
 

  
 

   
 

AVR447: Sinusoidal driving of three-phase 
permanent magnet motor using 

ATmega48/88/168 

Features 
� Three-phase sine waves 

- 192 steps per electrical revolution 
- 8-bit amplitude resolution 

� Software dead-time generation  
� Controlled by hall-sensors 
� Speed control through run-time scaling of sine wave amplitude 

- Speed reference from analog input 
� Automatically synchronizes to a running motor at startup 
� Safe startup using block-commutation the first commutation steps 
� Direction controlled by digital input 
� Safe stop and direction change procedure 

- Active braking or coasting during stopping 
� Advance commutation angle adjustable at run-time 
� Reverse rotation signal output 
� Tacho output signal 

1 Introduction 
This application note describes the implementation of sinusoidal driving for three-
phase brushless DC motors with hall sensors. 

The implementation can easily be modified to use other driving waveforms such as 
sine wave with third harmonic injected. 

Figure 1-2. Sine wave driving of brushless DC motor with hall sensors. 
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2 Theory of operation 
In most of the literature, permanent magnet motors are divided into two categories 
based on the shape of the back-EMF (voltage induced in the coils when the motor is 
spinning). The back-EMF can either be trapezoidal or sinusoidal in shape. Although 
the terminology is not consistent throughout the literature, the majority seems to 
agree that a brushless DC motor (BLDC) has trapezoidal back-EMF, while a 
permanent magnet synchronous motor (PMSM) has sinusoidal back-EMF. Both 
BLDC and PMSM motors can be driven by sinusoidal currents, so there will not be 
made any distinction between them throughout this application note. Instead, they will 
both be referred to as a permanent magnet motor, or PMM. 

3 Implementation on an AVR® 
This application note describes how to drive a three-phase PMM with sinusoidal 
currents.  The code example can also be used as a general reference on how to 
generate waveforms using the PWM. 

3.1 Voltage generation 
In order to drive a three-phase motor with sinusoidal currents, independent voltages 
for each phase must be generated. The driver stage for a three-phase motor usually 
consists of three half-bridges, one for each terminal. Each half-bridge consists of two 
switches, e.g. two power MOSFET transistors. To understand how the phase 
voltages are generated, it is sufficient to look at one half-bridge. Figure 3-1 shows one 
half-bridge connected to a DC voltage source.  

Figure 3-1. Voltage generation using a half-bridge. 
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3.1.1 PWM 

The average voltage of the output, VOUT, can be regulated between 0V and VDC by 
applying two inverted pulse-width modulated (PWM) signals to the two switches, 
PWMH and PWML. The average output voltage will be proportional to the duty cycle of 
the high side switch. The output, VOUT, will in this case not be a smooth voltage curve, 
but a square wave similar in shape to the PWM signal applied to the high side switch. 
If this signal were fed through a low-pass filter, the output voltage would be a voltage 
level proportional to the duty cycle of the high side switch.  
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For several reasons, it is not common to add a separate low-pass filter in motor 
control designs. First of all, the motor acts as a low pass filter. The inductance and 
resistance of the coils windings create a low pass RL filter. Further, the inertia of the 
rotor and load creates a mechanical low pass filter. Choosing the PWM switching 
frequency sufficiently high, there will be no noticeable jitter in the rotor speed. 
Secondly, the currents fed through the windings of even a small motor can be in the 
range of several amperes. Forcing this current through e.g. an RC filter would result 
in substantial power dissipation in the filter itself, an undesirable energy loss. 

3.1.2 Dead-time 

Switching devices, such as MOSFET transistors are not able to switch on and off 
instantly. Consider again the half-bridge from Figure 3-1. If the switches PWMH and 
PWML are fed with inverted signals, one switch will turn off at the same moment as 
the other switch turns on. During this transition, there will be a short time period 
where one switch has not completely closed while the other one is opening, making a 
direct connection between supply voltage and ground with very low resistance, 
allowing a large current to flow through the transistors. This situation is known as a 
shoot-through, and must be avoided, since it will probably destroy the driver stage if 
no hardware protection is in place. 

The solution to this is to add a dead-time, a small time period where neither the high 
or low side switches are conducting, for every PWM transition. 

3.1.3 Generating PWM signals with dead-time with an AVR 

To understand how to implement PWM �voltage generation� with dead-time on an 
AVR, we continue to look at only one phase voltage. One timer/counter module on 
e.g. the ATmega48 can be used to control one half-bridge like the one in Figure 3-1. 
The timer/counter modules in the ATmega48 can control two PWM output pins each. 
The timer/counter units have several PWM modes, and there are several 
configuration options for the output pins.  

For the half-bridge control with dead-time, the phase correct PWM mode is very well 
suited. The counter works in a dual slope mode, which allows generation of center-
aligned PWM signals with dead-time. Consider Figure 3-2 that shows how 
Timer/Counter0 can be set up to produce the desired signals. The triangular line 
represents the timer/counter value itself in the dual slope �phase correct mode�. In 
this example, the output pin OC0A has been configured to clear on compare match 
when up-counting and set on compare match when down-counting. This output will 
be connected to the high side switch of the half-bridge. Similarly, the output pin OC0B 
has been configured to set on compare match when up-counting and clear on 
compare match when down-counting. This output will be connected to the low-side 
switch of the half-bridge. Note that if the compare values for both outputs are set to 
the same value, the two outputs will be complementary. However, to insert a dead-
time between the switching of the low and high side drivers, the compare values must 
be moved a little bit in each direction. Half the dead-time is subtracted from the OC0A 
compare value while the same amount is added to the OC0B compare value. This is 
illustrated by the short horizontal lines on the timer/counter curve in Figure 3-2. As 
can be seen from the OC0A and OC0B waveforms, the effect is that a dead-time of 
the same length is inserted at every PWM switching. 
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Figure 3-2. Generating complementary PWM signals with dead-time. 
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To avoid accidental shoot-through when the compare values are changed, it is very 
important that the compare values for both OC0A and OC0B are updated at the same 
exact time. This is accomplished through the double buffering of compare registers 
and the interrupt functionality of the AVR timer/counter units. In Figure 3-2, each 
PWM cycle is marked with dashed lines. When running in phase correct PWM mode, 
the compare values for the two outputs will be effective from the moment marked with 
a 2 in Figure 3-2. At the moment marked 1, the timer/counter overflow flag will be set. 
This can be used to run a periodic interrupt where the output compare values can be 
updated. If the 16-bit Timer/counter1 is used, it can be configured to use the input 
capture register as the top value for the counter. A capture event interrupt will then be 
triggered at the same time as the output compare values are updated. Using this 
interrupt instead of the overflow interrupt doubles the clock cycles available to 
compute new output compare values. Since all Timer/counter units are used in this 
application, the capture event interrupt is used. 

3.1.4 PWM base frequency 

When an 8-bit timer/counter unit is used to produce two PWM outputs with different 
compare values, the top value will be fixed at 255. The 16 bit timer/counter unit must 
be set in 8 bit phase correct PWM mode to behave like the 8 bit timer/counter units. In 
phase correct mode, one PWM cycle with a top value of 255 will have a period of 510 
timer clock cycles, or 510 CPU clock cycles, assuming a clock percale value of 1 is 
used. The PWM frequency as a function of CPU frequency can be calculated from 
Equation 3-1. 
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Equation 3-1. PWM base frequency as a function of CPU frequency. 

510
CPU

PWM
f

f =  

3.2 Waveform generation 
Using the information from section 3.1 on how to set up the AVR to generate a 
voltage output from a half-bridge, it is possible to set up the system to drive a motor 
with a triple half-bridge. 

3.2.1 Setting up the AVR 

Each timer/counter unit on the ATmega48 is able to control one half-bridge, so all 
three timer/counter units are needed to control three half-bridges. Each timer is set up 
and connected to one half-bridge according to section 3.1. To make sure that the 
three timers are synchronized, each timer is preloaded with a value, since the three 
timers are started at a different moment. It is important to make sure that the three 
timers are synchronized, by e.g. running the application in simulation mode in AVR 
studio®, inspecting the values of the three timer registers.  

3.2.2 Generating the waveforms 

Three steps are involved in the calculation of the compare values for the three 
timer/counter units:  

• Obtaining the desired output value 

• Scaling the value to the desired amplitude  

• Inserting the dead-time 

The desired output value when driving a synchronous motor is a function of rotor 
position. The output values can either be calculated or stored in a look-up table. In 
this application note, a look-up table is used to store the values, to increase the 
performance of the application. 

The values stored in the look-up table correspond to the maximum output amplitude. 
The look-up table value must be scaled down to the desired output amplitude. 
Equation 3-2 shows how the output value can be scaled. The output duty cycle, do, is 
obtained by multiplying the output value obtained from the look-up table, dtable, with a 
scaling factor, ks.  

Equation 3-2. Amplitude scaling equation. 

n
tables

o
dk

d
2

=  

The output bit resolution can be calculated as no = nk + nt � n, where no, nk and nt are 
the bit resolutions of the output, scaling factor and table value respectively and n is 
the division exponent in Equation 3-2. E.g. a table value resolution of 8 bits, a scaling 
factor of 8 bits and a division exponent of 8 bits will generate an output duty cycle 
value with a bit resolution of 8 bits. 

The dead-times are inserted as described in section 3.1.3. and the compare values 
can be output to the timer/counter compare registers. 

These steps are repeated for every timer/counter overflow to update the outputs with 
the correct values with respect to rotor position. 
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3.3 Generating sine waves 
Section 3.2 explains how to produce an arbitrary waveform stored in a look-up table. 
In this section, an efficient way to produce sine wave output is explained. 

3.3.1 The output pattern 

The most straightforward approach would be to just store a sine wave in a look-up 
table and use this table to generate a sine wave on each motor terminal. However, for 
motor driving there are more efficient ways to produce sinusoidal signals. The key to 
understanding this is that we are not trying to generate sinusoidal signals for each 
motor terminal with respect to ground. What we are trying to generate are three 
sinusoidal line-to-line voltages (differential voltage between two terminals) with a 
phase shift of 120o between them. Table 3-1 and Table 3-2 shows how this can be 
accomplished without producing full sine waves for each terminal. A graphical 
representation along with a typical block commutation pattern is shown in Figure 3-3. 

Table 3-1. Terminal and line-to-line voltages, forward driving. 
Step U V W U-V V-W W-U 

S1-S2 sin(θ) 0 -sin(θ-120) sin(θ) sin(θ -120) sin(θ -240) 

S3-S4 -sin(θ-240) sin(θ -120) 0 sin(θ) sin(θ -120) sin(θ -240) 

S5-S6 0 -sin(θ) sin(θ -240) sin(θ) sin(θ -120) sin(θ -240) 
 

Table 3-2. Terminal and line-to-line voltages, reverse driving. 
Step U V W U-V V-W W-U 

S1-S2 sin(θ) -sin(θ-120) 0 -sin(θ-240) -sin(θ-120) -sin(θ) 

S3-S4 -sin(θ-240) 0 sin(θ -120) -sin(θ-240) -sin(θ-120) -sin(θ) 

S5-S6 0 sin(θ -240) -sin(θ) -sin(θ-240) -sin(θ-120) -sin(θ) 
 

There are two advantages to this approach. First of all, the maximum line-to-line 
voltage generated is higher than with the pure sine wave approach, offering higher 
torque and speed. Secondly, each terminal output is zero for 1/3 of the time, reducing 
switching losses in the power stage. 

3.3.2 Organizing the look-up table 

Organization of the look-up table is a trade-off between access time and look-up table 
size. Looking at the waveforms in Figure 3-3, it can be seen that the information can 
be �compressed� in several ways.  

The three waveforms are phase shifted by 120 degrees, so it is possible to only store 
one waveform and use that for all three terminal voltages. Furthermore, looking at the 
waveform for phase U, it can be seen that steps S3-S4 is a mirrored version of S1-
S2. In S5-S6, U is simply zero. This suggests that it is possible to get away with 
storing as little as one third of the table and using software to find the correct value. 
The former method has some overhead in adjusting the look-up table pointers to the 
correct place. The latter method has larger overhead.  

Since the table lookup must be performed for all three channels for every PWM cycle, 
even a small overhead can contribute significantly to average CPU load. This 
application note focuses on performance, so the waveforms for all three terminal 
voltages are stored in the look-up table. To ensure the fastest possible access, the 
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values are organized as shown in Table 3-3. This allows all 3 values to be read with 
the very fast LPM Z+ instruction. To get the output values for forward driving, the table 
is read in the sequence U, V, W, while in the reverse direction, the sequence U, W, V 
is used. 

Table 3-3. Sine look-up table organization. 
U0 U0 - 120o U0 - 240o U1 U1 - 120o U1 - 240o � 
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Figure 3-3. Sine wave generation. 
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3.4 Timing 
All available timer/counter units in the ATmega48 are used for PWM generation. For 
that reason, there is no dedicated timer available for speed measurements. The 
solution to this is to use the overflow interrupt of the timer/counter units as a time 
base. The time period between each overflow interrupt will be referred to as a �tick�. 
The duration of one tick is equal to the PWM time period, which is given by Equation 
3-3.  
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Equation 3-3. PWM time period. 

CPUPWM
PWM ff

T 5101
==  

 

As an example, at 8MHz CPU clock, one tick has a duration of 63.75µs. 

3.5 Position sensors and its usage 
Since the objective is to control a synchronous motor, some kind of information about 
the rotor position must be known in order to produce waveforms that are 
synchronized to the motor. This information can be obtained, e.g. by using a rotary 
encoder. However, many permanent magnet motors are equipped with three hall 
sensors mounted providing information about the rotor positions in 60 degree 
increments. In this application note, the hall sensors are used as the only position 
sensing devices. 

In Figure 3-3, the three hall sensor signals are shown as H1, H2 and H3. The hall 
sensor inputs translates into a number between 1 and 6 by treating each of the hall 
sensor signals as binary digits and arranging them as hall = H3 H2 H1. The hall 
values corresponding to the different combinations of H3, H2 and H1 are shown in 
Figure 3-3. 

The state of the hall sensors and the timing of hall sensor changes are used for 
several purposes: 

• Output waveform phase locked loop 

• Speed calculation 

• Block commutation 

• Rotation detection. 

• Synchronization and direction change 

• Advance commutation angle control 

• Tacho output signal 

3.5.1 Phase locked loop 

The goal of the waveform generation is to keep the output waveforms synchronized to 
the rotation of the rotor. The challenge when using hall sensors as position sensors is 
that up-to-date information about rotor position is only available every 60 degrees. To 
solve this challenge, a phase locked loop must be implemented that keeps the output 
waveform in synch with the rotor. 

An index (or pointer) into the look-up table is maintained at all times. The information 
obtained from the hall sensors is used to update this index. 

The most accurate position information is available in the exact moment when a hall 
sensor changes value. At this point, the exact angle of the rotor is known.  

In the time between hall sensor changes, no information about the position of the 
rotor is available. However, we do know the position of the rotor at the last hall sensor 
change, and we can measure the time period between the last two hall sensor 
changes. This allows us to calculate the speed of the rotor and, assuming constant 
speed, the position can be calculated from Equation 3-4. 
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Equation 3-4. Position interpolation. 

( ) tt ωθθ
ωθ
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where θ is the angular position, θ0 is the angular position at the last hall sensor 
change, ω is the angular velocity and t is the time since the last hall sensor change. 

Without going into detail, Equation 3-4 can be approximated by the difference 
equation shown in Equation 3-5. 

Equation 3-5. Angular displacement difference equation. 
[ ] [ ] Tkk ωθθ +−= 1 , 

where θ is angular position, k is the current time step, ω is the angular velocity and T 
is the time step size.  

In this application note, the angular position is represented by the look-up table index, 
measured in table steps. Time is measured in ticks. Angular velocity is defined by 
Equation 3-6. 

Equation 3-6. Angular velocity definition 

tΔ
Δ

=
θω , 

where Δθ is the angular displacement during the time period Δt. Since angular 
displacement is measured in table steps and time is measured in ticks, the angular 
velocity unit is table steps per tick.  

The look-up table index is updated once every tick, so the time step, T, of Equation 
3-5 is 1 tick. The increment, used to iterate the table between two consecutive hall 
changes can thus be calculated from Equation 3-7. 

Equation 3-7. Look-up table index increment calculation. 

T

e

n
n

T
t

Ti =
Δ
Δ

==
θω , 

where ne is the number of table elements per commutation step (60 degrees of 
rotation) and nT is the number of ticks between the last two commutations. 

At every tick, the increment is added to the look-up table index to update the position 
information. 

The algorithm used to implement the phase locked loop can thus be summarized as: 

1. At every hall sensor change:  

o Set the look-up table index to correspond with the rotor position. 

o Calculate the index increment from Equation 3-7. 

2. For every tick until next hall sensor change: 

o Update the look-up table index using Equation 3-5. 

o Update PWM duty cycles according to look-up table index. 

3. When hall sensors change, go back to 1. 
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3.5.2 Speed calculation 

If closed loop speed control is needed, the rotational speed of the motor must be 
calculated. As explained in section 3.5.1, the speed information is already calculated 
in the form of a look-up table increment value. There is no need to perform yet 
another computationally heavy calculation to obtain information about the speed. Nor 
is it necessary to have yet another variable with information about speed. Resources 
can be saved by representing other speed values, such as speed controller set-point 
in the same unit as the increment, since it corresponds directly to the speed 
information already available. 

To control the speed to a certain RPM value, this value must first be converted to the 
corresponding increment value. It is therefore necessary to know the relationship 
between rotational speed and increment. Speed in revolutions per minute (RPM) is 
related to the number of ticks between hall sensor changes as shown in Equation 3-8.  

Equation 3-8. RPM calculation. 

T

CPU

RPM n

f

⋅

⋅
=

510
6
1

60ω  

Rearranging to give ticks between hall changes as a function of speed: 

Equation 3-9. Ticks between hall changes as a function of speed. 
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Combining Equation 3-7 and Equation 3-9 gives index increment as a function of 
speed (RPM): 

Equation 3-10. Increment as a function of speed in RPM. 
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3.5.3 Block commutation 

During the start-up phase, the speed of the rotor is not known until two subsequent 
hall sensor changes has been detected. To ensure a robust start-up, block 
commutation is used until the rotor speed is known. When operating in block 
commutation mode, all 6 PWM outputs are operated at the same duty cycle and 
commutation is controlled by enabling output of the PWM signals only to the pins that 
should be driven. The output pattern is updated at every hall change. One table for 
each direction is used to hold the output pattern values for the corresponding hall 
sensor inputs. For more information on driving a PMM with block commutation, refer 
to application note AVR443. The output pattern used in block commutation mode with 
respect to hall sensor input is also illustrated in Figure 3-3 along with the sinusoidal 
pattern. 

3.5.4 Rotation detection 

The sequence of hall sensor changes can be used to determine the actual direction of 
rotation. One table for each direction is used to store the next expected hall sensor 
value for each hall sensor value. This is used to deduce the actual direction of 
rotation.  
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Comparing the actual direction of rotation to the commanded direction of rotation 
determines if the motor is spinning in the desired direction. 

3.5.5 Synchronization and direction change 

When the microcontroller is powered up or reset, the motor might already be 
spinning. It is therefore important that the firmware determines the state of the motor 
and synchronizes to this state. 

When changing the direction of rotation, the rotor must first be stopped before it can 
be driven in the opposite direction. If the direction command is changed once again 
before the motor has stopped, the firmware must resynchronize before applying 
voltage to the terminals. 

Synchronization and turning are controlled by the hall sensors. Direction information 
is deduced as described in section 3.5.4.  

The motor is considered to be stopped when a sufficient number of ticks have passed 
since the last hall sensor change. 

Synchronization occurs when the motor is spinning in the commanded direction and 
at least two hall sensor changes are detected. 

3.5.6 Advance commutation control 

A programmable advance commutation angle can be used to adjust the phase of the 
output waveform to make it lead the rotor angle. This might be necessary to get the 
motor to run at it�s maximum speed and/or efficiency. The advance commutation 
angle is run-time adjustable and can be set up to vary according to e.g. rotor speed or 
waveform amplitude. The advance commutation angle is obtained by adding an offset 
to the look-up table index, thus shifting the phase of the waveforms. The advance 
commutation angle can be adjusted in increments of 1 look-up table step (1.8û).  

3.5.7 Tacho output signal  

The tacho output signal is generated directly from the hall sensor input to produce a 
signal that reverses polarity for each hall sensor change. 

3.6 Overcurrent detection 
A locked rotor, sudden load change or fast acceleration can cause excessive current 
to run through the motor and driver stage. In order to prevent damage due to over-
current, it is very important to monitor current at all times. Usually, a shunt resistor is 
mounted between the driver stage transistors and ground, and the voltage across this 
shunt resistor is measured to calculate the current. This can be done with the ADC or 
an analog comparator. 

In this application note, the ADC has been used to measure current. Using the ADC 
introduces a little delay, due to the conversion time, but there are other advantages. 
The analog comparator is on all the time, so it will be very sensitive to PWM switching 
noise, unless heavy external filtering is added. This problem is easier to overcome 
with the ADC. The voltage is sampled in one instant, and this instant can be triggered 
by e.g. an overflow event in a PWM timer (Point 1 in Figure 3-2), to make sure that 
the measurement is made at the same moment every PWM cycle. Unless the duty 
cycle is very low, this moment will also be far away from any PWM switching. The 
result is that less external filtering is needed to have reliable current measurements. 
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3.7 Speed control 
This application note includes examples of both open loop speed control and a PID 
controller. It is also possible to add other kinds of speed regulators if desired. How to 
calculate the actual speed of the rotor was covered in section 3.5.2. 

3.7.1 Speed reference 

The controller, whether open or closed loop, needs some kind of speed reference. In 
this application note, an analog voltage reference is used, although it could easily be 
exchanged with e.g. a UART command. The analog reference is measured using the 
ADC.  

3.7.2 Speed controller 

It is possible to run the included firmware with open or closed loop speed control. The 
open loop speed control is very simple. The 8-bit analog speed reference value is 
directly used as the 8 bit amplitude value for the generated sine waves. 

The closed loop speed control also uses the 8-bit analog speed reference value as a 
feed forward value to the amplitude setting. In addition, a PID (proportional, integral 
derivative) controller is used to make sure that the speed is accurately controlled to 
the desired speed. The ADC measurement is used as setpoint for the speed 
controller. Since the internal representation of speed is index increment, the 
measured signal must be converted to the same representation. Section 3.5.2 covers 
the relationship between speed in RPM and the internal index increment 
representation. A block diagram of the closed loop system with feed forward is shown 
in Figure 3-4. 

Figure 3-4. PID controller with feed forward. 
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The speed control loop is the only part of the motor control application that is not 
interrupt driven. This is because the PID calculations take too long to perform inside 
an interrupt routine without degrading the performance of the motor control. 
Furthermore, it is not necessary to run the control loop as often as each commutation. 

 

4 Firmware implementation 
The source code included with this application note is fully documented with Doxygen 
comments, which explains all parts of the code. Opening the �readme.html� file can 
access the full Doxygen documentation in html format.  

This chapter includes additional information needed to understand the overall flow of 
the implementation. 
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4.1 Code structure 
Note that the code included with this application note has been written for high 
performance. Because of this, almost all source code is contained in one file to allow 
the compiler to optimize the code as much as possible. Most functions are declared 
with the �#pragma inline=forced� directive, since they are called from interrupt 
routines. 

4.2 Peripheral usage 
The hardware peripherals in the ATmegax8 used in this application note are listed in 
Table 4-1. 

Table 4-1. Hardware module usage. 
Hardware module Usage 

Timer/counter0 Phase U PWM modulation 

Timer/counter1 Phase V PWM modulation 

Timer/counter2 Phase W PWM modulation 

ADC channels Speed reference input/Current measurement 

Pin change interrupt 0 Emergency shutdown interrupt 

Pin change interrupt 1 Hall sensor change interrupt 

Pin change interrupt 2 Direction change interrupt 
 

4.3 Actions performed in interrupts 
The full motor control application, except speed control, is interrupt-based. Table 4-2 
shows the responsibility of each interrupt used in the application. Understanding the 
responsibility of each interrupt service routine is the key to understanding how the 
application works. 
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Table 4-2. Interrupt responsibility. 
Interrupt Function Responsibility/action 
Timer/counter1 
capture event 

Timer1CaptureISR PWM compare value update. 
Block commutation duty cycle control. 
Speed measurement. 
Stop detection. 

Pin change 0 EmergencyInterruptISR External shut-off signal handling. 

Pin change 1 HallChangeISR Synchronizes sine wave to hall sensors. 
Block commutation. 
Tacho output update. 
Actual direction detection. 
Detects whether firmware and motor are 
synchronized. 
Reverse rotation output signal update. 
Sine table index increment calculation. 
Stop detection. 

Pin change 2 DirectionInputChangeISR Direction control input. 

ADC complete ADCCompleteISR Sine wave amplitude/block commutation 
duty cycle control. 
Current measurements. 
ADC channel selection. 

 

4.4 Output waveform generation 
Two interrupt service routines cooperate to produce the sine wave output. 
Timer1CaptureISR updates the PWM compare values once every PWM cycle. 
HallChangeISR synchronizes the sine wave to the current rotor position and 
calculates the sine table index increment. Figure 5-2 shows the interaction between 
the two ISRs. The state labeled �Any state� symbolizes that it is not relevant what 
state the motor was in or goes to. 
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Figure 4-1. Sine wave generation state machine. 
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4.5 Direction and synchronization control 

4.5.1 Related flags 

Two definitions are needed to explain the direction and synchronization control: 

Synchronized means that a specified number of subsequent hall sensor inputs 
corresponds to the pattern expected when rotating in the direction commanded by the 
direction input pin. This is used to ensure that sine wave driving is applied with the 
correct frequency, phase and direction. 

Stopped means that there has not been a change in any of the hall sensor inputs for 
a specified number of ticks. 

Two flags that are part of the global fastFlags variable indicates whether the motor 
is currently synchronized and/or stopped. These flags are automatically manipulated 
by the interrupt service routines at certain events. The following functions/ISRs modify 
these flags: 

CommutationTicksUpdate: 

• motorStopped = TRUE, if a predefined number of �ticks� has passed since last 
hall sensor change. 

• motorSynchronized = FALSE, if motorStopped flag has just been set to 
TRUE. 

This function is called by Timer1CaptureISR. 

 
MotorSynchronizedUpdate: 

• motorSynchronized = TRUE, if the synchronized criteria is met. 
• motorSynchronized = FALSE, if the synchronized criteria is not met. 

This function is called by HallChangeISR 
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HallChangeISR: 

• motorStopped = FALSE (motor can not be stopped if the hall sensors change 
value) 

DirectionInputChangeISR: 

• motorSynchronized = FALSE 

• motorStopped = FALSE 

4.5.2 Direction and synchronization logic 

There are several situations where the motor control firmware needs to synchronize 
to the motor before any waveform is applied: 

• When the motor is started from standstill, it is first commutated using block 
commutation. Block commutation is used until synchronization is obtained. 
This ensures that sine waves with correct frequency and phase are 
generated when the motor switches to sine wave driving. 

• When the microcontroller is started and the motor is already running, the 
firmware will not apply any driving waveform until it is synchronized to the 
motor, or the rotor has stopped turning. 

• When a direction change is requested, driving will be disabled or braking 
initiated until the motor is stopped. If another direction change is requested, 
the motor may be able to synchronize again. In that case, it resumes 
sinusoidal driving at the correct frequency without waiting for the motor to 
stop. 

The full direction and synchronization control is illustrated in Figure 4-2. Motor 
stopped means that the motorStopped flag is TRUE. Motor synchronized means that 
the motorSynchronized flag is TRUE. Direction change requested means that the 
DirectionInputChangeISR has been run. 
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Figure 4-2. Direction and synchronization control state machine. 
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4.6 Analog to digital conversions  
In the included code example, the ADC is used to read two values: a speed reference 
and the motor current. The ADC is only capable of performing one AD sample and 
conversion at one time, so the input channels are converted in a round-robin fashion.  

The sampling of the input value is automatically triggered every Timer/counter0 
overflow. This ensures that the sampling occurs in the middle of each PWM cycle, 
making each current measurement comparable to the last. 

When an AD conversion is complete, the ADC complete interrupt service routine is 
run and the converted value is placed in a global variable corresponding to the 
currently selected ADC channel. The Timer/Counter0 overflow interrupt flag must be 
cleared manually if Timer/Counter0 overflow interrupt is not executed. A new AD 
conversion will not be triggered until this flag has been cleared. 

If more inputs are needed, the ADC complete interrupt service routine can be 
extended to add more readings to the cycle. 

Note that in the included source code, the motor current input is only stored in a 
global variable. It is not used at any place throughout the code for current limiting or 
overcurrent shutdown, as the current limiting is specific for individual designs. 

5 Hardware 
This chapter describes how to connect the hardware for use with this application note. 

5.1 Pin assignment 
The pin assignment used in this application note is shown in Figure 5-1. The function 
of each pin is described in Table 5-1. 
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Figure 5-1. Pin assignment. 
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Table 5-1. AVR pin usage and direction. 
Pin Name Purpose  Direction 

PD5 UL Phase U low side control signal  Out 

PD6 UH Phase U high side control signal Out 

PB2 VL Phase V low side control signal  Out 

PB1 VH Phase V high side control signal Out 

PD3 WL Phase W low side control signal  Out 

PB3 WH Phase W high side control signal Out 

PC0 H1 Hall signal 1  In 

PC1 H2 Hall signal 2  In 

PC2 H3 Hall signal 3  In 

PC3 Speed reference Analog level controlling amplitude of waveforms. 
Expects signals in the range 0-1.1V.  

In 

PC4 Current Motor current measurement. 
Expects signals in the range 0-1.1V. 

In 

PB5 Emergency 
shutdown 

When the logic level on this pin is changed, the 
interrupt service routine (ISR), 
EmergencyInterrupt, is called.  

In 

PD2 Direction Low = forward, high = reverse. In 

PD4 Reverse rotation Low: motor spins in the direction specified by the 
�Direction� input. 
High: motor spins in the opposite direction or is 
stopped. 

Out 

PD7 Tacho Outputs a square wave with frequency 3 times the 
electrical frequency of the motor. 

Out 

 

5.2 Connecting the Atmega48/88/168 to a driver stage and motor 
This application note needs following components to work: 

• A 3 phase permanent magnet motor with hall sensors. 

• A driver stage capable of driving the motor. 

• An Atmel® ATmega48/88/168 microcontroller. 

• An analog input signal in the range 0-1.1V (For speed control). 

Figure 5-2 shows a conceptual schematic of the full system. 

Note that the shutdown and direction signals, even if not needed, should be 
connected to a fixed logic level for the included firmware to work. 
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Figure 5-2. Conceptual schematic of the full system. 
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5.2.1 Using the ATAVRMC100 driver stage 

This application note has been tested on the ATAVRMC100 power stage/motor 
development kit. The ATAVRMC100 has an onboard AT90PWM3 microcontroller 
mounted, but it is possible to use it as a power stage with a different microcontroller 
through the EXT_DRV and SENSOR interfaces on the board. The EXT_DRV header 
is documented in the ATAVRMC100 Hardware User Guide, available from the Atmel 
web site. It is important to erase the AT90PWM3 before using the ATAVRMC100 with 
a different microcontroller to ensure that only one microcontroller drives the signals. 

Table 5-2 contains a complete list of the signals that must be connected to the 
ATAVRMC100 board. Note that the GND signal is connected to the negative shunt 
terminal, which is actually directly connected to ground. Figure 5-3 shows a graphical 
representation of the EXT_DRV header. 

Table 5-3 shows the connections necessary to interface with the hall sensors. A 
graphical representation of this interface is shown in Figure 5-4. 
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Table 5-2. ATAVRMC100 EXT_DRV connections. 
Signal name ATmegax8 pin ATAVRMC100 signal EXT_DRV pin number 
UH PD6 H_A 1 

UL PD5 L_A 2 

VH PB1 H_B 3 

VL PB2 L_B 4 

WH PB3 H_C 5 

WL PD3 L_C 6 

Current PC4 V shunt+ 7 

GND GND V shunt- 8 
 
Figure 5-3. EXT_DRV connection. 
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Table 5-3. ATAVRMC100 hall sensor interface. 
Signal name ATmegax8 pin ATAVRMC100 signal 

H1 PC0 Sensor A 

H2 PC1 Sensor B 

H3 PC2 Sensor C 
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Figure 5-4. Hall sensor connection. 
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6 Waveform plots 
Figure 6-1 and Figure 6-2 show the waveforms generated when driving forward and 
reverse at different speeds. The average function on the oscilloscope has been used 
to smooth the waveforms. Both plots show, from the top: phase voltages for U, V, W, 
the line-to-line voltage U-V, then hall sensors H1, H2 and H3. 

Figure 6-1. forward driving at 750 RPM. 
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Figure 6-2. Reverse driving at 12,660 RPM. 

 

7 Code size and performance 
Table 7-1 shows the flash and SRAM memory usage. Note that the flash usage 
number includes nearly 900B of that is occupied by look-up tables. 

Table 7-1. Flash and SRAM usage 
 Flash SRAM 

Open loop speed control ~2.6kB ~70B 

PID speed control ~3.5kB ~90B 
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