humanoid avatar with 41 degrees
of freedom for reproducing 3D human arm motion. It
was shown that the model could learn the principal
features of a 3 DOFs arm trajectory, by generalizing
across therdit demonstrations. Learning is fast
and done on-line (here on a pentium III, 700 MHz sta-
tion). In [17], we showed that the DRAMA architecture
allowed on-line learning and reproduction of movements
in robots with very limited computational power (124M
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E8 (deg)
SFE (deg)

Figur® Tyactory of the shoul der pi nts, (SFE=flexoy extenso}
and elbowji nt (EB) during rehearsal after training. Solid line: de-
sired trjectory, dashed 1 ine: trjectory after perturbati on (vertical
force of 120Kg) lasting 0.7 seconds.

RAM, 30MHz). Further, it was shown that reconstruc-
tion of the movement was robust against perturbation.
Generalization, on-line learning and robustness against
perturbation are desirable for a robot controller. How-
ever, a number of questions remain to be answered in
order to determine the usefulness of our model to con-
trol a robot:

1) Scaling up to full body matilthough we have
shown that the model could well reproduce motion of
a 65 degrees of freedom humanoid when given simu-
lated (not noisy) data [9], it remains to show whether
the performance of the model would degrade when con-
trolling actively (as opffassidetesponse to

internal torques) more joints than the 3 used here and
for a more general set of data.

2) Range of validity: 6T libee rexpetiments

showed that a qualitatively good reproduction of the
features of the movement can be obtained by giving
only the following informatioh) tthéhe system

starts and stops of the movetfielentand it is su
determine those within a fretisiendafd0

tion of the mav2hidmetinitial speed at each start

point of the mewain@ha first order approxima-

tion of the inverse dynamics. It remains now to deter-
mine the range of motions within which the above set
of minimal constraints holds. The present experiments
showed only thifitiéntifeau3D slow motions
of the arm, when the torso is in upright position and
when only 3 joints are active, the other joints being
kept immobile.
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