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Abstract— A new experimental platform permits us to
study a novel variety of issues of human motor control,
particularly full 3-D movements involving the major seven
degrees-of-freedom (DOF) of the human arm. We incorporate
a seven DOF robot exoskeleton, and minimize weight and
inertia through gravity, Coriolis, and inertia compensation,
such that subjects’ arm movements are largely unaffected by
the manipulandum. Torque perturbations can be individually
applied to any or all seven joints of the human arm, thus
creating novel dynamic environments, or force fields, for
subjects to respond and adapt to. Our first study investigates
a joint space force field where the shoulder velocity drives
a disturbing force in the elbow joint. Results demonstrate
that subjects learn to compensate for the force field within
about 100 trials, and, from the strong presence of aftereffects
when removing the field in some randomized catch trials,
that an inverse dynamics, or internal model, of the force
field is formed by the nervous system. Interestingly, while
after learning, hand trajectories return to baseline, joint
space trajectories remained changed in response to the field,
indicating that, besides learning a model of the force field,
the nervous system also chose to exploit the null space to
minimize the effects of the force field on the realization of
the endpoint trajectory plan. We discuss applications of these
results in the light of current theories of robotic control,
including inverse kinematics and optimal control.

Index Terms— Exoskeleton, Motor Control, Force Fields,
Inverse Kinematics, Redundancy Resolution.

I. INTRODUCTION

Robot manipulanda have become a common tool for
aiding scientists interested in the study of human motor
control [1],[2],[3]. In particular, force field experiments are
a popular technique used for determining the mechanisms
underlying motor planning, execution, and learning. In
these experiments, robotic manipulanda apply controlled,
extraneous forces/torques either at the hand [4],[5],[6],[7]
or individual joints [10] while the subjects carry out move-
ment tasks, such as point-to-point reaching movements
[4],[5],[11] or continuous patterns [6]. However, because
of the mechanical constraints of the manipulanda used,
these experiments have been limited to two degrees-of-
freedom (DOF) movements, focusing on shoulder and elbow
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joints, and thus not allowing for any spatial redundancy in
a movement. A new experimental platform allows us to
explore a wider variety of movements, including movements
in full 3-D space using the major seven degrees of freedom
of the human arm. By applying torques on any or all
seven joints, we can create joint-space force fields and
attempt to answer questions such as: In which coordinate
system does motor planning take place? How does the
brain solve the inverse kinematic problem? Does the motor
system utilize any optimization? and if so how can we
quantify what is being optimized? The answers to such
questions are not only required for human motor system
understanding, but are also important for robot control,
particularly in humanoids where natural looking movement
is highly desirable.

In this paper we first describe our robot platform and
discuss the control laws required for human exoskeleton
use. Next we describe the force field experiment, and show
results of one such experiment. Finally we conclude with a
discussion of our behavioral results in the context of robot
control, including inverse kinematics and optimal control.

II. PLATFORM DESCRIPTION

A. Exoskeleton

The experimental platform is a seven DOF hydraulically
actuated exoskeleton robot arm (Sarcos Master Arm, Sarcos,
Inc., Salt Lake City) (Fig. 1). Its anthropomorphic design
mimics the major seven DOFs of the human arm1, such that
any joint movement of the user’s arm will be approximately
reflected by a similar joint movement of the exoskeleton.
Conversely, torques applied by an exoskeleton joint will be
reflected to the corresponding joint of the user’s arm. The
exoskeleton’s most proximal joint is mounted to a fixed
platform, and the user wields the device by holding on
to a handle at the most distal joint and by a strapping of
the forearm to the equivalent link of the robot just before
the elbow. The shoulder remains unconstrained, but is
positioned such that the three shoulder rotation axes of
the exoskeleton approximately intersect with the human’s
shoulder joint.

1The major joints of the human arm are labeled: shoulder-flexion-
extension (SFE), shoulder-abduction-adduction (SAA), humeral rotation
(HR), elbow-flexion-extension (EFE), wrist-supination-pronation (WSP),
wrist-flexion-extension (WFE) and wrist-abduction-adduction (WAA).



Fig. 1. Sarcos Master Arm with user.

B. Control Architecture

Our control architecture consists of independent PD
servo controllers at each joint (implemented on individual
Sarcos Advanced Joint Controller analog circuit boards),
with additional feed-forward torque commands computed
on a centralized controller running on 2 Motorola PPC 603
parallel processors with the commercial real-time operating
system vxWorks (Windriver Systems). Potentiometers and
load cells at each joint are sampled at 960 Hz to provide
positional and torque feedback, respectively. Joint velocities
and accelerations are computed numerically by differentiat-
ing the position signal. The signals are filtered with a 2nd
order Butterworth filter with cutoff frequency of 33.6 Hz for
position, velocity, and torque and 4.8 Hz for acceleration.
The acceleration signal requires more aggressive filtering
because of the noise amplified by the numerical differenti-
ation. The centralized controller updates the feed-forward
commands and PD set points at 480 Hz.

C. Control Laws

Ideally, the user should not be burdened (unintentionally)
by the exoskeleton while executing movements. Therefore
our control scheme needs to compensate for the exoskele-
ton’s gravity, centrifugal, Coriolis, and inertia forces. Typi-
cally, robot manipulanda use force sensors at the endeffector
to measure the forces applied by the user [7],[17], and apply
control laws that generate a particular impedance character-
istic at the point where the user holds the manipulandum.
In contrast to these previous approaches, which focused on
investigations of the endeffector movement of human arms,
our current robotic setup is to examine joint level effects of
human motor control. Thus, we do not have a constraint
in the form of a desired impedance at the endeffector, but

rather impedance control for every DOF. Since we cannot
reliably attach force sensors between the human arm and
every link of the robot, we resorted to a model-based control
approach.

1) Low Level Joint Control: The low level joint con-
trollers are governed by the equation

u = KD(q̇d − q̇) + KP (qd − q) + uff, (1)

where u ∈ R
7 is the vector of motor command torques,

and q, q̇ ∈ R
7 are the vectors of joint position and velocity,

and KD,KP are diagonal gain matrices. The desired
joint position and velocity vectors qd, q̇d ∈ R

7 and the
feed-forward torque command uff ∈ R

7, are set by the
centralized controller. Ideally, we would set q̇d = q̇
and qd = q in this controller, and compute an inverse
dynamics based feed-forward command, uff, to eliminate
inertial, centrifugal, Coriolis, and gravity forces. However,
as such a controller is neutrally stable and difficult to realize
in light of inevitable modeling errors in the dynamics model,
a more prudent control approach is required. In order to
keep a small amount of a position reference for enhanced
stability, we define

qn+1
d = qn

d + ε(qn − qn
d ), (2)

where n is the discrete time step of the control loop, and ε
is a constant factor between 0 and 1. Thus qd is a filtered
version of q, and removes high frequency noise at the cost
of a lag behind the current joint state. The filter parameter,
ε, is chosen high enough such that speed of typical human
arm movements is well within the bandwidth of the filter. If
we choose ε = 1, we achieve effectively the setting qd = q.
We indeed set the desired velocity q̇d = q̇, but we will
maintain a small amount of damping in the feed-forward
command uff.

2) Gravity, Coriolis, and Inertia Compensation: We as-
sume the exoskeleton is governed by the well-known ridged-
body dynamics model of a manipulator robot arm given by
the equation

M(q)q̈ + C(q, q̇) + G(q) = u, (3)

where M(q) ∈ R
7×7 is the mass or inertia matrix,

C(q, q̇) ∈ R
7 denotes centrifugal and Coriolis forces, and

G(q) ∈ R
7 denotes the gravity force [19],[20]. Theo-

retically, we can completely cancel the dynamics of the
exoskeleton robot with the feed-forward control law,

uff= M̃(q)(q̈ − K′
Dq̇) + C̃(q, q̇) + G̃(q), (4)

where M̃, C̃, G̃ are our estimates of the robot’s inertia,
Coriolis, and gravity matrices, and K′

D is a diagonal matrix
of (small) damping gains. Assuming perfect parameter
estimation, the robot’s dynamics will be eliminating leaving
only the damping term M̃(q)K′

Dq̇ which is required to
maintain stability. However, premultiplying the damping
term by the inertia matrix has the consequence of amplifying
any modeling inaccuracies of the inertia matrix. Therefore,
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Fig. 2. Three dimensional trajectories of the right hand of Subject A. The
25 trials of block 2 (blue) are superimposed onto the 25 trials of block 7
(red). Hand trajectories return to the original null field trajectories after
adapting to the force field. Units are in meters.

we move the damping term outside of the inertia matrix
product, which empirically we find provides a greater mar-
gin of stability. Combining this control law with Equation
(1) results in the equation

u = M̃(q)q̈+C̃(q, q̇)+G̃(q)−K′
Dq̇ + KP (qd−q), (5)

with qd defined by Equation (2).

D. Parameter Identification

The estimates of our model parameters, M̃, C̃, G̃, are
determined with system identification techniques [18]. We
recorded an hour of robot trajectories in response to suffi-
ciently exciting desired trajectories of pseudorandom motor
commands (including sine waves of various frequencies at
the joint-level and discrete endpoint movements at various
speeds). This data was used to regress the rigid body
dynamics parameters acting on each DOF. However, we
noticed that due to unmodeled nonlinearities of the robot,
we obtained partially physically inconsistent rigid body
parameters, e.g., non-positive definite link inertia matrices
and negative viscous friction coefficients. We improved this
estimation with a novel nonlinear rigid body dynamics
identification algorithm [14] that guaranteed a physically
correct rigid body model. This model significantly increased
the stability of our control system.

III. MOTOR CONTROL EXPERIMENTS

A. Force Fields

Since humans are so adept at motor tasks, particularly
in skill acquisition and learning, it is likely that the brain
includes a representation of the inverse dynamics of the
limbs [4], [12]. However, this inverse dynamics model,
or internal model, needs to be adaptive since in day-to-
day activity humans interact with various loads and limb
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Fig. 3. Three dimensional trajectories of three joints of Subject
A: shoulder-flexion-extension (SFE), shoulder-adduction-abduction (SAA),
and elbow-flexion extension (EFE). The 25 block 7 joint trajectories (red)
are skewed to the right of the 25 block 2 trajectories (blue). Although
the hand has returned to its original trajectory after learning, the joint
trajectories have been altered. Units are in radians.

dynamics change during development. By studying how
subjects’ movements respond and adapt to novel external
forces (applied by a robot manipulandum for example),
scientists can draw conclusions on how planning, learning,
and execution of movements occurs in humans, and how/if
an internal model of dynamics is formed. Recently force
field experiments have become a popular paradigm in which
to explore such issues. A force field is created by the
robot exerting external forces on the human subject, usually
as a function of endpoint or joint positions, velocities, or
accelerations. For example, [4] uses a viscous force field in
the form of

f = Bẋ, (6)

where ẋ is the velocity of the hand, f is the vector of the
external force to be applied at the hand, and B is a constant
matrix which determines the strength and direction of the
force. When executing point-to-point reaching movements
in the absence of such fields, endpoint trajectories are
typically straight with a smooth velocity profile [21]. How-
ever, upon first exposure to a novel dynamic environment
(e.g. a force field), trajectories become skewed in response
to the field. After several subsequent trials in the force
field, endpoint trajectories actually return to their original
paths. If the field is suddenly removed after learning,
the trajectories once again become skewed, in the opposite
direction of the initial pre-adaptation field trajectories, and
are called aftereffects [9] of the force field adaptation.
Evidence of aftereffects suggest that the brain does build an
internal model of the new dynamic model of the force field,
which it uses to predict and compensate for the environment
such that its endpoint plan is realized. Currently these types
of force field experiments have been limited to movements
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Fig. 4. Subject A’s, average hand trajectory of block 2 (blue) and block
7 (red). Additionally shown are the initial force field exposure trajectory
(average of 3 catch trials in block 3) which is skewed to the right, and the
average aftereffect trajectory (average of 3 catch trials of block 8) skewed
to the left. Units are in meters.
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Fig. 5. Subject A’s average joint trajectory of block 2 (blue) and block
7 (red, skewed to the right), with initial force field exposure trajectory
(rightmost line), and the average aftereffect trajectory (leftmost line). Units
are in radians.

in a plane (e.g. a table top) using only two joints of the
arm (e.g. the elbow and shoulder). Thus these experimental
setups are unable to explore how redundancy plays a role
in motor execution. Our experimental platform with the
exoskeleton robot allows the subject to make unconstrained
3-D movements with all seven major DOFs of the arm. By
applying perturbing forces at any or all of these seven joints,
we are able to explore how subjects cope with intrinsic force
fields and resolve redundancy during reaching tasks.

B. Experiment

For this experiment we asked three right-handed male
subjects to make a point-to-point reaching movement. In
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Fig. 6. Subject B’s average hand trajectory of block 2 (blue) superimposed
onto block 7 (red), with initial force field exposure trajectory to the right,
and the average aftereffect trajectory to the left. Units are in meters.
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Fig. 7. Subject B’s average joint trajectory of block 2 (blue) and block
7 (red, skewed to the right), with initial force field exposure trajectory
(rightmost line), and the average aftereffect trajectory (leftmost line). Units
are in radians.

each trial, the right hand begins above the shoulder (as if
starting to throw a ball) and finishes with the arm slightly
extended, in front of the torso (as if shaking someone’s
hand). The movement was chosen as such to maximize the
spatial extent of the trajectory within the limited workspace
of the robot. At the start of each trial, the robot servos
the subject’s arm to the starting location, and each trial
begins with the same joint configuration. The subject is not
instructed in any way on how to execute the movement,
except that each trial should be complete within half a
second. The force field, when applied, adds a shoulder
velocity dependent torque to the elbow joint. Specifically,
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Fig. 8. Subject C’s average hand trajectory of block 2 (blue) superimposed
onto block 7 (red), with initial force field exposure trajectory to the right,
and the average aftereffect trajectory to the left. Units are in meters.
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Fig. 9. Subject C’s average joint trajectory of block 2 (blue) and block
7 (red, skewed to the right), with initial force field exposure trajectory
(rightmost line), and the average aftereffect trajectory (leftmost line). Units
are in radians.

with the field on, the control law at the elbow becomes

ûEFE = uEFE + k field (q̇SFE + q̇SAA) , (7)

where uEFE is the torque command to the elbow joint
generated by the control law of Equation (5), q̇SFE, q̇SAA

are the shoulder-flexion-extension and shoulder-adduction-
abduction velocities, and k field is a gain that determines the
strength of the force field. Each subject completes 8 blocks
of 25 trials each. The first 2 blocks are with the force
field turned off (called the ”null-field” condition, using only
the control law of Equation (5)). By the second block the
subject has sufficiently adapted to the manipulandum and
the null-field condition. The third block consists of 22 trials
of the null-field condition, with three random catch-trials

with the force field on. Blocks 4-7 are executed with the
field on, giving the subject opportunity to adapt to the field
by block 7. Finally, the 8th block has 22 trials of the field
on, with 3 random catch-trials with the field off.

C. Results

Figure 2 shows the 25 hand trajectories during subject A’s
block 2 (i.e. null field trajectories) superimposed onto the 25
hand trajectories during block 7 (i.e. force field trajectories,
after learning). Figure 3 shows the joint-space trajectories
of SFE, SAA, and EFE for the same subject during the same
blocks, with the force field trajectories skewed to the right in
the figure. Figures 4 and 5 show the same subject’s average
hand and joint-space trajectories during block 2 and block 7.
Additionally shown are the subject’s initial trajectories when
first exposed to the field (the average of the 3 catch trials
of block 3) which are skewed to the right in the figure, and
aftereffects (average of the 3 catch trials of block 8) which
are skewed in the opposite direction. Average trajectories
are found by resampling each trajectory (by applying an
anti-aliasing FIR filter) to a fixed array length, and then
computing the mean of each index across all trials. Figures
6-9 show endpoint and joint results for subjects B and C.

As expected, Figures 4, 6, and 8 demonstrate that upon
initial exposure to the force field, the subjects’ hand trajec-
tories are altered. As also demonstrated in other force field
experiments, after sufficient adaptation hand trajectories
return to the original null field trajectory. Additionally,
aftereffects appear when the field is suddenly removed,
indicating that an internal model of the force field dynamics
has been learned. Interestingly, however, Figures 5, 7, and
9 show that the joint space trajectories do not return to the
original null field trajectories, and in fact converge onto an
altered trajectory.

IV. DISCUSSION

The result that the subjects’ hand trajectories are not
altered (after sufficient adaption to the new dynamic en-
vironment), but joint trajectories do change, suggests that
the motor system may be planning reaching movements in
extrinsic (task space) coordinates and does not create fixed
positional trajectories for the joints to follow. Rather, the
motor system is able to exploit the redundancy available in
the human arm (perhaps to reduce the effects of the force
field) while still executing its endpoint plan. Perhaps this
behavioral result can be modeled as an inverse kinematics
controller with a null space optimization. Recently, [13]
has shown that a general form of robot controllers can be
represented by the equation

u = u1 + N−1/2
(
AM−1N−1/2

)+

·
· (b − AM−1(u1 − C − G)

)
, (8)

where for a non-square matrix Q ∈ R
m×n with m < n, the

pseudo-inverse of Q is defined as

Q+ = QT
(
QQT

)−1

. (9)



It can be shown that this controller will achieve the task
constraint of Aq̈ = b, while minimizing the cost function

J(t) = (u(t) − u1(t))
T N (u(t) − u1(t)) , (10)

at all times for any torque u1. The command u1, is used
to control the null space (i.e. the component of the motor
command that does not effect task achievement), to resolve
redundancy for example. For inverse kinematics, where
we want the endeffector to track a trajectory in operational
space, xd, we set

A= J, (11)

b= ẍd − J̇q̇, (12)

where J is the Jacobian matrix.
Because of the general nature of Equation (8)2, it is an

appealing framework for modeling human reaching tasks
that include redundancy. Different choices for the metric
N and null space control function u1, produce remarkably
different controllers [13]. The choice of N = M−1 is
particularly interesting since this follows Gauss’s Principle
of Least Constraint, and a minimum energy solution [15].
This controller has been examined in [16], but used gravity
to resolve redundancy in the null-space (effectively setting
u1 = 0). While the end effector accomplishes the task with
a minimal energy solution, it results in very unnatural like
drooping or trajectories with limp links. Another possible
u1 (suggested in [13]) could be in the form of

u1 = −KDq̇ + KP (q0 − q), (13)

where redundancy is resolved by servoing to a fixed joint
posture q0. Our experimental setup enables us to craft
specific experiments that may empirically support or refute
different choices of optimization criteria and redundancy
resolution schemes, and ultimately verify if human behavior
can be modeled in this framework. Such insights will
hopefully lead to new and more natural control principles
for humanoid robotics.

V. CONCLUSION

In this paper we demonstrated how a complex exoskele-
ton robot can be employed for behavioral studies of motor
control. Despite that this hydraulic robot cannot com-
pete with the quality of impedance control of very small
scale haptic devices, a model-based controller with care-
fully tuned parameters accomplished a surprising quality of
gravity, Coriolis, and inertia compensation, such that the
robot did not alter the movement of a human inserted into
the exoskeleton structure too much. We demonstrated the
usefulness of this new experimental platform in a behavioral
experiment, where human subjects were exposed to a novel
dynamic environment in the form of joint space force

2Equation (8) combined with Equations (11) and (12), encompasses a
large variety of inverse kinematic controllers, in fact all inverse kinematic
controllers that achieve perfect tracking in task space while minimizing
the cost function of Equation (10). See [13].

fields. The experiment revealed that movement planning
of reaching movements in humans does not employ desired
joint space trajectories, but may rather be similar to inverse
kinematics controllers with some form of null space opti-
mization. Future experiments will further exploit this new
robotics setup to develop more natural control methods for
humanoid robot control.

REFERENCES

[1] F. Mussa-Ivaldi, N. Hogan, E. Bizzi, ”Neural, mechanical, and geo-
metric factors subserving arm posture in humans,” J. Neuroscience,
vol. 5, pp. 2732-2743, 1985.

[2] H. Krebs, M. Aisen, B. Volpe, N. Hogan, ”Robot-aided neuro-
rehabilitation: Initial application to a stroke rehabiliatation,” Pro-
ceedings of the MRCAS’95 - Second International Symposium
on Medical Robotics and Computer Assisted Surgery, pp. CA260-
CA262, Nov. 1995.

[3] S. Blakemore, D. Wolpert, C. Frith, ”Why can’t you tickle yourself?”
Neuroreport, vol. 11, pp. R11-16, 2000.

[4] R. Shadmehr and F. Mussa-Ivaldi, ”Adaptive Representation of
Dynamics During Learning of a Motor Task,” J. Neuroscience, vol.
14(5), pp. 3208-3224, May 1994.

[5] F. Gandolfo, F. Mussa-Ivaldi, and E. Bizzi, ”Motor Learning by Field
Approximation,” Proc. Natl. Acad. Sci. USA, vol. 93, pp. 3843-3846,
1996.

[6] M. Conditt, F. Gandolfo, and F. Mussa-Ivaldi, ”The Motor System
Does Not Learn the Dynamics of the Arm by Rote Memorization of
Past Experience,” The American Physiological Society, pp. 554-559,
1997.

[7] H. Gomi and M. Kawato, ”Human arm stiffness and equilibrium-
point trajectory during multi-joint movement,” Biol. Cybern., vol.
76, pp. 163-171, 1997.

[8] R. Shadmehr and F. Mussa-Ivaldi, ”Computational Elements of
the Adaptive Controller of the Human Arm,” Advances in Neural
Information Processing Systems, vol. 6, pp. 1077-1084, 1994.

[9] M. Jeannerod, The Neural and Behavioural Organization of Goal-
Directed Movements, Oxford: Clarendon, 1988.

[10] S. Scott, ”Apparatus for measuring and perturbing shoulder and
elbow joint positions and torques during reaching,” J. Neuroscience
Methods, vol. 89, pp. 119-127, 1999.

[11] K. Singh and S. Scott, ”A motor learning strategy reflects neural
circuitry for limb control,” Nature Neuroscience, vol.6, no. 4, pp.
399-403, 2003.

[12] M. Kawato, ”Internal models for motor control and trajectory plan-
ning,” Current Opinion in Neurobiology, vol. 9, pp. 718-727, 1999.

[13] J. Peters, M. Mistry, F. Udwadia, R. Cory, J. Nakanishi, S. Schaal,
”A Unifying Methodology for the Control of Robotic Systems,”
Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2005 (to appear).

[14] S. Schaal, R. Cory, J. Nakanishi, M. Mistry, J. Peters, ”Physically
Consistent Nonlinear Parameter Identification of Rigid Body Dynam-
ics,” (in preparation).

[15] F. Udwadia and R. Kalaba, Analytical Dynamics: A New Approach,
Cambridge: Cambridge University Press, 1996.

[16] H. Bruyninckx and O. Khatib, ”Gauss’ principle and the dynamics
of redundant and constrained manipulators,” Proceedings of the 2000
IEEE International Conference on Robotics & Automation, pp. 2563-
2569, April 2000.

[17] G. Burdea, Force and Touch Feedback for Virtual Reality, New York:
John Wiley & Sons, Inc., 1996.

[18] C. An., C. Atkeson, J. Hollerbach, Model-Based Control of a Robot
Manipulator, Cambridge, MA: The MIT Press, 1988.

[19] T. Yoshikawa, Foundations of Robotics: Analysis and Control, Cam-
bridge, MA: MIT Press, 1990.

[20] L. Sciavicco, B. Siciliano, Modeling and Control of Robot Manipu-
lators, New York: The McGraw-Hill Companies, Inc., 1996.

[21] P. Morasso, ”Spatial control of arm movements,” Experimental Brain
Research, vol. 42, pp. 223-227, 1981.


