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Abstract 

In this paper we use an approach based on sliding mode control to design a feedbaek which stabilizes the origin for the 
so-called nonholonomic integrator or Heisenberg system, a particular ease of a canonieal class of nonlinear driffiess control 
systems of the form 

2 =- B(x)u 

which fail Broekett's necessary condition for the existence of a smooth stabilizing feedback. 
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I.  Introduction 

There has been a great deal of  research recently on 
the problem of  stabilizing systems which fail a nec- 
essary condition for the existence of  smooth, or even 
continuous feedback (see [6]). One of  the reasons for 
the interest in such systems is that nonholonomic sys- 
tems fall into this class. (See, for example, [21,4] and 
references therein.) Various approaches have been 
taken to the stabilization problem for such systems, 
focusing mainly on the development of  either smooth 
dynamic feedback or nonsmooth feedback. An im- 
portant paper regarding the former approach is 
Coron [9]. See also Pomet [22] and M'Closkey and 
Murray [20]. Kolmanovsky and McClamroch [17], 
for example, used a discontinuous, discrete-time 
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approach, while Brockett [7] used a stochastic 
approach. Other important work includes that of  Liu 
and Sussmann [ 18], as well as the work of  Samson, 
Sordalen, Walsh, Bushnell and others. Another inter- 
esting problem for such systems in the problem of  
tracking which was also analyzed in Brockett [7]. 

In this paper we consider a sliding mode approach 
to the stabilization and tracking problem for the so- 
called nonholonomic integrator or Heisenberg sys- 
tem (so called because the underlying Lie algebra of  
control vector fields is isomorphic to the Heisenberg 
algebra). Firstly we provide a feedback which will 
globally asymptotically stabilize the origin. The idea 
is to use the natural algebraic structure of  the sys- 
tem together with ideas from sliding mode theory (see 
[24, 10, 11]). We announced the main result on sta- 
bilization in Bloch and Drakunov [1]. Related recent 
work includes the following. Khennouf and Canudas 
de Wit [ 16] presented the alternative control scheme 
(24) ,(25) ,  discussed below, and in Canudas de Wit 
and Khennouf [8], they considered robustness issues. 
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Hespanha [15] and Morse [19] discussed these con- 
trol ideas in terms of  logic-based switching. Sliding 
mode control for differentially flat nonholonomic sys- 
tems is discussed in Sira-Ramirez [23]. Tracking via 
sliding modes is described in Guldner and Utkin [14] 
for holonomic systems. 

Further, using a variant of  our techniques, we derive 
an approximate tracker for our system (see also [2]). 

The nonholonomic integrator is merely the sim- 
plest example of  an important class of  nonlinear con- 
trollable systems of  the k = B ( x ) u ,  B ( x )  an n × m 
matrix, m < n, introduced in the fundamental paper of  
Brockett [5], and which are prototypical examples of  
systems where smooth feedback fails and which have 
a natural controllability condition. In a related paper 
[3] we discuss the stabilization of  such general systems 
via a discontinous (but not sliding mode) algorithm. 
Our algorithm for the general case involves switching 
between different Lyapunov functions. 

2. Stabilization of the nonholonomic integrator in 
sliding mode 

We consider the system (see [5]) 

~ = u ,  (1) 

)~ = v, (2) 

= x v  - y u .  (3) 

As mentioned earlier it is a prototype for more com- 
plex controllable but not smoothly stabilizable sys- 
tems. 

We note also that this system can be obtained by 
a change of  variables from a system in so-called 
"chained form" (see [23] and references therein). 

The problem of  stabilizing (1), (2), even locally, is 
not a trivial task, since, as can be easily seen, the lin- 
earization in the vicinity of  the origin gives the non- 
controllable system 

~ = - U ,  

~ = 0 .  

In fact, as was proved by Brockett [6], the system 
( 1 ) - ( 3 )  cannot be stabilized by a n y  smooth feedback 
control law. As discussed in the introduction, later 
approaches using time-periodic feedback and a ran- 
domized feedback were developed. 

In this paper we present time-invariant laws solv- 
ing the stated problem. By nature, they are discontin- 
uous and lead to sliding along manifolds of  reduced 
dimensionality in the state space. 

The main difficulty here is the fact that stabilization 
o f x  and y leads to zero right-hand side of  (3) and, 
therefore, the variable z cannot be steered to zero. That 
simple observation implies that to stabilize the system 
one needs to make z converge "faster" than x and y. 

We suggest using the following control law: 

u = - ~ x  + f l y  sign(z), (4) 

v = - e y  - fix sign(z), (5) 

where ct and/3 are positive constants. 
Let us show that there exists a set o f  initial condi- 

tions such that trajectories starting there converge to 
the origin. 

Consider a Lyapunov function for (x, y)-subspace: 

V z  1 2 ~(x q- y2).  (6)  

The time derivative of  V along the trajectories of  sys- 
tem ( 1 ) - ( 3 )  is negative: 

( / =  - ~ x  2 + / 3 x y  sign(z) - ~y2 _ /3xy  sign(z) 

__-- _~(X 2 q_ y2)  = - 2 ~ V .  (7)  

Therefore, under the control (4), (5) the variables x 
and y are stabilized. 

Now let us consider the variable z. Using (3) and 
(4), (5) we obtain 

= x v  - y u  = - / 3 ( x  2 ~- y2) sign(z) 

= -2/3V sign(z). (8) 

Since V does not depend on z and is a positive func- 
tion of  time, the absolute value of  the variable z will 
decrease and will reach zero in finite time if the in- 
equality 

2/3 V ( z )  dr > Iz(O)l (9) 

holds. I fz(O) is such that 

2/3 V(r) dr = Iz(0)l, (10) 

z ( t )  converges to the origin in infinite time (asymp- 
totically). Otherwise, it converges to some constant 
nonzero value of  the same sign as z(O). 
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If the above inequality (9) holds, the system trajec- 
tories are directed to the surface z = 0 and the variable 
z(t)  it stabilized at the origin in finite time. (The vari- 
ables x and y, as follows from (7), always converge 
to the origin while within that surface.) 

This phenomenon is known as slidin9 mode (see 
[24, 10]). The manifold z = 0 is a stable integral 
manifold of the closed loop system (1)- (3  ), (4), (5). 
Its characteristic feature is reachability in finite time 
[11]. Using a smooth control (even a control satis- 
fying a local Lipschitz condition (in the vicinity of 
{z = 0})) such fast convergence cannot be achieved. 
On the other hand, within the sliding manifold {z = 0} 
the system behavior is described in accordance with 
the Filippov definition for systems of differential 
equations with discontinuous right-hand sides [12]. 

Let us explain the version of this definition which 
we are using. We consider the system 

~c = f ( x ) ,  (11) 

with f ( x )  a discontinuous function comprised of a 
finite number of continuous fk (x)  (k = 1 . . . . .  N )  so 
that 

f ( x )  - fk (x)  forx  E J///k, (12) 

where the open regions Jgk have piecewise smooth 
boundaries ~J/k. Then according to the Filippov def- 
inition we define the right-hand side of (11 ) within 
~J//k as 

~= ~ ~kA(x). (13) 
kE l(x) 

The sum is taken over the set I (x)  of all k such that 
x E ~,///k and the variables/~k satisfy 

/~k = 1, (14) 
kE l(x) 

i.e. the fight-hand side belongs to the convex closure 
co{fk(x): k E I(x)} of the vector fields fk(x) for all 
k E I(x). Actually, the Filippov definition replaces the 
differential equation (11 ) by a differential inclusion 

~? E co{fk(x): k E l(x)} (15) 

for the points x belonging to the boundaries ~3J/k. If 
within the convex closure there exists a vector field 
tangent to all or some of the boundaries then there is a 
solution of the differential inclusion belonging to OJ//k 
which corresponds to the sliding mode. 

In the above relatively simple case, the Filippov 
definition provides a unique solution and implies that 

the system on the manifold is 

= --x, 

y ~  --y. 

Since from (7) it follows that 

V(t) = V(0)e -2~t = ½(x2(0) + y2(0))e-2~t, (16) 

substituting this expression in (9) and integrating we 
find that the condition for the system to be stabilized is 

~ [X2(0) + y2(0)]  >/Iz(0)l .  (17) 

The inequality 

~ ( x  2 + < Izl, (18) y2) 

defines a parabolic region ~ in the state space. 
The above derivation can be summarized in the fol- 

lowing theorem: 

Theorem 1. I f  the initial conditions for  the system 
(1 ) - (3 )  belon9 to the complement ~c o f  the region 

defined by (18), then the control (4), (5) stabilizes 
the state. 

If the initial data are such that (18) is true, i.e. the 
state is inside the paraboloid, we can use any control 
law which steers it outside. In fact, any nonzero con- 
stant control can be applied. Namely, if u - u0 = 
const, v ~ Vo = const, then 

x(t)  = uot + xo, 

y( t ) = rot + Yo, 

z(t)  = t(XoVo - youo) + zo. 

With such x , y  and z the left-hand side of (18) is 
quadratic with respect to time t while the right-hand 
side is linear. Hence, when the time increases the state 
inevitably will leave ~ .  

A global control law in the form of the feedback 
(although discontinuous) can be described as follows: 

( (U0, / )0)  T if  ( x , y , z )  T C ~ ,  (u ,v )  T 
( E q s . ( 4 ) , ( 5 )  i f ( x , y , z ) T E ~  c. (19) 

Theorem 2. The closed system (1)-(3),(19) is 9lo- 
bally asymptotically stable at the oriyin. 

Global asymptotic stability means that: (i) for all 
initial conditions, x( t ) , y ( t ) , z ( t )  --~ O, when t ~ ~ ;  
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(ii) Ve > 0 there exists 6 > 0 such that x~ + y~ + z  2 < 
32 implies x2( t )  + y2( t )  + z2( t )  < ~:2 for any t~>0 
(Lyapunov stability). 

We have already shown above that (i) is true. (ii) 
follows from the fact that outside ,~ and on the surface 
o f  parabola 0.~ the state monotonically approaches 
the origin. For initial conditions inside :~ we have 

xZ(t) 4. yZ(t) 4. z2(t) -- (uot + x o )  z + (rot 4- y0) 2 

+[(x0v0 - youo)t  + z0] 2 

(2o) 

The maximum of  the expression (20) is achieved for 
t = 0 or t = tf, where tr is the first moment of  time 
when the state reaches UP. This moment is defined by 
an equation 

f l  ( uotf Jr xo 4- ( Votf 4" YO = I(xovo -- youo )tf 4" zol. )2 )2 

(21) 

As can be easily seen from (21), for fixed u0, v0, the 
solution o f  this equation tf tends to zero if  xo, yo,zo 
tend simultaneously to zero. That proves (ii). 

Simulations of  the algorithm for two types of  initial 
conditions are shown in Fig. 1. 

The parameters ~ > 0, fl define the size of  the 
paraboloid. When fl/~ -~  ~x~ the parabolic region 
~ limits to the z-axis. From that point of  view, 
to stabilize the system (1) - (3 ) ,  it is reasonable to 
increase fl as the state approaches the origin (if 
we decrease ~ the convergence of  x and y will be 
slower). To realize this idea we can use a control 
law, where ~ increases when x and y approach the 
origin: 

v 
u = - ~ x  4, f l ~  sign(z), (22) 

X 
v = - ~ y  - f l ~  sign(z), ( 2 3 )  

or even 

u = - ~ x  + f l x 2 - - ~ y  2 z, (24) 

x 
v = - z y  - 1 3 ~  z. (25) 

x ' +  v'y 

As mentioned above for a detailed analysis in the 
case (24), (25), see Khennouf and Canudas de Wit 
[16]. 

Then from (3) we have 

= - f l  sign(z) (26) 
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Fig. 1. Stabilization of the nonholonomic integrator. 
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o r  and 

= - f l z ,  (27) 

respectively. 
In both cases, the state converges to the origin from 

any initial conditions, except the ones belonging to 
the z-axis. But, in contrast to (4), (5) the control laws 
( 2 2 ) - ( 2 5 )  are unbounded in the neighborhood of  the 
z-axis (on the axis they are not defined). I f  the initial 
conditions belong to this set again we can apply any 
nonzero constant control for an arbitrary small period 
of  time and then switch to (22), (23) or (24), (25). A 
method of  dealing with the boundedness problem is 
also described by Khennouf  and Canudas de Wit. An- 
other global (excluding {x = 0} A {y = 0} space), but 
only e-stabilizing control, may be obtained by switch- 
ing ~: 

Let c~ be the following function of  x and y:  

c~ = ~0 sign(x 2 + y2 _ e2), (28) 

where ~0 > 0, fl > 0 are constants and let the control 
be 

u = - T x  + f l y z ,  (29) 

v = - c ~ y  - f l x z .  (30) 

Using (7) we find that from any initial conditions x 
and y the state reaches an e-sphere of  the x, y-space 
origin: 

X 2 _[_ y2 = const = e 2. (31) 

After that the equation for the variable z in sliding 
mode is 

= -- f leZz.  (32) 

Therefore, z ~ 0 when t ~ c~, while the variables 
x and y stay in an t-vicinity of  the origin. O f  course, 
in (29), (30) z can be replaced by any function 9 ( z )  

which guarantees asymptotic stability of  the equation 

~--- --f l /32g(Z),  (33) 

for example, 9 ( z )  = sign(z). 
Another interesting control can be obtained if in 

(28) we replace e 2 by [z[: 

{~o  if X 2 -k y2 > [Z[, 
c~ = (34) 

~j i f x  2+y2~<lz [ ,  

where :~0 > 0 and :~l ~< 0, 

= c~0 sign(x 2 + y2 _ iz[) (35) 

u = - c t x  + f l y  sign(z), (36) 

v = - ~ y  - / ~ x  sign(z). (37) 

In this case outside the parabolic region x 2 + y2 > Iz I 
the asymptotic convergence of  z is guaranteed. I f  the 
initial conditions are inside this region, x 2 + y2 is in- 
creasing and reaches the parabola in finite time, re- 
maining in sliding mode on the surface of  parabola, 
where 

= -/~z.  (38)  

In fact, this control forms two sliding surfaces in 
the state space of  the closed system: {z -- 0} and 
{x 2 + y2 = Izl}. 

3. Tracking in the nonholonomic integrator 

In this section we consider now the problem of  
tracking the trajectory X* = (x*, y*,z* )T: 

x* = x*(t), (39) 

y*  = y * ( t ) ,  (40) 

z* = z* ( t ) .  (41) 

It will be shown that for any e > 0 there exists a 
control in the form of  feedback 

u = U~.(X, X * ) ,  (42) 

v = V~(X, X* ), (43) 

so that the trajectory of  the system reaches an e- 
neighborhood of  the desired reference curve in finite 
time t~ and then stays there, i.e. 

p ( x ,  x * ) 

= ( Ix  - x * q  2 + l y  - y * l  2 + Lz - z*12)~/2 ~ e 

for t > / t l .  (44) 

Further, the accuracy of  tracking e and the interception 
time tl can be chosen arbitrarily. 

Let 2 be defined as 

~.(t)  = z ( t )  - x * ( t ) y ( t )  + y * ( t ) x ( t ) .  (45) 
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Using ( 1 ) - ( 8 )  and (45) the derivative of~? can be 
written as 

= ( x  - x * ) ( v  - ~ * )  

- ( y  - y*)(u  - 2*) + 9(t,x,  y) ,  (46) 

where 

9 ( t , x , y )  = 2x)?* - 9*x* - 2)2* +2*y* .  (47) 

The problem of  tracking x*, y*,z* by the variables 
x , y , z  is equivalent to one of  stabilizing ~ = x -  x*, 
3 5 = y - y * ,  5 = ~ - z * .  

The system ( 1 ) - ( 8 )  in the new variables can be 
written as 

x = if, (48) 

)~ = g, (49) 

z = 2 ~  - y u  + o,  (50) 

where we used the notations 

ff = u - 2 * ,  (51) 

g = v - 3~*, (52) 

,q = ,q - ~?*. (53) 

If  we apply control o f  the type (4), (5), 

= -~Yc +/335 sign(Y), (54) 

g = -c@ - / 3 ~  sign(5), (55) 

to ( 4 8 ) - ( 5 0 )  we obtain 

x = -c~2 +/335 sign(5), (56) 

3~ = -~)5 + /32  sign(5), (57) 

z = -/3(22 + 35z) sign(5) + 9. (58) 

In similar fashion to (28) we assume that 7 is not a 
constant but the following function of  2 and 35: 

{~o if 2 2 q- 352 > ,,;2 
(59) 

: 22 352 e2, (~1 if + ~< 

where :~0 > 0, ~1 ~< 0 are constants. Let us consider a 
Lyapunov function 

V = 22 + 352. (60) 

Its derivative along the trajectories of  the system 
(56)-(58)  is 

/2 = -2~V.  (61) 

Since ~ = ~(V) is zero if V < e 2 and ~0 otherwise, 
the function V is decreasing until the e-neighborhood 

of  the origin (2,f i-subspace) is reached, then V = 
const = e 2. After that moment Eq. (58) is 

= --/3e 2 sign(5) + O- (62) 

For sufficiently large/3 such that 

&2 > I01 (63) 

in Eq. (62), sliding occurs, and 

5 - 0  f o r t > h ,  (64) 

where the time t~ can be chosen arbitrary close to the 
initial moment  by increasing/3. 

In general,/3 should be chosen to be a function of  
x , y  and X*,X'* to satisfy (63), but as follows from 
(47) and (53), and due to the separate convergence of  
2, 35 to the e-neighborhood of  the origin, for a bounded 
reference curve with bounded derivative/3 can be a 
constant. Thus, (44) holds, and we have proved the 
following theorem. 

Theorem 3. For any e >O and tl > 0  there ex-  

ists a positive constant ~o > O, a positive funct ion 
f l (X ,X*)  > O, and a control u = fi + 2", v = ~ + j~*, 

where h and ~ are defined by expressions (54), 
(55), (59), such that the state trajectory X ( t ) =  
( x ( t ) , y ( t ) , z ( t ) )  v enters an e-neighborhood o f  the 
curve X* = ( x ( t ) , y ( t ) , z ( t ) )  v not later than in time 
tl and stays in that neighborhood f o r  all subsequent 
time. 

Let us note here that the tracking of  the three- 
dimensional curve was achieved by a two-dimensional 
control. 

4. Mechanical example: control of a knife edge 

We illustrate the application of  the above control 
strategy by an example studied also in the work of  
Bloch et al. [4]. The knife edge (or a skate) moving 
in the point contact on a plane surface is described by 
the equations 

£ = 2 sin ~b + U 1 COS (]), (65) 

y = -)~cos q~ + uj sin ~b, (66) 

= uz, (67) 

where x, y and q~ are the longitudinal and lateral posi- 
tions of  the point of  contact and angular position with 
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respect to the vertical axis, respectively. This reac- 
tion force 2 can be excluded by using a nonholonomic 
constraint 

k sin 49 - 3~cos 49 = O. (68) 

Let us introduce the variables vx = k ,  Vy = j~, 

v~ = ~. Differentiating (68) and using (65)-(67)  we 
obtain 

2 = - ( V x  cos 49 + vy sin 49)U2. 

Substituting (69) into (65)-(67)  we obtain 

Vx = u2(v~ cos 49 + Vy sin 49) sin 49 + ul cos 49, 

6y = -u2 (Vx  COS 49 + Vy sin 49) cos 49 + ul sin 49, 

~ z l t  2. 

(69) 

(70) 

(71) 

(72) 

We consider the problem of stabilizing the lateral 
motion of the knife Vy ( t ) - O, 49*(0 =- O, while track- 
ing by the point of contact some desired longitudinal 
velocity v ; ( t ) .  

According to Brockett [5] a nonholonomic system 
of the form ~ -- B ( x ) u  at least locally, can be written in 

a form similar to that of the nonholonomic integrator 
(since (70)-(72)  is of third order, exactly like the 
nonholonomic integrator in our case). 

Using Taylor expansion in the vicinity of Vy = O, 

49 = 0 the system (70)-(72)  can be written as 

6x = fil + rx, (73) 

= u2, (74) 

f;y = 49 fij - v~u2 + ry, (75) 

where Ul =/21 -~- U21)x49 and rx and ry contain terms 
of second order and higher and have vanishing first 
partials. 

The control ul has the form 

Ul = fil - UzVx49, (76) 

where in accordance with the result from the previous 
section 

fil = ~,  - ~(Vx - v * )  + Ê49 s i g n ( v y  - v ;49 ) ,  ( 7 7 )  

u 2 = - ~ 4 9  - f l (v  x - v * ) s i g n ( v y  - v~49), ( 7 8 )  
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Fig. 2. Tracking in the nonholonomic integrator. 
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w h e r e  

{ ~o if (U x - -  1 )*)2  _~_ (/)2 < g2, 

= 0 i f  (P x --  /); )2 _~_ (~2 ~ ~2, 

fl and eo are positive constants. 

(79) 

Numerical example. We consider the tracking by the 
nonholonomic integrator of the following trajectory: 

x*(t) =_ o, (80) 

y * ( t )  =-- 0.05t, (81) 

z * ( t )  = 0.1t. (82) 

The parameters of the algorithm arethefollowing: 

e = 0.05, (83) 

~o = 10, (84) 

= 40. (85) 

The simulation plots for initial conditions xo = -0 .2 ,  
Yo = 0, z0 = 0 are shown in Fig. 2. As can be seen 
the variables x and y oscillate within the prescribed 
e-vicinity o f  the origin (rotating on the x, y-plane) as 
the variable z tracks the desired function. 

Remark 1. The accuracy of the tracking e can be 
chosen arbitrarily, but smaller values lead to larger 
control. 

Remark 2. The designed control provides global con- 
vergence to an e-vicinity o f  the desired trajectory in 
any prescribed finite time but, again, the cost of  small 
convergence time is an increase in control magnitude. 
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