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Abstract 
In this paper we introduce a nilpotent form, called chained form, 
for nonholonomic control systems. For the case of a nonholonomic 
system with two inputs, we give constructive conditions for the ex- 
istence of a feedback transformation which puts the system into 
chained form, and show how to steer the system between arbi- 
trary states. Examples are presented for steering a car and a car 
with a trailer attached; other examples can be found in the areas 
of space robotics and multi-fingered robot hands. The results of 
this paper also have applications in the area of nilpotentization of 
distributions of vector fields on W". 

1 Introduction 
Consider the problem of steering a system with configuration x E 
W" subject to  a set of independent kinematic constraints having 
the form 

w,(z)k = 0 j = 1,. . . , k .  (1) 

We assume the wj's are smooth and linearly independent over the 
ring of smooth functions. Formally, these constraints are exterior 
differential one-forms on W". Such constraints can arise when two 
surfaces roll against each other, such as the rolling between a wheel 
and the road, or in space-based systems where the total angular 
momentum of the system is conserved. Although strictly speaking 
this latter case is not a "constraint", it can be treated with the 
same set of tools. 

To study such a system, we convert the path planning prob- 
lem into a control problem. Let A be a distribution of dimension 
m = n - k which is annihilated by the constraints. We represent 
this distribution with respect to a basis of vector fields: 

A = s p ~ { g i , g 2 , . . .  ,gm} gt(l) E W" (2) 

In coordinates, the constraint one-forms can be written as an k x n 
matrix and the g;'s are a basis for the right null space of this 
matrix. The path planning problem can then be restated as finding 
an input function, ~ ( t )  E W" such that the control system 

i = g l ( z ) u * + . . . + g m ( z ) u ,  (3) 

is driven from xo to xl. As a consequence of our assumptions on 
the wj's, the g;'s are also smooth and linearly independent. 

The condition for the existence of a path between two con- 
figurations is given by Chow's theorem. We let [ f , g ]  be the Lie 
bracket between two vector fields, 
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and define the involutive closure of a distribution A as the closure 
of A under Lie bracketing. Briefly, Chow's theorem states that 
if the involutive closure of the distribution associated with equa- 
tion (3) spans W" at each configuration, the system can be steered 
between any two configurations. It is not apparent how the path 
can be explicitly constructed; in this paper we propose techniques 
for generating such paths. 

We say that a system is holonomic if the kinematic constraints 
in (1) restrict the motion of the system to a manifold of dimen- 
sion n - IC .  In this case, the constraints on the system can be 
rewritten as an algebraic constraint on the configuration variables 
r .  A system is nonholonomic if it is not constrained t o  lie on a 
manifold of the same dimension as the input space. In particular, 
we are most interested in systems which are mazimally nonholo- 
nomic: any point in the configuration space can be reached. This 
is equivalent to  saying that the corresponding control system is 
controllable. If the system is not maximally nonholonomic, it can 
still be treated by restricting the initial and final configurations to  
lie on the same leaf of the foliation generated by the distribution. 

It is possible to classify nonholonomic systems based on the 
way in which controllability is achieved. Define G1 = A and 

Gi = Gt-1 + [GI, Gt-11 

where 
[GI, Gi-I] = span{[g, h] : g E GI, h E Gi-i} 

A system is regular in a neighborhood U of xo if 

rank G;(r)  = rank G;(zo) V r  E U. 

If a system is regular, there exists an integer p < n such that 
G, = G,+1 for all i 2 p + 1. We refer to  p as the degree of 
nonholonomy of the distribution. The growth vector for a regular 
system is defined as r E ZP+l, where r; = rank G;. We define the 
relative growth vector 0 E ZP+' as CT~ = r; - ri-1 and TO := 0. 
The growth vector for a (regular) system is a convenient way to 
represent information about the associated control Lie algebra. 
See [5 ,  211 for more details. 

Nonholonomic control systems cannot be studied using the 
usual linear control techniques. The linearization of a nonholo- 
nomic control system is degenerate; linearizing the system about 
a point gives: 

k = AX + BU A = 0, B = [g1(0)..-gm(0)] 

which is clearly not controllable. Furthermore, the feedback lin- 
earization conditions fail for such systems due to  the lack of a 
term which is independent of U. In particular, if the system is 
controllable, the distribution 

AO = span{gl,gz) 

is not involutive, violating the necessary conditions for full state 
feedback linearization [SI. 
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Related work For this system, the distribution 

(91rgzr [g1,921,[91, [SllSZIl, [92, [91,92111 

spans W5 and hence the system is controllable. The system has 
degree of nonholonomy 2 since it takes two levels of brackets to  
span the tangent space to  the configuration manifold. 

This system can be steered using sinusoidal inputs. The al- 
gorithm proceeds as follows. Using constant inputs, steer z1 and 
2 2  to  their desired values. During this motion, 5 3 ,  5 4  and 5 5  will 
drift. Next, use u1 = a3sint and u2 = b3cost to  move 5 3  to  its 
desired value. These inputs describe a closed loop in 11 and 5 2  and 
hence at  the end of this motion the first 3 variables have obtained 
their desired values. Finally, using u1 = aqsint, uz = bqcos2t 
and u1 = u5cos2t, u2 = bgsint, it is possible to steer 5 4  and 
25 while leaving all other states unchanged. Hence we have suc- 
ceeded in steering the system to its desired location. Full details 
are contained in [21]. 

There are many advantages to using sinusoidal inputs for 
steering nonholonomic systems. The paths generated are piece- 
wise smooth and consist of a relatively small number of segments 
(4 for the example above). Furthermore, the use of sinusoids allows 
some nonlinear systems to be treated with minor modifications to 
the algorithm given above. This leads to exact steering algorithms 
for certain nonlinear systems, in contrast to the approximate (it- 
erative) method proposed by Lafferriere and Sussmann (for non- 
nilpotent systems). 

It can be shown that simple sinusoids cannot be effectively 
used for steering arbitrary nonholonomic systems. In particu- 
lar, it is possible to build systems using techniques formulated 
by Grayson and Grossman [6] which cannot be steered using si- 
nusoidal inputs at single frequencies 119, 221. The construction of 
these systems relies on the use of a P. Hall basis for a Lie alge- 
bra of with a fixed number of generators and a given degree of 
nilpotency. 

Rather than explore the use of more complicated inputs for 
steering nonholonomic systems, we consider instead a simpler class 
of systems. The justification for changing the class of systems is 
simple-most of the systems encountered as examples do not have 
the complicated structure of the general case. Thus there may 
be a simpler class of systems which is both steerable using simple 
sinusoids and representative of systems in which we are interested. 

Consider a two input system of the following form: 

There has been a large interest in the control of nonholonomic 
systems in the control and robotics literature. We mention here 
only a few of the papers which have influenced our work. A more 
complete set of citations can be found in [19, 221. 

Much of the early work in nonholonomic motion planning was 
devoted to path planning for mobile robots. Laumond used a set 
of canonical paths to steer a cart, and later a cart with a trailer, 
to  an arbitrary location in the presence of obstacles [13, 14, 151. 
More recent work has been used for a mobile robot with bounded 
input constraints in addition to  the nonholonomic constraint [9]. 
The approach presented in this latter paper may be applicable to 
more general systems. Another general algorithm, developed by 
Barraquand and Latombe, can reportedly handle any set of non- 
holonomic constraints [l]. Sample paths are presented for a front- 
wheel drive car and a car pulling a trailer. The paths generated 
are locally time-optimal, but can be computed only in sufficiently 
low-dimensional spaces. Yet another approach has been to train 
a neural net to park a car pulling a trailer [23]. 

Control theoretic approaches to to nonholonomic motion 
planning problems have also been explored, beginning with the 
work of Brockett [4]. Brockett showed that for a class of sys- 
tems with degree of nonholonomy 1, the optimal controls consist 
of sinusoids at integrally related frequencies. In the robotics lit- 
erature, Li and Canny studied the motion of a fingertip rolling 
on an object without slipping [16]. This problem has also been 
investigated using some of the methods presented here [20]. Later 
work by Li and others studied a hopping robot flipping in mid-air 
by using conservation of angular momentum to construct paths 
on a reduced space [17]. Similar techniques have also been used 
for studying the motion of coupled rigid bodies and space manip- 
ulators [25, 181. Sussmann et  al. have recently used Lie algebraic 
techniques for generating nonholonomic motions [12] and for ap- 
proximating arbitrary trajectories with feasible ones [26]. 

Overview 
The paper is organized as follows. Section 2 reviews our previous 
results in steering nonholonomic systems and constructs a special 
class of nonholonomic systems, called chained systems. Using the 
concept of chained systems, we give an algorithm which can be 
used to steer a system in chained form to an arbitrary location. 
Section 3 considers the problem of converting a nonholonomic sys- 
tem into chained form. We consider only the 2 input case, since 
most of the examples which have motivated our research are of this 
form. Section 3 also contains examples of how to convert systems 
into chained form. 

2 Chained form 
In our previous work [21], we used sinusoidal inputs to steer a 
class of nonholonomic systems. These systems had a special tri- 
angular form which allowed Fourier series techniques to be used to  
analyze the motion resulting from inputs which consisted of sines 
and cosines a t  integrally related frequencies. As a simple example, 
consider the system 

2 1  = U1 

Xz = U2 

53 = 2221, 

X4 = ~ 3 ~ 1  

X S  = x7u, 

or more compactly 

(4) 

where yl := -11 to account for skew-symmetry of the Lie bracket. 
We refer to  this system as a two-chain system. The first item is 
to check the controllability of these systems. To this end, denote 
iterated Lie products as ad:Y: 

adxY = [ X , Y ]  a d i Y  = [X,adi-'Y] = [ X , [ X , . . .  , [  X,Y] . . . ] ]  

1122 



Lemma 1 (Lie bracket calculations) 
For the vector fields in equation (4) 

a 
ad; Y = ( - - I ) ~ -  

ad! X = 
a;k k > 1 

a Y k  

Proof. By induction. Since the first level of brackets is irregular, 
we begin by expanding [ X ,  Y] and (X, [X, Y]]. 

a =o - - ax, 
[ X ,  [ X ,  Y]] =X(--) a a  + - ( X )  = 0 + - a 

axz  ax ,  ax ,  
Now assume that ad$Y = ( - l ) k & .  Then 

ad$':'Y = [X, ad$Y] 

The proof for ad$X is identical using the facts [Y, X]  = -[X, Y] 
0 and y1 := -- x l .  

Proposition 1 (Controllability of the two-chain system) 
The two-chain system (4) is mazimally nonholonomic (control- 
la ble) . 

Proof. There are 272 - 1 coordinates in ( 4 )  and the 2n - 1 Lie 
products 

{X,Y,adiY,ad$X} i 2 I ,  j 2 2 

are independent using Lemma 1 .  We require j 2 2 since advX = 
-adxY and hence those Lie products can never be independent. 

To steer this system, we use sinusoids at integrally related fre- 
quencies. Roughly speaking, if we use u1 = sin t and u2 = cos kt 
then x 1  will have components a t  frequency k - 1, xz at frequency 
k - 2, etc. x k  will have a component a t  frequency zero and when 
integrated we get motion in xk while all previous variables return 
to  their starting values. In the y variables, all frequency compe 
nents will be of the form m . k f 1 and hence we get no motion 
for k > 1. (For k = 1, y1 and 11 are the same variable). We make 
this precise with the following algorithm. 

Algorithm 1 

1 .  Steer 20 and yo to their desired values. 

2. For each xk, k 2 1, Steer xk to  its final value using u1 = a sin t ,  
uz  = bcos k t ,  where a and b satisfy 

3. For each Y k ,  k 2 2 ,  steer Y k  to  its final value using u1 = 
bcos k t ,  u2 = asint ,  where a and b satisfy 

Proposition 2 Algorithm 1 can steer (4) to an arbitrary config- 
uration. 

Proof. The proof is constructive. It suffices to  consider only step 
2 since step 3 can be proved by switching x and y in what follows. 
We must show 2 things: 

1. moving xk does not affect x ) ,  j < k 

2.  moving xk does not affect y j ,  j = 1,. . . , ny 

To verify that using u1 = asint,  u2 = bcos kt produces mo- 
tion only in X k ,  we integrate the x states. If X k - 1  has terms at  
frequency w;, then xk has corresponding terms at w; f 1 (by ex- 
panding products of sinusoids as sums of sinusoids). Since the only 
way to have x; (2a)  # xi(0)  is to have x; have a component a t  fre- 
quency zero, it suffices to keep track only of the lowest frequency 
component in each variable; higher components will integrate to  
zero. Direct computation starting from the origin yields 

xo = a(1 - c o s t )  

X I =  J $ sin kt sin t 

a2b 
sin(k - 2)t  + . 1 

2k k(k - l ) ( k  - 2) 
x2 = - 

akb t 
X k  = J ( A s i n ' t  + . . . 

xk(27r) = i k ( 0 )  + and all earlier x,'s are periodic and hence 
x,(27r) = x,(O),  z < k. If the system does not start a t  the origin, 
the initial conditions generate extra terms of the form x,-1(O)uz 
in the z t h  derivative and this integrates to zero, giving no net 
contribution. 

To show that we get no motion in the y variables, we show 
that all frequcncy components in the y's have the form mk f 1 
where m is some integer. This is true for y1 := - X I  from the 
calculation above. Assume it is true for y,:  

Y,+l = y*uz 
= a(m)  sin(mk f 1 ) t .  cos kt  

m 

= 1 F ( s m ( ( m  4 m )  ' + 1)k f l ) t  + sin((m - 1)k f 1)t) 
m 

Hence y t + l  only has components at non-zero frequencies m'k f 1 
0 

To include systems with more than two inputs, we replicate 
the structure of (4) for each additional input. Let htj represent 
the motion corresponding to the Lie product ad$Xj. In the two 
input case, xk = h$ and Y k  = htz .  The following system on w" is 
the m-chain system: 

and therefore y;(27r) = yI (0 ) .  

Proposition 3 (Multi-chain system controllability) 
The multi-chain system of ( 5 )  is maximally nonholonomic and can 
be steered using sinusoids. 
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Proof. The system (5) can be rewritten 

iL = X l U l +  . . . + XmUm 

with 

i < j  

Given any two X , , X j ,  their Lie product expansions only involve 
terms of the form hfj for some k .  But this is precisely the vector 
fields from Lemma 1 and hence 

Taking these terms for all possible i ,  j, IC we get a set of indepen- 
dent Lie products just as in the proof of Theorem 1. 

To show that the system can be steered using sinusoids, pick 
any i , j  E {I, . . .  ,m}, i < j. Fix U /  = 0 for all I # i , j .  The re- 
sulting system is identical to (4) can be steered using algorithm 1. 
By choosing all possible combinations of i and j , we can move to  
any position. 0 

3 Converting Systems to Chained 
Form 

Proof. Since A,  is an involutive distribution of dimension n - 2,  
there exists a function h such that dh.Az = 0 and dh .ad i r z  gz  f. 0.  
Define the map q5 : z H t as 

t 1  = X l  

= Li1-'h 

4n-1 = Lgl h 
tn = h 

To verify that q5 is a valid change of coordinates, we use the fact 
that 

L[f,,lh = L f L g h  - LgLfh  

= (-1)n-2Lg2Lzl-zh # 0 
and Lad& g2h = 0 for k < n - 2 by the same reasoning. Using this 
calculatkn, 

In this section we introduce a set of sufficient conditions for de- 
termining if a system can be converted to  chained form. This set 
of conditions gives a constructive method for building a feedback 
transformation which accomplishes the conversion. We concen- 
trate on the two input case with a single chain. 

Proposition 4 (Converting systems to two-chained form) 
Consider a controllable system 

5 = 91(")"1+ gz ( z )uz ,  

with 91, g2 linearly independent and smooth and having the special 
fo 9-m 

(by appropriate change of basis, if necessary), Define 

A0 := sPan{g1,9z, 'tdg, g z , .  . . , 9 2 )  

A1 := span(gz,ad,,gz,... ,ad;1-3g2) ' 

Zf for some open set U ,  Ao(z)  = Et" for all x E U c Et" and A1 is 
inuolutiue on U ,  then there exists a local feedback transformation 

t = 4 ( x )  U = a(zb 
such that the transformed system is in chained form: 

t1 = v1 

t 3  = 4 z V 1  

iz = v2 

tn = tn-lvl 

where a(.) = Lg2Li1-'h # 0.  

we define 
Evaluating the derivatives of the coordinate transformation, 

U 1  := U1 

02 := (L;,-:-'h)ui + (Lg ,L~l -2h)uz '  

Since L,,Li1-*h # 0, this change of inputs is invertible and the 
0 

This proposition gives a set of sufficient conditions for con- 
verting a system with relative growth vector cr = ( 2 , 1 , .  . . , 1 )  into 
chained form (locally). In order to  apply the results, however, we 
must modify the original inputs to  the system such that one of the 
states is controlled directly by the input. Such a change of input is 
always possible due to the assumption that the input vector fields 
are linearly independent. This change of input is not unique. 

One corollary to Proposition 4 is that all systems with relative 
growth vector o = ( 2 , l )  can be converted to chained form. This is 
a direct consequence of the fact that all 1 dimensional distributions 
are involutive. 

Example 1 (Kinematic car) Consider as our first example, 
the kinematic model of an automobile. The equations governing 
the motion of the system are 1221: 

resulting system is in chained form. 

5 = case u1 

y = sin0 u1 

$ = U 2  

. 1  O =  - t a n $ u l  
1 

To convert the system to chained form, we first scale the inputs so 
that u1 enters x directly. Reusing the symbol u l ,  the kinematics 
become: 

5 = U 1  

y = tan B u1 

4 = U 2  

. 1  0 =  -secBtan4ul  
1 

1124 



lhaa 

B C  OA 1 

4.4 k I , ,  , ,  , , , , , ,  , , , , , , , , , , I  
-4 -4 -2 0 2 4 

Figure 1: Sample trajectories for steering a (2,1,1) system. The 
trajectory shown is a three stage path which moves the system 
from the initial configuration to  the origin. 

Choose the y position of the car as the function h; it is easy to  
verify that this function satisfies the conditions of Proposition 4. 
The resulting change of coordinates is 

t-1 = x 

(2 = -sec30tand 

t3 = t an0  

t-4 = Y 

211 = U1 

1 3 .  1 
1 1 1 

u2 = --sin2dsinOvl + - c o s z O c o s 3 ~ v ~  

And the transformed system has the form: 

(1 = U1 

6 2  = v2 

i3 = t-2v1 

(4 = t3vl 

This system can now be steered using the sinusoidal algorithm 
of the previous section or another method, such as Lafferriere and 
Sussmann's algorithm for generating motions for nilpotent sys- 
tems. The motion is implemented as a feedback pre-compensator 
which converts the v inputs into the actual system inputs, U. This 
feedback transformation agrees with that used in Lafferriere and 
Sussmann to nilpotentize the kinematic car example. Their formu- 
lation of the feedback transformation was not presented, although 
it seems clear that a similar approach must have been used. 

Figure 1 shows the results of using chained form to steer an 
automobile. These trajectories are qualitatively similar to those 
in [21], but do not require the calculation of Fourier coefficients 
for determining open loop trajectories. 

Example 2 (Car with N trailers) Consider first the case of a 
car pulling a single trailer. The equations of motion are identical 
to  those of the car, with an additional equation specifying the 
motion of the attached trailer [22]: 

O1 = sin(& - O1)ul 

By solving the partial differential equations in the statement of 
the proposition above, it can be shown that the function 

) 
1 + sin O1 

h(Y,4 )  = y -log(- cos 0 1  

generates a chained set of coordinates. Again we can locally steer 
the trailer using sinusoidal inputs or other methods. 

When additional trailers are added, the distribution A1 is no 
longer involutive and hence the procedure outlined above does not 
apply. Since the conditions in the proposition are only sufficient 
conditions, this does not mean that a car with N trailers cannot 
be steered using sinusoids. But a more complicated change of 
basis would be required in order to  convert the vector fields to  the 
necessary form. This example points out the weaknesses of the 
theorem and provides directions for future research. 

4 Discussion and extensions 
The conditions given in Proposition 2 give a constructive set of 
sufficient conditions for converting a nonholonomic control system 
into chained form. Using chained form, it is possible to  efficiently 
find paths for steering a system between arbitrary configurations. 
We have presented one such method based on sinusoidal inputs, 
although other techniques can be used. We have presented only 
the simplest case (2 inputs, 1 non-zero length chain) here, but i t  
is possible to  extend this result in several directions. The method 
proposed here is also useful in the more general area of local nilpo- 
tentization of distributions of vector fields [7]. In particular, if the 
conditions of Proposition 2 hold for a set of two vector files g1 
and g2 on W", then there is a nilpotent basis for the corresponding 
distribution. 

Converting a system to chained form is very closely related to  
the exact linearizability conditions for a general nonlinear system. 
As we noted in the introduction, linear control techniques cannot 
be applied to nonholonomic control systems due to  the lack of 
a drift term. However, many of the underlying geometric tools 
on which exact linearization techniques are based can be applied 
effectively to  nonholonomic systems. We see this in the application 
of Proposition 2. In particular, we note that if the distribution 

(92, ad,,g2,. . . 7 " d 3 7 2 )  

is involutive, then we are guaranteed of the existence of a function 
h which annihilates the distribution. Finding a specific h which 
satisfies this requires solving a set of first order partial differential 
equations. 

There are many open questions which are currently being 
studied by ourselves and others. These include the introduction 
of a drift vector field into the control system and feedback con- 
trol of nonholonomic systems. Some initial results in these areas 
can be found in the work of Bloch and McClamroch [2, 31 and 
Samson [24]. We also note that approximate versions of Proposi- 
tion 4 can be formulated using tools similar to those developed by 
Krener [lo, 111. 
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