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The paper provides a survey of the literature on invariant sets and their applications

Abstract

The properties of positively invariant sets are involved in many di!erent problems in control theory, such as constrained control,
robustness analysis, synthesis and optimization. In this paper we provide an overview of the literature concerning positively invariant
sets and their application to the analysis and synthesis of control systems. ( 1999 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Since the theory of Lyapunov was introduced for ordi-
nary di!erential equations the notion of invariant set has
been involved in many problems concerning the analysis
and the control of dynamical systems.

Given a dynamic system a subset of the state space is
said to be positively invariant if it has the property that, if
it contains the system state at some time, then it will
contain it also in the future. A subset of the state space is
said invariant if the inclusion of the state at some times
implies the inclusion in both the future and the past.

Let us consider for instance a dumped and unforced
pendulum in a neighborhood of its stable position. The
mechanical energy of this system is a function of the state.
Since the system is dissipative the set of all states whose
energy does not exceed a "xed level is a positively invari-
ant set. Clearly it is not invariant since the energy of the
system shall decrease during its evolution. If the pendu-
lum is undamped and thus it conserves its energy during
the evolution, the constant energy surfaces are examples
of invariant sets.

As it is known, the concept of `energy of a systema has
been formalized by means of Lyapunov theory and the
notion of positive invariance has its origin in that theory.
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Precisely, given a Lyapunov function, its level surfaces
are the boundaries of positively invariant sets. However,
the interpretation of a positively invariant set as a set of
`limited energya inherited from the Lyapunov theory
may be quite restrictive. In fact positively invariant sets
have played the basic role, motivated by many practical
problems, of `con"nement setsa. This key notion has
been widely exploited, especially in the case of systems
subject to constraints.

Let us consider the case of a dynamic system whose
state variables are subject to constraints that de"ne an
admissible set in the state space. Due to the system
dynamics, in general, not all the trajectories originating
from admissible initial states will remain in such a set.
Conversely, for any initial condition which belongs to
a positively invariant subset of the admissible domain,
constraints violations are avoided. Thus the inclusion
of the state in a positively invariant set provides
fundamental a priori information about any trajectory
originating from it.

This simple idea can be easily extended to the case in
which a control input is present. In this case we say that
a set is controlled invariant or viable if, for all initial
conditions chosen among its elements, we can keep the
trajectory inside the set by means of a proper control
action. Again the existence of a controlled invariant set is
a fundamental step in the solution of several control
synthesis problems especially in presence of constraints
for two fundamental reasons. First such a set includes
initial states whose future trajectories meet design speci-
xcations such as constraints satisfaction and convergence
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Fig. 1 . The constraint sets and the invariant ellipsoid.

to the desired equilibrium point. Second, as we will
explain later, the control law may be derived by means of
the set.

To better explain the previous concepts we introduce
an example. Consider the following double-integrator
continuous-time model (Gutman & Cwikel, 1987)
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and assume that its state variables are subject to the
constraints Dx

1
D425 and Dx

2
D45. Such constraints form

the rectangle represented in Fig. 1. Now take the stabiliz-
ing linear state feedback control law u"!k(x
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with k'0. If we take as initial state the vertex of the
rectangle corresponding to x
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(0)"25 and x
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(0)"5, the

resultant trajectory (dashed in Fig. 1) violates the con-
straints. For k51/25 the boundary rectangle includes
the ellipsoid
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represented in the "gure for k"1/25 which is positively
invariant for the closed loop system. This means that any
trajectory starting from S (for instance the dot-dashed
one in Fig. 1) remains inside S and converges to the
origin. ThusS is not only a domain of attraction, but it is
also a safety region for the initial state.

The term positively invariant for S is referred to the
closed loop system. If we make reference to the original
system, without any control action, the same set is called
controlled invariant. This means that it can be rendered
invariant by a proper control action, which is not neces-
sarily the linear feedback considered above. For instance,
other controllers can be derived by noticing that the
ellipsoid is associated with the quadratic function
((x
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)"kx2
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2
. Elementary computations show

that the Lyapunov derivative is given by (Q (x
1
,x

2
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2
). Thus, any function u(x
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2
) that renders

(Q non-positive inside S (for instance u"!25 k sgn
[x

2
]) is a possible control. In general a controlled invari-

ant set may not admit linear controllers and the existence
of a linear controller is one of the problems we deal with.

The constraints considered in the above example are
de"ned in the state-space, but control constraints can be
easily added. If we assume that the control must be such
that DuD41, we introduce the additional condition
kDx

1
#x

2
D41. This new constraint slightly modi"es the

constraint set which now intersects the ellipsoid, render-
ing it useless. However, by slightly shrinking the said
ellipsoid we can derive a new invariant domain which is
included in the new constraint set (this property of
preserving positive invariance under scaling will be ana-
lyzed later).

Another class of problems which can be handled by
means of invariant sets are the analysis and synthesis
of uncertain systems. In this case, we use the concept
of `robust positive invariancea. If we consider the pre-
vious example, and we assume that B may vary as
B"[0, 1#d]T, then it can be seen that the considered
ellipsoid does not remain positively invariant for the
systems achieved by the control laws considered above.
This is equivalent to the fact that the associated quad-
ratic function ((x
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, x

2
)"kx2

1
#x2

2
is not a robust

Lyapunov function. However, under proper bounds on
the parameter variation d, robustly invariant ellipsoids
can be found.

The main goal of this paper is to present in a concise
way the basic ideas, the main properties and the most
successful applications of invariant sets in control engi-
neering. We consider with special attention speci"c but
important problems such as robust analysis and syn-
thesis, control under constraints and disturbance rejec-
tion. The spirit of the paper is to summarize basic results
in the simplest way. Thus this work deals mainly with
special but important cases such as linear (possibly un-
certain) systems and convex sets (mainly ellipsoids and
polyhedra). This notwithstanding, the (few) cases in
which the results can be signi"cantly extended to more
general classes of systems and sets are mentioned.

One fundamental problem we deal with is the tradeo!
between the complexity of the description of a family of
sets and its `optimalitya properties. Indeed, the deter-
mination of invariant sets which are in some sense `the
besta, for instance "nding the largest controlled invariant
set inside a prescribed domain, is often frustrated by the
complexity of the representation. This aspect concerns, for
instance, ellipsoids and polytopes as candidate invariant
sets: simple but conservative the former, non-conserva-
tive but arbitrarily complex the latter.

In view of the mentioned relationship with the
Lyapunov theory the literature that somehow touches
even marginally invariant sets is extremely wide. There-
fore some necessary choices must be made in the selec-
tion of the material to stay within the limits of a journal
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paper. The results which have been considered are either
classical results of wide generality, or recent engineering-
oriented results. In particular, more attention has been
devoted to the presentation of concrete results than to
the description of theoretical aspects. This choice una-
voidably led us to the exclusion of important recent
developments in the theoretical analysis of set invariance.
Nevertheless, the paper includes basic ideas and refer-
ences we believe appropriate as starting point for further
readings and research of theoretical nature.

In this paper we essentially deal with positive invari-
ance rather than pure invariance, since the latter concept
is less useful in an engineering context. In Section 2 we
introduce the main de"nitions. In Section 3 we introduce
some classical positive invariance conditions such as the
Nagumo theorem and we describe in a formal way the
relation between positively invariant sets and Lyapunov
functions. In particular we show how a convex and
compact invariant set containing the origin in its interior
can `shapea a Lyapunov function. In Section 4 we pres-
ent the main properties of the two most currently used
families of candidate invariant sets: ellipsoids and poly-
topes. The problem of constructing positively invariant
sets is faced in Section 5, where we will also consider the
problem of the association of a feedback control to a con-
trolled invariant set. In particular we will investigate
when such a controller can be linear. In Section 6 we
describe some applications of the positively invariant
sets. In the end we will derive some conclusions and point
out some current research directions in Section 7.

2. Basic de5nitions

In the following, given a set S we denote by intMSN its
interior and by LS its boundary. If S is a polytope, then
vertMSN is the set of its vertices. We call a C-set a convex
and compact set including the origin in its interior.

We consider dynamic time-invariant, possibly uncer-
tain, systems of the form

*x(t)"f (x(t), u(t),w(t)), (1)

y(t)"g(x(t)), (2)

where x(t)3Rn, is the system state, u(t)3Rm is the control
input, y(t)3Rp is the output, w(t)3WLRq is an external
input, and W is an assigned compact set. We denote by
* the derivative operator in the continuous-time case and
the shift forward operator in the discrete-time case (i.e.
*x(t)"x(t#1)). In the continuous-time case we assume
that f :Rn]Rm]RqPRn and g :RnPRp are Lipschitz
functions and that u(t) and w(t)3W are continuous. Note
that under these assumptions the system admits a solu-
tion x(t) which is uniquely de"ned on R` for all x(0)3Rn

w and u. Although these assumptions may seem restrict-
ive, they are quite reasonable for a tutorial purpose.
Nevertheless, more general cases (such as the non-
uniqueness of the solution) will be brie#y discussed when
necessary.

De5nition 2.1. The set SLRn is said positively invari-
ant for a system of the form

*x(t)"f (x(t))

if for all x(0)3S the solution x(t)3S for t'0. If x(0)3S
implies x(t)3S for all t3R then we say that S is
invariant.

De5nition 2.2. The set SLRn is said robustly positively
invariant for the system

*x(t)"f (x(t),w(t)) (3)

if for all x(0)3S and all w(t)3W the solution is such that
x(t)3S for t'0.

De5nition 2.3. The set SLRn is said (robustly) control-
led invariant for the system

*x(t)"f (x(t), u(t)),

(*x(t)"f (x(t),u(t),w(t)), w(t)3W),

y(t)"g(x(t))

(4)

if there exists a continuous feedback control law

u(t)"'(y(t))

which assures the existence and uniqueness of the solu-
tion on R` and it is such thatS is positively invariant for
the closed loop system.

For simplicity sake, in the above de"nition it is ex-
plicitly required that the closed loop system admits
a unique solution. This property is assured if, for in-
stance, ' is a Lipschitz function. This request may be
dropped (see Aubin, 1991 Chapter 6).

Note that the type of control considered in the de"ni-
tion is static. As it is known, the case of a dynamic
compensator of a given order n

#
is equivalent to the static

case for a suitably augmented plant. In this case S has to
be thought as a subset of the extended state space of
dimension n#n

#
.

In the literature there are several de"nitions of con-
cepts close to positive invariance (many of them being
strictly equivalent at least under some proper assump-
tions). For the simple exposition, we limit ourself to the
above de"nitions which are su$cient to describe the
basic results as in the purpose of this paper.

We recall now the notion of Lyapunov function. In this
case also there are several de"nitions suggested by the
literature, each of them motivated by a speci"c problem.
Thus we try to introduce a de"nition which covers most
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of the available ones. Given a continuous function
(:RnPR, for k

2
5k

1
50 let us de"ne the (possibly

empty) set N[(, k
1
, k

2
] as

N[(, k
1
, k

2
]"Mx3Rn: k

1
4((x)4k

2
N

(with obvious meaning we allow for k
2
"R). In the

sequel we use the same notation with a single argument

N[(, k]GN[(, 0, k]"Mx: ((x)4kN.

De5nition 2.4. Let ( : RnPR be a locally Lipschitz func-
tion such that

((0)"0, (5)

((x)'0, if xO0. (6)

Consider the system

x5 (t)"f (x(t),w(t)).

If for every x3N[(,k
1
, k

2
] the Lyapunov derivative

(Rouche, Habets & Laloy, 1977) is such that

D`((x,w)Glim sup
h?0`

((x#hf (x, w))!((x)

h

4!b((x), for all w3W, (7)

for some b'0, then we say that ( is a Lyapunov
function in the strong sense for the system in the set
N[(, k

1
, k

2
]. If the inequality (7) holds for b"0 then we

say that ( is a Lyapunov function in the weak sense.

In the above expression the existence of the superior
limit is assured by the fact that ( is locally Lipschitz (see
Yorke, 1968 or Rouche et al., 1977, Appendix I, Theorem
4.3). The `lim supa can be replaced by the simple `lima
under additional assumptions on ( such as convexity or
di!erentiability.

According to the previous de"nition we may have
di!erent cases. If k

1
"0 and k

2
"R the existence of

such a function assures global (asymptotic) stability of
the solution x(t), while if k

1
"0 and k

2
is "nite, then we

have local (asymptotic) stability (i.e. x(t) converges to the
origin for any x(0)3N[(,k

2
]). If k

1
'0 and k

2
"R,

global uniform ultimate boundedness in the set N[(,k
1
]

is guaranteed (i.e. for all x(0)3Rn there exists ¹(x(0)) s.t.
x(t)3N[(,k

1
] for t5¹(x(0)). If k

2
'k

1
'0 we have

local uniform ultimate boundedness.
The de"nition of a strong Lyapunov function is easily

restated for discrete-time systems

x(t#1)"f (x(t),w(t)) (8)

if we replace condition (7) by the condition that for every
x3N[(,k

2
] we have that

( ( f (x,w))4maxMj((x), k
1
N for all w(t)3W, (9)

for some positive j(1 (or j"1 in the weak case). The
expression (9) is more complex than expression (7). The
reason is very simple in view of the well established
gap between discrete and continuous-time systems. The
fact that the sequence ((x(t)) is decreasing, i.e.
((x(t#1))(((x(t)) as long as k

1
4((x(t))4k

2
, does

not avoid possible `jumpsa from x(t)3N[(,k
1
] to

x(t#1) NN[(, k
2
].

Finally we give the following de"nition of a control
Lyapunov function.

De5nition 2.5. Let ( : RnPR be a locally Lipschitz func-
tion, as in De"nition 2.4. We say that ( is a control
Lyapunov function in the strong (weak) sense for the
system (4) in the set N[(, k

1
, k

2
] if there exists a continu-

ous control u"'(y) assuring uniqueness of solution and
such that ( is a Lyapunov function in the strong (weak
sense) for the closed loop system.

All the introduced de"nitions could be extended to
more general classes of abstract state space systems,
including automata and distributed state space systems.
However, in view of the purpose of the work, we do not
extend the discussion in this sense.

3. Basic results

For easiness of presentation, in the following we will
consider convex positively invariant sets. The simplifying
assumption of convexity avoids unnecessary di$culties
in the exposition. Nevertheless, some types of non-
convex sets considered in literature will be mentioned.
Furthermore we assume that the state is available for
feedback control.

3.1. Invariance conditions for continuous-time systems

We introduce now the de"nition of tangent cone to
a set, which will be very useful to characterize positively
invariant sets. Consider any norm DD ) DD in Rn. Given
a point x3Rn and a set S let us de"ne the distance of
x from S as

dist(x,S)"inf
y|S

DDx!yDD.

De5nition 3.1 (Bouligand, 1932). Let SLRn be a com-
pact set. Let x3Rn. The tangent cone (often referred to as
contingent cone) to S in x is the set

CS(x)"Gz3Rn: lim inf
h?0

dist(x#hz,S)

h
"0H. (10)

Note that although the function dist(x,S) depends on
the considered norm, the set CS(x) does not. It is also easy
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Fig. 2. The tangent cone.

to see that if S is convex so is CS(x) and `lim inf a can be
replaced by `lima in (10). Furthermore if x3intMSN then
CS(x)"Rn and xNS thenCS(x)"0 (remember thatS is
compact). Thus the set CS(x) is non-trivial only on the
boundary of S. In geometric terms (see Fig. 2), the
tangent cone for x3LS, is a cone having center in the
origin which contains all the vectors (for instance the
vector denoted by x5 ), whose directions point from x `in-
sidea (or they are `tangent toa) the set S. If such
a boundary is smooth in the point x, then the CS(x) is just
the tangent halfspace shifted to the origin.

We are now able to state one basic result concerning
positive invariance. This theorem was introduced for the
"rst time by Nagumo (1942) and it was reconsidered later
in di!erent formulations (see for instance Brezis, 1970;
Gard, 1980; Yorke, 1968). Here we use the standard
version in terms of tangent cone (see also Aubin, 1991;
Aubin & Cellina, 1988; Clarke, 1983; Feuer & Heymann,
1976) for details).

Theorem 3.1 (Nagumo, 1942). Consider the system
x5 (t)"f (x(t)), and assume that, for each initial condition in
a set X, it admits a globally unique solution. Let S-X be
a closed and convex set. Then the set S is positively
invariant for the system if and only if

f (x)3CS(x) for all x3S. (11)

The condition (11) of the theorem, often referred to as
sub-tangentiality condition, is meaningful only for x3LS
since for x3intMSN, CS(x)"Rn. Thus the condition (11)
can be replaced by

f (x)3CS(x) for all x3LS.

The theorem has the following geometric interpretation
(see Fig. 2). Roughly it says that if, for x3LS, the deriva-
tive x5 `points inside or it is tangent to Sa, then the
trajectory x(t) remains in S.

The above theorem holds for more general classes of
sets which are not necessarily convex. Conversely, the

requirement of the uniqueness of the solution is funda-
mental. Consider for instance the set S"M0N (i.e. the set
including the origin only). Its tangent cone for x"0 is

M0N. The equation x5 (t)"Jx(t) does ful"ll the require-
ments of the theorem. However, for x(0)"0 only the zero
solution x(t)"0, t50 remains inside S. In fact, there
are in"nitely many non-zero solutions escaping from
S each of them being of the form

x(t)"G
0 for t4t

0
,

(t!t
0
)2/4 for t't

0
,

where t
0

is any non-negative real number. If uniqueness
drops, the sub-tangentiality condition implies the weak
positive invariance: for x(0)3S there exists at least one
solution such that x(t)3S for t50 (actually this was the
original Nagumo's formulation see also (Aubin & Cel-
lina, 1988, Chapter 4, or Aubin, 1991, Chapter 1). The
simple example shows that, if the solution is not unique,
the strong positive invariance (i.e. the fact that all the
solutions remain in the set) is not assured. For further
details the reader is referred to Fernandes and Zanolin
(1987).

The above theorem admits several extensions. For
instance under the same assumptions of uniqueness of
solution, the set S is robustly invariant for the system

x5 (t)"f (x(t),w(t)), w(t)3W

if and only if x5 "f (x, w)3CS(x), for all x3S and w3W
(see again Aubin, 1991, Aubin & Cellina, 1988). Theorem
3.1, can be also used to characterize controlled invari-
ance. Indeed the set S is controlled invariant if and only
if there exists a continuous function ':RpPRm (granting
the existence and uniqueness of the solution) such that
if u"'(g(x)) for each x on the boundary of S the
closed loop system satis"es the sub-tangentiality
conditions (11).

3.2. Invariance conditions for discrete-time systems

The natural counterpart of the sub-tangentiality con-
dition (11) for discrete-time systems is immediately writ-
ten as

f (S)-S. (12)

There is only one point worth a discussion here. As we
have previously pointed out, Nagumo theorem can be
formulated by saying that S is positively invariant if and
only if (11) is satis"ed just on the boundary of S. This
di!erent formulation does not apply to discrete-time
systems. It is very easy to provide examples of systems of
the form x(t#1)"f (x(t)) such that f (LS)LS, but such
that f (S)\. S, just as the scalar system

x(t#1)"2(x(t)2!1), and S"[!1, 1].
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1 If S is convex closed and 0-symmetric, but not bounded, then (S is
a seminorm.

Fig. 3. The Minkowski function of S as a Lyapunov function.

Nevertheless, for linear systems we have the following
result.

Theorem 3.2. Consider the LTI system

x(t#1)"Ax(t)#Bu(t),

and let S be a C-set. Then S is controlled invariant if and
only if for any x3LS there exists u (which depends on x)
such that

Ax#Bu3S.

Theorem 3.2 can be immediately extended to the case
in which the control is constrained as u3U, where U is
a C-set, or the system is uncertain

x(t#1)"A(w(t))x(t)#B(w(t))u(t)#Ew(t),

with w(t)3W. The condition has just to be modi"ed
as: for all x3LS there exists u3U such that
A(w)x#B(w)u#Ew3S, for all w3W. It is not di$cult
to see that the condition may be limited to all x which are
extreme points of the convex set S. Conversely, the lin-
earity of the system with respect to x and u is crucial in
Theorem 3.2.

3.3. Invariant sets and Lyapunov functions

We now recall the fundamental connections between
the notion of positive invariance and that of Lyapunov
function. If ((x) is a Lyapunov function (or control
Lyapunov function) in the set N[(, k

1
, k

2
] for the

system (3) (or (4)), then for each k
1
4k4k

2
, the

set SGN[(,k] is invariant. To further investigate
this point we introduce the following de"nition (see
Luenberger, 1969).

De5nition 3.2. Given a C-setS we de"ne the Minkowski
functional (S of S as

(S(x)GinfMk50: x3kSN.

The function (S(x) is convex, positively homogeneous
of order one (i.e. (S(mx)"m(S(x) for m50). Note that
S"N[(S, 1]. Furthermore it is a norm if (and only if)
S is 0-symmetric.1 Its level surfaces are obtained by
scaling the boundary of the set S. Thus such boundary
de"nes the shape of the function. In Fig. 3 we show the set
S (the shadowed one), and the level surfaces correspond-
ing to ("0.5, ("1.5 and ("2. By means of the
previous de"nition we may introduce the notion of con-
tractive set. In plain words, an invariant set S is contrac-
tive if it is invariant and, whenever the state is on the
boundary, the control can `push it towards the interiora.

De5nition 3.3. A C-set S is contractive for a discrete-
time system of the form (1) if there exists a control
function u(x) and a positive j(1, such that if x(t) in
S then x(t#1)3jS for all w(t)3W.

De5nition 3.4. Let S be a C-set and let ((x) be its
Minkowski functional. We say that S is contractive for
a continuous-time system of the form (1) if there exists
b'0 and a control function u(x) such that
D`((x, u(x),w)4!b (cf. Eq. (7)) for all x3LS and
w3W.

The above de"nitions are important because several
techniques to derive Lyapunov functions are based on the
construction of contractive sets. Assume that a certain
contractive C-set is known. How can we derive
a Lyapunov function and how can the interval [k

1
, k

2
] be

selected? Several answers to this question are available
when we deal with linear systems.

Theorem 3.3. Consider the LTI system (possibly with
exogenous disturbance)

*x(t)"Ax(t)#Bu(t)#Ew(t)

with w3W, a given C-set. Assume that S is a contractive
C-set. Then the following statements hold.

(i) The Minkowski functional (S(x) of S is a control
Lyapunov function in N[(S,1,R] and there exists
a control u"'(x) such that the closed loop system
state is globally ultimately bounded in S.

(ii) If E"0 then the Minkowski functional (S(x) is a glo-
bal (i.e. on Rn) control Lyapunov function for the sys-
tem and there exists a control u"'(x) that globally
asymptotically stabilizes the system.
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2Note that the control u(x) in De"nitions 3.3 and 3.4 is not necessar-
ily stabilizing and it may be even not de"ned outside S.

(iii) If E"0 and u3U, a given C-set, then (S(x) is a con-
trol Lyapunov function for the system in the set
N[(S,1] and there exists a control u"'(x) that
locally asymptotically stabilizes the system (i.e.
x(t)P0 for all x(0)3N[(S,1]).

(iv) If E"0 and B"0 then (S(x) is a Lyapunov function
and the system *x(t)"Ax(t) is asymptotically stable.

Given a contractive set, a control '(x) as in the the-
orem2 is achieved by linearly scaling the values taken by
u(x) on the boundary of S as follows:

'(x)GG
(S(x)u(x@) if xO0,

0 if x"0

where x@"x/(S(x)3LS. (13)

For instance consider the point x"2x@ in Fig. 3, where
x@3LS. Then ((x@)"1 and ((x)"2. The derivative in
x@ is Ax@#Bu(x@). Assume that it satis"es the sub-tangen-
tiality conditions. The derivative in x is the same up to
the scaling factor 2: Ax#B'(x)"2[Ax@#Bu(x@)].
Moreover, the tangent cone in both x and x@ is the same,
that is, the line passing through the origin parallel to the
dashed lines. Thus the sub-tangentiality conditions are
satis"ed also in x. This property can also be shown
by means of the Lyapunov derivative since it is very
easy to see that the ratio D`(/( is equal in x@ and x.
Theorem 3.3 holds even if we assume that the state and
input matrices are continuous functions A(w(t)) and
B(w(t)) of the uncertain parameter w(t)3W.

3.4. Literature review

The proofs of the statements of this section are con-
tained in several references such as Bitsoris (1988a), Bi-
tsoris (1988b), Blanchini (1995), Feuer and Heymann
(1976), Sznaier (1993), and Vassilaki and Bitsoris (1989).

The mentioned notion of tangent cone and its applica-
tion to the characterization of positive invariance for
di!erential inclusions is investigated in Aubin (1991) and
Aubin and Cellina (1988). It is important to point out
that there are further de"nitions of tangent cone due to
Bony (1969) and Clarke (1983). However, all these de"ni-
tions are equivalent under the assumptions that S is
a convex set, as in our case, or that it has a smooth
surface.

For a mathematical background concerning theoret-
ical properties of invariant sets (such as their stability or
attractivity) for ordinary di!erential equations the reader
is referred to classical books concerning Lyapunov
methods such as Hahn (1967), Lassalle and Lefschetz

(1961), Lyapunov (1966), Rouche et al. (1977), Yoshizawa
(1975) and Zubov (1964).

It is worthwhile mentioning the problem of partial
stability, in which only part of the system state variables
are required to be bounded (or to converge) (Vorotnikov,
1993; Vorotnikov, 1998; Oziraner, 1979). In this case,
Lyapunov-like functions are considered which are not
necessarily positive de"nite (they are only positive de"-
nite with respect to the considered subset of variables).
These functions are associated to positively invariant sets
that may be unbounded.

4. Special families of positively invariant sets

In this section we present some properties characteriz-
ing two important families of positively invariant sets, or
controlled invariant sets, and their associated controllers
which have been particularly successful in the solution of
control engineering problems. These are the classes of
ellipsoidal sets and the class of polyhedral sets. Other
types of sets will be brie#y considered at the end. Further-
more, we limit our attention mainly to linear systems.
Nevertheless the few available results for non-linear
di!erential/di!erence equations will be mentioned.

4.1. Ellipsoidal invariant sets

Ellipsoids are very popular as candidate invariant sets.
An ellipsoidal set can be always represented as follows:

S"Mx3Rn: xTPx41N (14)

where P is a symmetric positive-de"nite matrix. The
Minkowski function of S is the quadratic norm

(S(x)"DDxDD
P
G(xTPx)1@2

It is fundamental to note that the gradients of the func-
tions ((x) and ((x)2"(xTPx) have the same direction.
Thus it makes no di!erence to take one or the other as
Lyapunov function, since their Lyapunov derivatives
have the same sign.

The tangent halfspace to S in x3LS is
CS(x)"My: 2xTPy40N. Consider the case of a linear
system x5 "Ax. The sub-tangentiality conditions are
given by 2xTPAx40, as long as xTPx"1. Such a condi-
tion can be written as

xT(ATP#PA)x40

∀x3Rn. Thus the Nagumo invariance condition
leads to the Lyapunov inequality above. If S is
contractive then there exists b'0 such that
xT(ATP#PA)x4!2bxTPx(0, for all x3Rn. This can
be expressed, as it is known, by means of the Lyapunov
equation

ATP#PA"!Q with Qz0, (15)
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where Qz0 (p0) means symmetric positive (negative)
de"nite. Similarly it is immediate to see that the bound-
ary contraction property for the discrete-time linear sys-
tem x(t#1)"Ax(t) leads to the discrete-time Lyapunov
equation

ATPA!P"!Q with Qz0.

Let us consider now the case of an uncertain system. If
A is a matrix polytope

A(w)"
r
+
i/1

A
i
w

i
where

r
+
i/1

w
i
"1, w

i
50, (16)

then the robust invariance condition for S can be ex-
pressed by means of a set of Lyapunov inequalities:

AT
i
P#PA

i
p 0, i"1, 2,2, r.

This set of conditions is nice because it is convex in P.
This means that if P

1
and P

2
satisfy the inequalities, also

the convex combination aP
1
#(1!a)P

2
does. This

property renders computationally tractable the problem
of "nding an invariant ellipsoid S for the polytope of
matrices A(w), (Boyd, Ghaoui, Feron & Balakrishnan
1994). Additional `convexa conditions such as S is in-
cluded in a given polyhedron or that S includes a given
polytope, can be easily incorporated (see again Boyd
et al., 1994, Section 5.2).

An important property is that if S is contractive for
the system x5 "Ax#Bu with some control u(x) (see
De"nition 3.4), thenS is contractive with a linear control
which is of the form

u(t)"!cBTPx(t), (17)

where c'0 is a `su$ciently largea constant. Further-
more, if A is stable, and P is derived by means of (15), for
some Q z 0, then any c'0 results in a stabilizing con-
trol (Gutman & Hagander, 1985).

Conversely, if A(w) and B(w) are uncertain, we cannot
associate in general a linear controller to a controlled
invariant ellipsoidal set (Petersen, 1985). A linear control-
ler exists provided that B is certain or it satis"es some
matching conditions (Barmish, Corless & Leitmann,
1983a; Barmish, Petersen & Feuer, 1983b; Corless
& Leitmann, 1993). Consider now the case in which
additive persistent disturbances are present

x5 (t)"Ax(t)#Ew(t), w(t)3W.

A known su$cient positive invariance condition holds in
the special case W"Mw: wTw41N (Schweppe, 1973),
(Usoro, Schweppe, Gould & Wormley, 1982a). The ellip-
soid (14) is robustly invariant if Q"P~1 satis"es the
condition

QAT#AQ#aQ#

1

a
EET ( 0 for some a'0, (18)

where `(a means negative semide"nite. For "xed a'0,
the "rst inequality in (18) is a LMI (see Boyd et al., 1994,
Section 6.1.3). Very recently the above condition has been
proven to be also necessary if (A,E) is a reachable pair,
(Brockman & Corless, 1998).

Further properties concerning positively invariant el-
lipsoidal sets, in particular their connections with the
Riccati equation, can be found in textbooks of linear
systems, for instance Schweppe (1973), Boyd et al. (1994),
Zhou, Doyle and Glover (1994) and Sanchez Pena and
Sznaier (1998).

4.2. Polyhedral invariant sets

Polyhedral sets have been involved in the solution
of control problems starting from the 70's. Their
importance is due to the fact that they are often natural
expressions of physical constraints on state and control
variables. Furthermore, their shape is in some sense
`more #exiblea than that of the ellipsoids, this fact lead-
ing to a better attitude in the approximation of reachabil-
ity sets and domains of attraction of dynamic systems.
The trade o! of this #exibility is that they have in general
a more complex representation.

A polyhedral C-set S can be represented in the follow-
ing form (plane representation):

S"Mx: Fx411 N (19)

where F is a r]n matrix, and 11 3Rr denotes a vector of
the form

11 "[1 1 2 1]T,

and the inequality has to be thought componentwise.
Conversely S can be represented as

S"Mx"Xa, 11 Ta"1, a50N (20)

(vertex representation) where X is a n]s matrix, and
a3Rs (note that 11 Ta"+s

i/1
a
i
). In the representation (19),

each row F
k
of F is associated with the linear inequality

F
k
x41 while each column of the matrix X is a vertex

of S in the representation (20). We state now some
basic conditions for positive invariance of the considered
sets.

Theorem 4.1. The following conditions are equivalent.

(i) The polyhedral C-set S is positively invariant (con-
tractive) for the system

x(t#1)"Ax(t)

(ii) There exists a positive j41 (j(1), and an r]r non-
negative matrix H such that

H11 4j11 ,

HF"FA.
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Fig. 4. The control at vertices.

(iii) There exists a positive j41 (j(1), and an s]s non-
negative matrix P such that

11 TP4j11 T,

XP"AX.

Condition (ii) is based on the following property (de-
rived by Farkas' lemma, see for instance Hennet, 1989).

Lemma 4.1. Given two polyhedra S
1
"Mx: F

1
x4g

1
N

and S
2
"Mx: F

2
x4g

2
N then S

1
-S

2
if and only if

there exists a non-negative matrix H such that HF
1
"F

2
and Hg

1
4g

2
.

The set S is positively invariant i! x3S implies
Ax3jS, say FAx4jM 1. This means that the polytope
S must be included in the polytope Mx: FAx4jM 1N. The
application of the Lemma leads to (ii). Condition (iii) can
also be easily explained. Each vector x3S can be ex-
pressed as a convex combination of its vertices x"Xa.
Then it is very easy to show that S is invariant i!
Ax

j
-jS, for each x

j
3vertMSN say if Ax

j
"Xp

j
, where

p
j

is a non-negative vector such that +s
i/1

p
ij
"11 Tp

j
4

j41, where p
ij

is the ith component of p
j
. By grouping

together these equalities and inequalities, and setting
P"[p

ij
], we get (iii).

To state the corresponding continuous-time result, we
need the following de"nition.

De5nition 4.1. The matrix HK is called an M-matrix if all
its non-diagonal entries are non-negative.

Theorem 4.2. The following conditions are equivalent.

(i) The polyhedral 0-symmetric C-set S is positively in-
variant (contractive) for the system

x5 (t)"Ax(t). (21)

(ii) There exists b50 (b'0), and an r]r M-matrix
HK such that

HK 11 4!b11 ,

HK F"FA.

(iii) There exists b50 (b'0), and an s]s M-matrix
PK such that

11 THK 4!b11 T,

XHK "AX.

We explain the previous theorem, by means of the
following property (Blanchini, 1991a).

Lemma 4.2. The polytope S is contractive for system (21)
if and only if there exists qN'0 such that for 0(q4q6 ,
S is contractive for the following discrete-time Euler

Approximating System (EAS)

x(t#1)"[I#qA]x(t) (22)

The meaning of the lemma is immediate. The sub-
tangentiality condition requires that for x3LS the deri-
vative x5 "Ax points `insidea the set S. Thus, for a su$-
ciently small q, y"x#qAx3S (see Fig. 4) which
implies invariance of the EAS by Theorem 3.2. If we
apply the conditions of Theorem 4.1 to the EAS we easily
derive conditions (ii) and (iii) in Theorem 4.2 with
HK "(H!I)/q, PK "(P!I)/q and b"(1!j)/q.

In the literature there are further invariance conditions
which are basically equivalent to those presented. Note
also that the conditions (ii) of Theorems 4.1 and 4.2 apply
to the cases in which S is not necessarily bounded, and
the conditions (iii) of both theorems apply to the case in
which S has empty interior. Theorems 4.1 and 4.2 show
that

f if a polyhedral C-set S is given (say F or X are "xed)
checking its positive invariance is a linear programming
problem;

f If F or X are to be determined, the conditions become
bilinear

The controlled-invariance of a polyhedral set S for a dis-
crete-time linear system can be easily characterized as
follows. The set S is controlled invariant for the system

x(t#1)"Ax(t)#Bu(t)

if and only if there exists a positive j41, a s]s matrix
P50, and a m]s matrix ; such that

AX#B;"XP, (23)

and

11 TP4j11 T. (24)

This is a compact formulation of the result in Gutman
and Cwikel (1986a). The columns of the matrix; are the
controls u

k
associated to the the columns of X say the

vertices x
k

of S. Expression (23) is equivalent to
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Ax
k
#Bu

k
"+s

k/1
p
ik
x
i
3jS. The inclusion is due to the

fact that from (24) we get +s
k/1

p
ik
4j. Now, if we are able

to associate to each vertex of S a control that `pushesa
the state inside S, then we may de"ne, in view of the
system linearity, a control that pushes each point of the
boundary inside the set to apply Theorem 3.2. Consider
the set in Fig. 4. If for the vertices x

1
and x

2
there exist

controls u
1

and u
2

such that Ax
i
#Bu

i
"y

i
3int[S],

i"1, 2, and if we take a point x on the segment having
extrema x

1
and x

2
, x"mx

1
#(1!m)x

2
, 04m41, then

u"mu
1
#(1!m)u

2
maps x in y"my

1
#(1!m)y

2
,

which is also in the interior of S. This basic idea is easily
generalizable to the n-dimensional case.

Conditions analogous to (23) and(24) hold in the con-
tinuous-time case (i.e. AX#B;"XPK , and
11 TPK 4!b11 T, with PK M-matrix). They re#ect the fact
that the Nagumo sub-tangentiality condition can be as-
sured by some continuous control on LS if and only if it
can be assured in each vertex of S (Blanchini, 1995;
Blanchini & Miani, 1996c).

The mentioned results have been presented in the
literature by several contributions, although in slightly
di!erent (but strictly equivalent) forms. The positive in-
variance conditions for discrete-time systems are given in
Benzaouia and Burgat (1988a), Bitsoris (1988a, b). The
corresponding continuous-time conditions are in Vas-
silaki and Bitsoris (1989) and Bitsoris (1991). It is worth
mentioning that very similar results where previously
published in Molchanov and Pyatnitskii (1986, Part III)
for polyhedral Lyapunov functions for uncertain sys-
tems. Invariance conditions of polytopes for systems with
additive disturbances have been presented in Blanchini
(1991a), De Santis (1994), Milani and Dorea (1996) and
Tarbouriech and Burgat (1994). The case of systems with
parametric uncertainties is considered (beside Mol-
chanov & Pyatnitskii, 1986) in Rachid (1991), Blanchini
(1991a), Sznaier (1993), Benzaouia and Mesquine (1994)
and Milani and Carvalho (1995a). Extensions to singular
systems have been presented in Georgiou and Krikelis
(1991), Tarbouriech and Castelan (1993) and Tar-
bouriech and Castelan (1995). In Bitsoris and Gravalou
(1995a) similar invariance results are given for sets repre-
sented by nonlinear constraints and nonlinear systems by
means of the so called comparison system (see also Rouche
et al., 1977 for a de"nition). The conditions (23) for
controlled invariance have been given in Gutman and
Cwikel (1986a). The extension to uncertain systems is in
Blanchini (1995).

The "nal question we would like to deal with is the
existence of positively invariant (contractive) polyhedral
C-sets for linear systems. In the ellipsoidal case it is
well-known that a su$cient and necessary condition is
the marginal stability. This is not the case for polyhedral
sets. It turns out that if a system is asymptotically stable
then it admits polyhedral contractive C-sets (Benzaouia
& Burgat, 1989b), although there is no upper bound for

the complexity of their representation (i.e. the number of
vertices or delimiting planes). Su$cient existence condi-
tions for special classes of polytopes, with bounded com-
plexity, have been presented in Bitsoris (1988b) and
Hennet and Lasserre (1993) for discrete-time systems
(Bitsoris, 1991) and in Castelan and Hennet (1993) for
continuous-time systems. Necessary and su$cient exist-
ence conditions for marginally stable systems in terms of
some phase conditions of the eigenvalues are found in
Blanchini (1992). The problem of the existence of "nitely
determined invariant polyhedra (which have some
special optimality or e-optimality properties) under mar-
ginal stability assumptions is discussed in Gilbert and
Tan (1991).

4.3. Invariant sets of other types

There are several further special families of sets that
have been considered in literature beside ellipsoids and
polyhedra. These sets and their associated Lyapunov
functions have been involved mostly in stability analysis
problems.

Piecewise-quadratic functions have been used by Xie,
Shishkin and Fu (1995) for robustness analysis. They
have been used in Rantzer and Johansson (1997b) for the
robust stability analysis of hybrid systems. Polynomial
Lyapunov functions (which are not necessarily convex)
have been introduced in Zelentsowsky (1994). In Kiendl,
Adamy and Stelzner (1992) vector norms are studied as
candidate Lyapunov functions. Some conditions assur-
ing the negativity of the derivative are given which gener-
alize those presented here for polyhedral functions.

In the non-linear system case the determination of
a (control) Lyapunov function is in general a hard task
and this fact is a well-known practical limitation of the
Lyapunov theory. It is natural that the same troubles are
met in determination of an invariant (contractive) set.
Fortunately, for special classes of non-linear systems of
practical importance the `shapea of invariant sets can be
suggested by the structure of the system. This is the case,
for instance, of Hamiltonian systems (Fradkov, 1996;
Fradkov, Makarov, Shiriaev & Tomchina, 1997;
Rumiantsev, 1971; Shiriaev & Fradkov, 1998) which ad-
mit the (generalized) energy as natural Lyapunov func-
tion. Further techniques to construct Lyapunov
functions and invariant sets for classes of non-linear
systems are based on some integral expressions of the
state variables. The reader is referred to Miller and
Michel (1982) (see Sections 5.11 and 5.15) for details.

5. Construction of invariant sets and control synthesis

In this section we present some basic construction
techniques and investigate the structure of the controllers
that can be associated to controlled-invariant sets.

1756 F. Blanchini / Automatica 35 (1999) 1747}1767



Essentially the construction of ellipsoidal invariant sets
is based on the Lyapunov equation, on the Riccati equa-
tion or on linear matrix inequality techniques. We try to
explain the success of these tools by considering a simple
case. Let us suppose we wish to "nd a linear stabilizing
gain K for a reachable pair (A,B) together with a quad-
ratic control Lyapunov function xTPx. Then we have to
consider the equation

(A#BK)TP#P(A#BK)p 0, P z 0.

This equation is bilinear in P and K, thus not easy to
handle as it is written. However, one can multiply both
sides of the l.h.t. of the "rst inequality by QGP~1 and
parameterize K as K">P to achieve the following
linear matrix inequality, which is much easier to handle

QAT#AQ#>TBT#B>p0, Qz0

(see Boyd et al. (1994) Section 7.2.1) The above property
can be easily extended to the case of an uncertain pair
(A,B). A quadratic control Lyapunov function and the
associated linear control may be also determined by
means of an algebraic Riccati equation (see for instance
Zhou et al. (1994)).

In connection with the robust stabilization problem,
pioneer papers for the construction of quadratic func-
tions are Horisberger and Belanger (1976), Barmish et al.
(1983a, b), Gutman (1979). The basic idea is to start with
the construction of a quadratic function for the `nom-
inala system (assumed stable without loss of generality)
and subsequently synthesize the controller which
counteracts the perturbations. In this process the so
called matching conditions for the uncertainties become
fundamental. In later works, a Riccati equation approach
has been proposed in Petersen and Hollot (1986), Rotea
and Khargonekar (1989). These contributions led to im-
portant connections between the H

=
theory and the

quadratic stabilization theory (Khargonekar, Petersen
& Zhou, 1990). A convex optimization approach to syn-
thesize quadratic functions has been considered in Be-
rnussou, Peres and Geromel (1991), and Gu, Chen,
Zohdy and Loh (1991). A thorough review concerning
the stabilization problem via quadratic functions can be
found in Corless (1994). The Riccati equation has been
used to provide ellipsoidal invariant domains in the solu-
tion of stabilization problems under control constraints
(Lin, Saberi & Stoorvogel 1996a; Wredenhagen & Belan-
ger, 1994; Kim & Bien, 1994). Constructive methods to
determine invariant ellipsoids for systems with additive
perturbations based on Eq. (18) are presented in
Schweppe (1973), Usoro et al. (1982a), Boyd et al. (1994),
Brockman and Corless (1997).

Constructing a polyhedral invariant set S is in
principle harder that the computation of an ellipsoidal
invariant set, because, as we have seen, the invariance
conditions when S is not "xed are bilinear. Essentially

the construction techniques are of two fundamental
categories:

f Iterative methods leading to sets with some optimality
properties but usually of high complexity;

f eigenstructure analysis/assignment methods leading to
sets of low complexity.

The "rst procedures for the construction of invariant
polyhedral sets appeared in the early 70's in the dynamic
programming context, in particular as far it concerns the
so called min}max in"nite-time reachability problem
(Bertsekas & Rhodes, 1971a, b; Bertsekas, 1972). Given
a discrete-time system

x(t#1)"Ax(t)#Bu(t)#Ew(t),

w(t)3W, u(t)3U, x(t)3X,

where W, X and U are assigned constraint sets, the
min}max reachability problem consists in "nding a strat-
egy u(t)"'(x(t)) such that the constraints on u and x are
satis"ed for all w(t)3W. To provide necessary and su$-
cient conditions for the existence of such a strategy one
has to construct the in"nite-time reachability set which is
the largest invariant subset of X. This set can be com-
puted by means of a backward procedure whose main
idea is now explained.

Let k"0 and X
0
"X. Denote by X

~1
the set of all

states x3X for which there exists u(x)3U such that the
following state is included in X

0
for all possible actions of

the disturbance. Then repeat the argument by de"ning

X
~k~1

"Mx3X: &u(x)3U:

Ax#Bu(x)#Ew3X
~k

, ∀w3WN. (25)

The sequence X
~k

is nested as X
~k~1

-X
~k

. The in"n-
ity-time reachability set is

X
~=

G
=
Y
i/0

X
~i

.

If X
~i~1

"X
~i

for some i50, then X
~i

"X
~=

. The
importance of the in"nite-time reachability set lies in two
basic facts. First, the desired (non-linear) strategy exists if
and only if X

~=
in non-empty. Second the control strat-

egy ' can be derived by means of X
~=

. The principles of
this technique have been published in Bertsekas and
Rhodes (1971a, b), Bertsekas (1972) and Glover and
Schweppe (1971).

Techniques which are similar in spirit to the one
sketched above have appeared later. In Morris and
Brown (1976), Gutman and Cwikel (1986b), (1987),
Keerthi and Gilbert (1987) and Blanchini, Mesquine and
Miani (1995) recursive procedures for the backward con-
struction of polytopic invariant sets under control and
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3For instance if it includes in its interior the 0-reachable set of the
system (A, E) with constrained input w3W.

4A subspace X is (A,B)-invariant if there exists K such that
(A#BK)X-X.

state constraints are presented. In particular, (Gutman
& Cwikel, 1987 and Keerthi & Gilbert, 1987) considered
the same example presented in the introduction of this
paper so the reader can compare that kind of sets and the
invariant ellipsoid provided here. In Lasserre (1993), the
problem is solved under control constraints only. It is
shown that, to reduce the computational burden, one can
decompose the system in its unstable and stable part,
neglecting the latter.

Procedures to derive polyhedral contractive sets and
the associated Lyapunov functions for the robust stabil-
ity analysis can be found in Brayton and Tong (1979),
(1980), Michael, Nam and Vittal (1984), Molchanov and
Pyatnitskii (1986), Ohta, Imanishi, Gong and Haneda
(1993), Bhaya and Mota (1994), Blanchini and Miani
(1996a), and in Blanchini (1994) and (1995) for the robust
stabilization problem.

For what concerns the practical computation of the
sequence in (25) it is important to notice the if X, U and
W are polyhedral, so are the sets X

~i
(this property does

not hold if we consider ellipsoids (Glover & Schweppe,
1971; Bertsekas & Rhodes, 1971a). Unfortunately the
intersectionX

~=
is not necessarily polyhedral (but it can

be arbitrarily approximated by a polyhedron). For illus-
trative examples of the sequence X

~k
the reader is refer-

red to the papers by Gutman and Cwikel (1987), Keerthi
and Gilbert (1987) and Blanchini (1994). The computa-
tion of X

~k~1
, given X

~k
, involves a projection proced-

ure and the elimination of redundant constraints.
Computational details are reported in Keerthi and Gil-
bert (1987) and Blanchini and Miani (1996c). In the
absence of control (i.e. B"0) the recursion is assured to
converge in a "nite number of steps (i.e. X

~=
"X

~k
for

some k), thus producing a "nitely determinedX
~=

, if A is
asymptotically stable and E"0 (Gilbert & Tan, 1991) or
if A is asymptotically stable and X is `su$ciently largea
with respect to W (Blanchini, 1992; Blanchini & Sznaier,
1995a; Kolmanovski & Gilbert, 1995).3

A fundamental di!erence with the ellipsoidal invariant
sets is that, even in the case of linear systems, a controlled
invariant polytope S cannot in general be associated to
a linear feedback. Unfortunately, nonlinear compen-
sators may be extremely complex for the implementation.
So an important question is how to construct a control-
led invariant polyhedral set which can be associated to
a linear controller. There are quite di!erent approaches
to deal with this problem. The "rst one consists in "xing
a polyhedral set S and characterizing the family of all
linear controllers that renders this set invariant. This
problem has been formulated and solved in Vassilaki,
Hennet and Bitsoris (1988) and Mehdi and Benzaouia
(1989) for discrete-time systems and in Vassilaki and

Bitsoris (1989) for continuous-time systems, by means of
linear programming. There are several extension to these
results to uncertain systems (Blanchini, 1991a; Sznaier,
1993; Benvenuti & Farina, 1998), decentralized control
(Bitsoris, 1988c), singular systems (Georgiou & Krikelis,
1991; Tarbouriech & Castelan, 1993, 1995), non-linear
systems (Bitsoris & Gravalou, 1995a), and time-delay
systems (Hennet & Tarbouriech, 1997; Hmamed, Ben-
zaouia & Bensalah, 1995). This approach has the trouble
that the problem may have no feasible solutions for
unsuitable choices of S. An algorithm based on pole
placement that can be applied in the case of a failure of
the LP problem is discussed in Bitsoris and Gravalou
(1994).

The problem mentioned above can be faced by means
of analysis of invariant subspaces and eigenstructure as-
signment. Structural conditions for the existence of
stabilizing compensators that render invariant a (pos-
sibly unbounded) set of the form

P(G,o)GMx: !o4Gx4oN (26)

where G3RsCn, for some integer s4rankMBN,
rankMGBN"rankMBN and o3Rs, are given in Castelan
and Hennet (1992) where it is shown that kerMGN has to
be an (A,B)-invariant subspace4 and the triple (A,B,G)
must satisfy some minimum phase conditions (which are
fundamental to assure closed loop stability which is not
guaranteed as P(G,o) is not a C-set as required in The-
orem 3.3). Indeed, if these minimum phase conditions fail,
we can assure only partial stability as de"ned in Vorot-
nikov (1993), (1998) and Oziraner (1979) with respect to
the partial state variable y"Gx.

The eigenstructure assignment approach can be ap-
plied in the presence of control constraints of the form
!11 4u411 . If a linear gain K is considered, this
produces state constraints we can write as x3P(K, 11 )
(cf. (26)). Thus an interesting problem is how to render
invariant the set P(K, 11 ). The problem is similar to the
previous with the di!erence that P(K, 11 ) is now a func-
tion of the compensator gain K. This problem has been
considered in Benzaouia and Burgat (1988a) and Hennet
and Beziat (1991). In Bitsoris and Vassilaki (1990), it is
shown that there exists a stabilizing gain K assuring the
invariance of P(K,11 ) if and only if the number of unstable
pole does not exceed the number of control inputs (see
also Bitsoris & Vassilaki, 1995b and Benzaouia
& Hmamed, 1993). Extensions of these results are in
Benzaouia and Mesquine (1994), where uncertain sys-
tems are considered, and in Dorea and Milani (1995a)
where a modi"ed LQ problem is investigated.

Some contributions in literature show how to deter-
mine invariant sets included in polyhedra of the form
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P(G,o) a posteriori, i.e. when a stabilizing control law
u"Kx is assigned. Results in this direction are given in
Gilbert and Tan (1991) where it is shown that given an
asymptotically stable (closed loop) discrete-time system
x(t#1)"A

cl
x(t) and a polyhedral set P(G,o), the largest

invariant set in P(G,o) is polyhedral. Such a result ad-
mits extensions to the case in which additive disturbances
and parametric uncertainties are present (Blanchini,
1992; Blanchini & Sznaier, 1995a; Blanchini, Miani
& Sznaier, 1997; Kolmanovski & Gilbert, 1995). In the
uncertain case, these very procedures serve as stability
tests, analogous to those in Brayton and Tong (1979),
(1980), Michael et al. (1984), Molchanov and Pyatnitskii
(1986) and Ohta et al. (1993).

As it has been mentioned before, since it is not possible
in general to associate a linear controller to a controlled-
invariant polytope, it is often necessary to consider non-
linear control laws. In Gutman and Cwikel (1986a) it is
shown that in the discrete-time case the feedback law that
can be associated to a polytope can be inferred from the
values of the control at the vertices. One of the control-
lers so obtained is piecewise linear. In Keerthi and
Gilbert (1987) the discrete minimum-time problem is
considered. The k-step controllability sets R

k
to the ori-

gin (which are invariant) are computed by means of
a backward procedure. The compensator expression is
derived by imposing that the system state x(t)3R

k
moves

to R
k~1

. Another possibility is that of providing a non-
linear controller by solving on-line an optimization prob-
lem. This technique originated in Bertsekas and Rhodes
(1971a) and Glover and Schweppe (1971). More recent
contributions on this type of control strategies are in
Sznaier and Damborg (1990), (1992), (1993), Blanchini
and Ukovich (1993) and Shamma (1996).

In the continuous-time case one of the basic principles
to associate a control law to a controlled invariant set
S is based on the sub-tangentiality conditions. For any
x3S the control u must be taken in such a way such that
Ax#Bu3CS(x). If the Minkowski function (S is con-
tinuously di!erentiable this condition can be written by
means of its gradient (under weaker assumptions one can
use the tangent cone, see for instance Maderner, 1992). It
is very easy to show that, in the quadratic case this leads
to the expression (17) Barmish et al. (1983a).

If u is constrained as u3U, then we can choose the one
of minimum Euclidean norm assuring a prescribed de-
gree of contractivity b'0 (say the condition (Q 4!b()
(Peteresen & Barmish, 1987). If S and U have smooth
surfaces, such a control is continuous. If the function
(S is non-di!erentiable, as in the polyhedral case, these
methods are more di$cult to be implemented. It can be
shown (Blanchini, 1995) that the piecewise-linear control
of Gutman and Cwikel (1986a) applies to continuous-
time systems. In the single-input case, a bang-bang
stabilizing controller has been proposed in Blanchini and
Miani (1996b).

The association of a proper control action to a non-
linear systems that renders a set S invariant is based on
the same principles exposed above. The basic concept is
the so called regulation map or feedback map (see Aubin,
1991, De"nition 6.1.2 or Aubin & Cellina, 1988, Section
5.4). Given a continuous-time system x@(t)"f (x, u) the
regulation map is de"ned as the set of all control values
which assure that the closed loop system satis"es the
sub-tangentiality condition

RS(x)"Mu3U: f (x, u)3CS(x)N

where CS(x) is the tangent cone and U is the set of all
admissible controls. The non-emptiness of RS(x) and the
choice of the control as u"'(x)3RS(x) is a necessary
and su$cient condition for S to be positively invariant
for the closed loop system. This property has been ex-
ploited in Lu and Packard (1996) for disturbance rejec-
tion. However, the problem is the determination of
S such that RS(x)O0 for all x3S. There are special
cases in which such a problem can be solved. In Rumian-
tsev (1971) a control scheme is proposed in which the
Lyapunov function of the uncontrolled system (of
a special class) is used as a closed loop Lyapunov func-
tion to assure asymptotic stability or to increase conver-
gence. Contributions along this line are due to Fradkov
(1996) and Fradkov et al. (1997) where the problem of
reaching a prescribed energy level surface is solved for
Hamiltonian systems by means of the so called speed-
gradient control.

6. Applications

In this section we discuss some applications of set
invariance proposed in the literature.

6.1. Invariant sets as theoretical tools

Invariant sets have been intensively used in mathemat-
ical literature. Their exploitation started with the
Lyapunov theory for di!erential equations and in par-
ticular with the Lassalle invariance principle (see the
books Hahn, 1967; Lassalle & Lefschetz, 1961;
Lyapunov, 1966; Rouche et al., 1977; Zubov, 1964). Posit-
ively invariant sets have been shown to be very useful in
the analysis of dynamical systems described by di!eren-
tial inclusions (Colombo, 1992; Aubin, 1991; Aubin
& Cellina, 1988). Some extension theorems are based on
the existence of positively invariant sets (Crandal, 1972).
Furthermore, the existence of periodic solutions of peri-
odic nonlinear systems can be proven by the determina-
tion of an invariant set (Yoshizawa, 1975). See (Zanolin,
1987; Fernandes & Zanolin, 1987 for recent develop-
ments on this topic.

The invariance principle has been used in the frame-
work of adaptive control to prove convergence of some
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adaptation schemes (Byrnes & Martin, 1995; Ryan,
1998). To have a simple idea of such kind of applications
the reader can look at the very simple but meaningful
Example 3.10 in Khalil (1992).

One important problem in the analysis of dynamical
systems worth to be mentioned for its importance in
system engineering is the determination of the domain of
attraction (or the stability domain) for a non-linear sys-
tem of the form x5 (t)"f (x(t)). Essentially, a stability do-
main is a set of the form N[(, k], where k'0 and ( is
a Lyapunov function. The basic techniques to solve this
problem are based on the Zubov's equation and La
Salle's methods reported in the above mentioned books.
Again, the literature on this topic is too wide to be
adequately reported here. We refer to Genesio, Tartaglia
and Vicino (1985) for a comprehensive survey.

Further applications of set invariance concern the
qualitative analysis of biological systems, see Hutson and
Schmitt (1992) for a recent review.

The invariant sets have served as theoretical tools in
some speci"c control problems. For instance in the worst
case peak-to-peak minimization (the so called l

1
theory)

invariant sets have been used to provide some important
properties of non-linear compensators (Shamma, 1994;
Stoorvogel, 1996a).

6.2. Invariance and control problems with time-domain
constraints

Undoubtedly the main applications of the invariant
sets are the analysis and synthesis under time-domain
constraints. The necessity of dealing with constraints is
a serious matter in many real problems. In particular the
case of control and state constraints of the form

x(t)3X, u(t)3U,

where X and U are assigned compact sets, has been
deeply investigated, especially when the above con-
straints are linear, say X and U are polyhedral. The
reason why invariant sets play a central role is that
constraints violations can be avoided if and only if the
initial state belongs to a controlled invariant set S-X,
associated to a stabilizing control law such that
'(S)-U. Thus the determination of a controlled-in-
variant set is important for the following reasons:

f it provides a set of feasible initial states (domain of
attraction);

f it characterizes the control law. This is accomplished
by imposing that the corresponding control renders
negative the derivative of the associated Lyapunov
function.

These concepts were introduced very early in control
literature (Bertsekas & Rhodes, 1971a; Bertsekas, 1972;
Glover & Schweppe, 1971) in the more general context of

pursuit-evasion games and a lot of works have appeared
later.

Stabilization problems with control constraints only
have been solved in Benzaouia and Burgat (1988a), Ben-
zaouia and Hmamed (1993), Benzaouia and Mesquine
(1994) and Bitsoris and Vassilaki (1995b) by means of
linear controllers and in Lasserre (1993) and Blanchini
et al. (1995) by means of non-linear compensators. Linear
saturated compensators have been used in Benzaouia
and Burgat (1988b), Dorea and Milani (1995a), Gutman
and Hagander (1985) and Verriest and Pjunen (1996) and
a piecewise linear compensator (obtained by means of
a family of nested ellipsoidal sets) is presented in Wreden-
hagen and Belanger (1994). A continuous family of ellip-
soidal invariant sets, depending on a positive parameter
q, is considered with the same goal i Suarez, Sols-Daun
and Alvarez (1994), (1997). Uncertain systems with con-
trol constraints are considered in Corless and Leitmann
(1993), Kim and Bien (1994) and Gutman and Gutman
(1985).

Systems with both state and control constraints are
considered in Gutman and Cwikel (1986a), (1986b),
(1987), Keerthi and Gilbert (1987) and Blanchini and
Miani (1996b) where nonlinear compensator and poly-
hedral invariant sets have been used. The fundamental
advantage is that the polyhedral sets are more #exible to
cope with control/state constraints than the ellipsoidal
sets since they are capable to approximate the largest
domain of attraction with arbitrary precision.

In Kolmanovski and Gilbert (1997) the computation of
the largest invariant set under state and control con-
straints is used to improve the compensator performance.
A family of linear compensators with `increasing gaina is
computed, and each of them is associated to its largest
domain of attraction. The system is switched from a cer-
tain gain to a new one when the state enters the domain
of attraction of the latter. A similar idea is pursued in the
above mentioned paper (Wredenhagen & Belanger,
1994). An interesting application is the reference gov-
ernor problem. Essentially the tracking problem under
constraints can be solved by a device which is used in
addition to the controller loop, that possibly inhibits the
reference signal when this is driving the system to a con-
straint violation. The inhibition is activated when the
state reaches the boundary of a pre-computed invariant
set included in the feasible region. Contributions in this
sense are in Gilbert and Tan (1991), Graettinger and
Krogh (1992), Bemporad, Casavola and Mosca (1997)
and Gilbert, Kolmanovsky and Tan (1995). This control
strategy can be considered as an alternative approach to
the override control (Glattfelder & Schaufelberger 1988).
Its main advantage is that, being based on an invariant
set, it naturally provides stability conditions. However,
the actual implementation of the control scheme requires
state feedback and its complexity obviously grows with
that of the representation of the invariant set.
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An application to engine control is presented in Kol-
manovski, Gilbert and Cook (1997). Contractive sets are
employed to improve the convergence performance of
a feedback loop by means of the so called `heuristically
enhanced controla (Sznaier & Damborg, 1990, 1992,
1993). Further relevant references on the problem of
control under constraints, including (but not speci"cally
oriented to) the techniques based on invariant sets are
Tarbouriech and Hennet (1997) and Bernstein and
Michel (1995).

6.3. Invariance and robustness

The notion of invariant set is fundamental for the
analysis and synthesis problem of uncertain time-varying
systems. It is known that, under some general assump-
tions, a nonlinear system with time-varying uncertainties
admits a Lyapunov function if (and obviously only if) it is
stable (Meilakhs, 1979; Lin, Sontag & Wang, 1996b). In
the case of a linear uncertain system of the form

x5 (t)"A(w(t))x(t), w(t)3W (27)

then the robust stability of this system is equivalent to the
existence of a Lyapunov function which is a norm, and
therefore to the existence of robustly contractive C-sets
(Molchanov & Pyatnitskii, 1986; Brayton & Tong, 1979,
1980; Michael et al. 1984). We stress that, if the uncertain-
ty parameter w is constant, then the stability of each con-
stant matrix A(w) does not imply the existence of a single
robust invariant set for the system (clearly, each system
x5 (t)"A(w)x(t), for "xed w, admits an invariant set S

w
).

Stability analysis and stabilization by means of quad-
ratic Lyapunov functions is a widely investigated prob-
lem. Among the relevant references we recall
Kamenetsky (1984), Horisberger and Belanger (1976),
Barmish et al. (1983a), (1983b) and Yedavalli and Liang
(1986) (see Corless, 1994 for a review on the subject). As
mentioned above, quadratic stability and stabilization for
systems with polytopic uncertainties can be recast as a con-
vex optimization problem (Bernussou et al., 1991; Gu et al.,
1991). Similar analysis results for more general uncertain-
ty structures are in Garofalo, Celentano and Glielmo
(1993). For a complete exposition on this topic see Boyd
et al. (1994).

The quadratic functions give su$cient conditions for
robust stability of a linear uncertain system, but they do
not provide necessary and suzcient conditions. It turns out
that the ellipsoidal shape of the associated invariant sets
is not su$ciently general to `describea uncertain dynam-
ics even in the linear case. Conversely, the following
property holds.

The existence of polyhedral contractive sets and their
associated Lyapunov functions is a necessary and su$-
cient condition for the robust stability of the system (27).

This fact was pointed out in Molchanov and Pyatnit-
skii (1986), Brayton and Tong (1979), (1980) and Michael

et al. (1984) (see also Bhaya & Mota, 1994 for an interest-
ing discussion on these references). Examples of the con-
servativeness of the conditions based on quadratic
functions are given in Blanchini and Miani (1996b) and
Zelentsowsky (1994). Furthermore it has been shown
that the uncertain pair (A(w(t)),B(w(t))), w(t)3W is stabil-
izable if and only if there exists a polyhedral Lyapunov
function (Blanchini, 1995).

Further types of Lyapunov functions have been
involved in the robust stability analysis such as piecewise
quadratic functions (Xie et al., 1995; Rantzer &
Johansson, 1997b), polynomial functions (Zelentsowsky,
1994). It turns out that the derived stability conditions
are less conservative than those based on quadratic
functions.

6.4. Disturbance rejection

An important problem in system analysis is to charac-
terize the e!ect of a persistent unknown-but-bounded
disturbance on a dynamical system. This goal may be
achieved by determining the 0-reachable set of the sys-
tem, which turns out to be, for a globally stable linear
system, the smallest invariant set for the system. Tech-
niques for such a computation are presented in Pec-
svaradi and Narendra (1971), Lasserre (1987), Senin and
Soldunov (1990), Lasserre (1993), D'Alessandro and De
Santis (1992), Graettinger and Krogh (1991), Zhu, Zhang
and He (1992). A review is provided in Gayek (1991).

The disturbance rejection synthesis problem has been
approached by means of invariant sets in the context of
dynamic programming (Bertsekas & Rhodes 1971a;
Bertsekas & Rhodes, 1971b; Glover & Schweppe, 1971;
Bertsekas, 1972). Further work has been done in Usoro et
al. (1982a). Ellipsoidal invariant sets have been sub-
sequently applied to the control of a power plant (Parlos,
Henry, Schweppe, Gould & Lanning, 1988). Further con-
tributions along these lines are in Abedor, Nagpal and
Poolla (1996), where the so called *-norm is introduced
as a counterpart of the l

1
norm considered in Dahleh and

Pearson (1987) and Vidyasagar (1986) for disturbance
rejection (see also Venkatesh & Dahleh, 1995 for some
comments about the conservatism of the approach).

The approach based on invariant sets for persistent
disturbance rejection is receiving a renewed attention
beside the more recent L

1
theory (Blanchini & Ukovich,

1993; Shamma 1994, 1996; Blanchini & Sznaier, 1995a;
Stoorvogel, 1996a; Fialho & Georgiou, 1997). Papers
which deal with the disturbance rejection problem for
non-linear systems by means of invariant sets are Lu
(1995), Lu and Packard (1996).

6.5. Performance analysis via invariant sets

Invariant sets may be used in the performance evalu-
ation of uncertain systems. It is known that certain
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performance bounds can be given in terms of ellipsoidal
bounding sets, some of whom have already been dis-
cussed. For instance to "nd an overbound for the peak of
the impulse response for a SISO linear system (A, b, c) one
can compute an invariant ellipsoid for A including the
initial state vector x(0)"b and included in the set
Mx: DCxD4kN. Then k turns out to be an overbound.
Minimizing k is a convex optimization problem. This
result is particularly meaningful since it can be easily
extended to the case of a polytopic uncertain A(w). A rich
summary of bounds of this kind is given in Boyd et al.
(1994, Chapter 6).

In Barmish and Sankaran (1979) it is shown how to
analyze the propagation e!ect of the uncertainty by
means of polyhedral reachability (non-convex) sets. It is
shown how the convex hull of these sets can be recursive-
ly determined. In Fialho and Georgiou (1995) it is shown
how to compute the L

1
norm of an uncertain system by

approximating its 0-reachable set. In Blanchini, Miani
and Sznaier (1997) the evaluation of the peak overshoot
of the step response of an uncertain system, possibly
under the e!ect of a persistent disturbance is performed
via invariant sets. In De Santis (1994) it is shown how to
maximize the disturbance, size while preserving the in-
variance of a given polyhedral set. The trade-o! between
the robust invariance margin and the convergence speed
has been analyzed in Sznaier (1993).

6.6. The receding horizon control

A very popular method to control a dynamical system
is the receding horizon technique. If we consider a dy-
namical discrete-time system such a strategy consists in
"xing an horizon ¹ and, for a given state x(t), computing
a sequence of ¹ control vectors u(t), u(t#1),2,
u(t#¹!1), by means of a "nite horizon optimization.
The feedback strategy is then achieved by applying the
"rst value u(t) and then performing the computation
again at t#1 and so on. This very popular technique
was introduced several years ago (Propoi, 1963; De
Vleger, Verbuggen & Bruijn 1982; Chang & Seborg,
1983; Keerthi & Gilbert, 1988) and it is also known as
model-predictive control, see Garcia, Prett and Morari
(1989) for further references and applications. Invariant
sets may be successfully involved in this context in order
to deal with constraints and to provide stability. One way
to do this is to assume that the initial state x(0) is included
in an appropriate invariant set (Blanchini & Ukovich,
1993; Gutman & Cwikel, 1986a; Sznaier & Damborg,
1990; Bemporad et al., 1997; Bemporad & Mosca, 1998).
It is worthwhile to mention the fact that, if linear/quad-
ratic functionals are minimized on-line, then a computa-
tional advantage is achieved by involving polyhedral
invariant sets instead of generic convex invariant set
(even ellipsoids), since the former introduce linear con-
straints in the optimization procedure. A di!erent possi-

bility, which has been used to prove stability of the
control scheme, is to enforce, as a terminal constraint, the
inclusion of the xnal state x(t#¹) in an invariant set
including the origin. This idea, suggested in Sznaier and
Damborg (1987) and Sznaier and Damborg (1989), was
considered in Mayne and Michalska (1990) where the
receding horizon control for a nonlinear system is de-
signed to reach a proper ellipsoidal invariant set asso-
ciated to a linear control. A feature of the approach is
that the set of feasible initial states, which can be very
hard to compute, is de"ned implicitly by the set of all
states x(0) for which the corresponding on-line problem
admits a feasible solution.

7. Concluding remarks

Techniques involving invariant sets have been con-
sidered in the literature of the last thirty years and they
are still appealing as it is evidenced by the numerous
recent contributions. However these techniques present
several drawbacks.

The techniques based on ellipsoidal sets are conserva-
tive. This fact is well established in robustness analysis as
well in the determination of domains of attraction under
constraints. Polyhedral sets provide non-conservative
solutions but they lead to computationally intensive algo-
rithms. This is one of the most serious troubles although
the fast improving computer performances alleviate the
problem.

The synthesis techniques based on invariant sets are
best suited for state-feedback control problems especially
for uncertain systems. Clearly, if the system is certain and
linear, the controller can be always associated to an
observer for output feedback. However, since the initial
state is unknown an observer-based control may fail to
keep the actual state in the region. This problem may be
not too crucial if the observer convergence is fast. Fur-
thermore, in the discrete-time case, a dead-beat observer
can be used which provides the exact value of the state in
"nite time. If the past input and output values can be
assumed to be known, the initial estimation error is zero,
so we have virtually no restrictions in considering state
feedback.

This simple idea cannot be applied if there are non-
negligible uncertainties or additive noise (as it is almost
always the case). The measurement feedback problem
under disturbances has been investigated, in a set-
theoretic framework, in the past. Essentially the basic
idea is to equip a state-feedback controller with a set-
theoretic observer (Bertsekas & Rhodes, 1971a, b; Glover
& Schweppe, 1971). This type of approach has very
recently received a renewed attention (Stoorvogel, 1996b;
Shamma & Tu, 1997).

On the other hand, beside the mentioned troubles,
invariant sets have several outstanding properties from
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both a theoretical and practical point of view which have
been evidenced in this paper.

We believe that there are still several open problems
that are worth an investigation. For instance, we have
seen that the only family of sets of practical use having
a bounded complexity are the ellipsoids. For the reasons
explained above it would be important to develop algo-
rithms to "nd other classes of invariant sets to achieve
a reasonable tradeo! between conservatism and com-
plexity. It would also be important to synthesize
invariant sets together with output-feedback (possibly
dynamic) controllers. The synthesis and analysis of
nonlinear systems, by means of invariant sets is also
a challenging problem, which, needless to say, leads to
strong mathematical di$culties. Finally we believe that
the potentiality of the theory of invariant sets in real
applications, which is still not completely explored, de-
serves more attention and we hope to see more research
activity on this subject in the future.
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