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Abetract We consider simulation of hybrid systems consisting of continuous time smooth 
systems and relays. We discuss how a simulation program should detect the structural possibility of 
infinite fast mode switches (sliding) and help the user introduce new so called induced modes. We 
also analyse the problem of how to define the dynamics on’ the induced modes. Finally we study 
the different possible stable sliding motion around an intersection of two transversal switching 
surfaces. 
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1. INTRODUCTION 

Today most investigations of hybrid systems are done by simulation. Even though much research 
effort is put into the the field of hybrid systems this situation is not likely to change in the near 
future. It is therefore crucial to have good simulation tools for hybrid systems. Today, there are 
several simulation packages that allow for the mixture of continuous variables and discrete variables 
but the simulation performance is often poor. One important problem is simulation of models where 
so called sliding mode behavior might arise, i.e. there might be infinite many mode switches in a 
finite time interval. 

A typical hybrid control system is seen in Fig 1. Mode switches in this system can be caused 
either by switching between different controllers or different operation modes of the plant. 

There are many models of hybrid control systems. A common feature is that the state space S has 
both discrete and continuous variables, for example S c R” x 2”‘. The models proposed by different 
authors differ in definition of and restrictions on dynamic behavior. There is not yet any agreement 
on what constitutes the most fruitful compromise between model generality and powerfulness. For a 
review of different approaches see e.g. [2] or [9]. 0 ur class of systems is a special case of the Differential 
Automata described in [13]: 

i = f(4th q(t)), 2 E R” 

q(t) = 44% q(q), qEZm+ (1) 

l This work is supported by NUTEK, Swedish National Board for Industrial and Technical Development, under contract 
95-02540 
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Fig. 1 A hybrid control system, R-reference generator, C-controller, S-scheduler, S-switch, P-plant, 

P.I.-performance index 

where x denotes the continuous and q the discrete variables. The model does not allow for autonomous 
or controlled jumps. Hybrid models like these are often represented with a graph, see Fig 2. Here 
each of the nodes represent a mode of the system. Associated with each mode is a dynamic equation 
and jump conditions. In this paper we will let the state of a set of relays govern the modes. We will 

Fig. 2 Typical graph of hybrid system 

specialize (1) to the following system where the modes are determined by the state of m relays: 

& = f(?U) 
Y = h(x) 

Ui = sgn(yi), i = l,... ,m 

where x E R”, u,y E R” and f, h E Cl. Here sgn(x) equals 1 if z > 0, equals -1 if z < 0 and is 
undefined if z = 0. The system dynamics is hence undefined on the surface h(z) = 0. 

For many of the proposed hybrid models restrictions are introduced to prevent infinitely fast 
switches between the discrete modes. For instance in [13] the distance between any two sets with 
different discrete transitions is bounded away from zero and the next set from which another discrete 
transition takes place is at least a fixed distance away. After a discrete transition one is in an open 
set on which the dynamics are well defined. In practical situations it is however common to have so 
called sliding modes, i.e. cycles of infinitely fast changes of modes. Some design methods may lead 
to this behavior, see [6]. Simulating such systems is hard. In this paper we will discuss automatic 
detection of the structural possibility of fast switching and discuss how new “induced mode” can be 
introduced. We will then treat the two-relay case in in R3 in more detail. 
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As an example consider the system 

*I = cos(u) 

232 = - sin(u) 

Y = 22 
U = w-h) 

which is a simple model of a vehicle with control system to drive along the z2 = 0 axis. The control 
system controls the steering direction u of the car with a relay. The system can be aggregated into 
the following hybrid automaton, described in Fig. 3. Note that the transitions are not forced and that 

Fig. 3 A system with two modes where fast switching CICCU~S 

fast switching will occur on the surface 22 = 0 where the dynamics is not well defined. It would be 
advantageous if a simulation program might, automatically, detect the structural possibility of fast 
switching in large systems with several relays, extend the system with induced modes so that the 
new system has only forced transitions without fast switching and describe how these modes could 
inherit dynamics from the basic system. For the car-example above the new automaton should have 
one induced mode and only forced transitions, see Fig. 4. There are several possible definitions of the 
inherited dynamics. To determine which is physically motivated, more modeling is typically needed. 

1.1 Inheritance of dynamics 

Sliding motion along a surface, such as 2s = 0 in the car example was studied by e.g. Filippov, 
see [5], [14] or [3]. For a smooth surface described by the intersection of m smooth surfaces 
y;(z) = 0, i = 1,. .m the dynamics along the intersection can be defined in at least two possible 
ways. 

DEFINITION l-FILIPPOV CONVEX DEFINITION 

i E co{f(x,u) : u;=-lorl, i=l,..., m} 

such that 
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y=Oandi+>O 

y=Oande-<0 

Fig. 4 System with one induced mode. Only one induced transition is indicated, a : (y = 0 and i+ < 0) 

The differential inclusion (2) can be written as 

where C; a,,(t) = 1 and a,,(t) 1 0. This definition has roots in optimal control under the name of 
extended control and from generalized derivatives in non-smooth analysis, see [3]. The definition can 
be motivated by a limiting process where the relay equations are replaced by u;(t) = sgn(y;(t - E;)), 
where ei + O+. This can for example be a good approximation if the relays are implemented on a 
digital computer. 

An alternative definition of the sliding mode dynamics is the following. 

DEFINITION 2-FILIPPOV EQUIVALENT CONTROL 

Relax the m discrete variables in u to continuous variables in [-I, l]” and Ford u,s such that 

such that 0, i=l,...,m 

This definition can be motivated by a limiting process where each relay is approximated by a 
continuous function sgn,(z). Thi s can be a good approximation if the relays are implemented with 
analog components. The two definitions coincide if f(z, U) is afbne in u. 

For the example with the car, the convex definition gives the motion iI = cos(1) along the 
switching line 22 = 0. The definition of equivalent control gives 61 = cos(0) = 1. Both definitions can 
be natural candidates for the physical behavior of the car, depending e.g. on if the control system is 
implemented on a digital or analog computer. 

I f  there are more than one relay, i.e. if m > 1 then equations (2) and (3) are not sufficient to 
define the sliding motion uniquely. The case with several relays is in fact not very well understood. 
The “physical” sliding motion will depend on the salient features of the different relays, e.g. which 
relay is the fastest. A simple case with two relays is investigated in [ll]. This analysis is extended in 
Section 3. Another case of non uniqueness is given by non-transversal sliding, i.e. if zf(2, u) = 0 

forall u. 
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1.2 Nonhnversal sliding 

In the literature it is common to assume transversal intersection of vector fields and switching 
surfaces. Nontransversal intersections can however arise quite naturally and should not be considered 
degenerate or nongeneric. To see this we extend the car example with a third equation describing 
sensor dynamics 

The switching surface is given by zs = 0. There will be nontransversal sliding on the line zi! = z3 = 0. 
Note that 2 . f( 2,~) = 0 on this line for all u. To define the sliding dynamics it can be motivated 
to extend the previous definitions in the following way: Differentiate y(z) with respect to t until it is 
possible to solve for u. For the car example the convex definition is given by equations (2), G = 0 and 
ji = 0. The equivalent control is given by (4), i = 0 and 5 = 0. (This gives the same sliding behavior 
in the ~1 direction as without sensor dynamics.) 

Necessary and sufficient conditions for existence of higher order switching for systems with one 
relay is to our knowledge unknown. A necessary condition is that &;yck) < 0 where k is the smallest 

integer such that &;ytk) # 0. If  f(z, u) = a(z) + ( ) b z u th e condition can be written L&i-‘h(z) < 0. 
Here Lb denotes the Lie-derivative of in the direction of b(z). Hence k is the nonlinear relative degree 
from the output from the relay to the input. I f  the relative degree le is greater than 1 the intersection 
is nontransversal. Transversal intersections are hence generic only in the same weak sense as “linear 
systems are generically of relative degree 1”. 

1.3 Stable nonhznsversal sliding of degree k 

Sufficient conditions for nontransversal sliding are hard, since stability of the switching line must 
also be studied. If  we for instance change the sensor dynamics equation above to 5s = x3 + x2 the 
switching line xz = 23 = 0 will be unstable and there will not be any sliding motion along the line. 
We have been able to solve the case with k = 2. This will be presented in a later paper. 

2. STRUCTURAL DETECTION OF CYCLES - INDUCED MODES 

It is of great help if the simulation tool is able to check for possible simulation problems before the 
actual simulation is started. Specifically, the simulation tool should warn if infinitely fast switching 
between modes are possible. The tool should then determine which variables are involved in such 
fast cycles and suggest new induced modes. The construction of an appropriate model for simulation 
will typically be an iterative process with interaction between the user and the simulation tool. In a 
simulation environment such as Omsim, see [l], it is possible to do structural analysis of the equations 
before simulation. Such a structural analysis can be achieved by efficient graph methods. Distinction 
is then made only between zero and nonzero coefficients. An example of such structural analysis is 
block-lower triangular (BLT) partion of the problem with respect to the variables. This has been 
used to detect algebraic loops of minimal dimension, see [12] and [4]. Another example is Pantelides’ 
algorithm, see [lo] and [7] to determine suitable forms of integration of high-index DAE problems. 
A BLT partitioning of the car example above would reveal that u structurally influences x2, and 
therefore also indirectly x3 i.e. the input to the relay. Hence there might exist a fast sliding mode 
involving u, 22 and 2s. This can be nontrivial to see if the loop is part of a larger system. 
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Since structural analysis only gives necessary conditions for fast switching, we can not guarantee 
that switching actually will occur during simulation. We now describe the structural analysis to 
determine if fast switching may occur for problems with multiple relays. We do this by considering 
a simple example, from which the general algorithm should be obvious. 

51 = fl(Zl,W) 

Y2 = hz(z1) 

i2 = A(u2) 

Yl = hl(E2) 

'111 = wbd 

u2 = sdyd 

The actual form of the functions f; and hi does not matter in this discussion since only structural 
dependencies are analyzed. After adjoining the equations &; = dt , dz. the corresponding structure 
Jacobian is given by 

il 21 i2 22 Ul Yl ua Y2 

fl * * * 

Xl * * 

hz * * 

f2 * * 

22 * * 

h * * 

ml * * 

w2 * * 

In this case there is a loop of the form ul,&, 21, y2,u2,&,22, yl,~l which is easy to find using 
a straight forward graph algorithm. The induced mode should determine the dynamics on the set 
yl(z) = yz(r) = 0. The Filippov equivalent control dynamics can be determined by substituting the 
relay equations with the equations yl(z) = yz(z) = &(z) = $2(z) = 0 and solving for U, (if this is 
possible, otherwise higher derivatives of yl(z) and/or yz( ) z must be computed). The Filippov convex 
control is in general not uniquely defined by the new equations. It will depend on the salient features 
of the relays. 

2.1 Manual determination of induced modes 

Sometimes an extended model can be suggested automatically but in most. cases we need to manually 
add some modes to the hybrid system. We call these new modes induced modes. In the “convex 
definition” of sliding, the dynamics in these induced modes are linear combinations of the vector 
fields adjacent to the surfaces. This means that the solution can be written as 

(6) 

To be able to calculate the ai’s it is not sufficient to use a perfect relay model for the switch. We will 
look at some additional equations to determine the ai’s for special cases further down. 
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Ezample To illustrate the mode inducement procedure we will study a problem with two relays 
and four vector-fields. The four constant vector-fields are as in Fig. 6, right hand side. On the plane, 
22 = O,ol > 0, there is a sliding motion. On the line, xs = 0, zi = 0 the motion is not well defined. 
Fig. 5 shows the analysis procedure step by step. In the start we have four different modes, 1-4, with 
four different sets of dynamics. Analysis of the jump conditions will reveal that there is a possibility 
for a sliding motion. Both transitions 2’14 and 2’41 can be enabled simultaneously. Therefore we 
generate a new mode, 5. In this mode the dynamics can be determined by calculating, for example, 
the Filippov convex combination solution. It is possible to go from modes 1 and 4 to mode 5 but 
not in the other direction. Furthermore, the exit transition from mode 1 to mode 2 will be inherited 
by the new mode. After the new induced mode has been introduced we do the transition analysis 
again and find that there is a loop of enabled transitions. This will lead to fast cycling. Again we 
generate a new mode. In general the dynamics will be as in Eq. 6. In this example the dynamics is 
not a unique combination of the vector-fields fi-f~. To resolve this problem we need more modeling 
information. This is now illustrated in the case of systems with two relays. 

Fig. 5 Film of mode inducement 

3. TWO-RELAY SYSTEMS 

In this section we will study a simplified version of Eq. 1 with two relays and constant vector-fields. 
The dynamics are again 

where x E R3. After a state transformation we will classify ah the stable motions in the x1-x2-plane. 
The inputs of the relays are then such that switching occur on the lines, 

Sl(X) : x1 = 0 

Sz(z) : 22 = 0 

S,+(z) : 21 = 0, 22 > 0 

S;(z) : 21 = 0, 22 < 0 

m4 : 22 = 0, x1 > 0 

S;(x) : 22 = 0, Xl < 0 

This means that ui(x) = sgn(x;). With t wo relays it is possible to have six different stable motions 
in the xl-x2-plane. For typical vector-field patterns see Fig 6 to Fig 8. Stability is here defined as 

44 + S12 as t -+ co where 242 = S1 n Ss. 

All of these stable cases may cause difficulties to a simulation tool. As an example, simulating a 
systems of type errs, see Fig 6 right, is difficult on S.$ and especially on S12. The dynamics on 
S2 \ Sl2 can be calculated using Filippov solutions. In Fig 6 to Fig 8 right, we have indicated where 
new modes may be needed. The algorithm to generate and use these figures is the following. 
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Fig. 6 Type mm and type ms 

Fig. 7 Type rsrs and type rrss 

ALGORITHM ~-MODE INDUCEMENT ALGORITHM 
1 Calculate the switching manifolds associated with each relay, St and Sz. The original modes 

forme a hypercube 

2 Determine manifold intersections. 

3 Generate induced modes for each intersection. For the two-relay case five induced modes are 
generated. 

4 Remove modes that are not attractive, i.e. give vector-fields that point towards the manifold 
associated with the mode. 

Point 4 above can be done at different occasions depending on the problem. 

1 Constant vector-fields - before actual simulation, right after structure check. 

2 Variable vector-fields - during simulation. 

3.1 Classification tools 

To facilitate the work on point 4 in Algorithm 1 we will work with some matrices describing the 
problem as in [ll]. Introduce the matrix V containing the four vector-fields 

1 

fll fil f31 f41 

v = flZ f23 f32 f42 1 f13 f23 f33 f43 

and a coefficient matrix C that will be used for checking the sliding equations 

(7) 
1 1 1 1 

c = fll f21 f31 f41 

flZ f23 f32 f42 1 . 

Will will also need the projection matrices 

(8) 

1 0 0 
82 = [ 0 

0 1 0 
1 

’ 
P3=[0 l] (9) 
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3.2 Sliding modes 

In the case when the sliding motion involves only two modes the new dynamics can be generated 
fairly easy. As additional modeling information all that is needed is what kind of Filippov solution 
to use. 

3.3 Fast cycling or mulZi sliding 

If a new mode is induced from several, i.e. more than two, other modes then we need more information 
of the salient features of the relay approximation in order to generate the new dynamics. In our 
example with two relays there is a difficulty on 2&z. Here there is an ambiguity in the sliding velocity. 
Four vector-fields are to be balanced by only three equations. With a = [al cxz a3 ~~41~. The 
necessary conditions to stay on S12 is 

Pl2VcY = [O oy . 
Solutions to Eq. 10 can be written as CX’ +paN, where cyN satisfies CaN = 0 and where CYO +pcrN 2 0. 
A first step in determining the velocity on the intersection is to calculate the minimum and the 
maximum velocities. The can be done by solving a linear programrm ‘ng problem of the form 

m,“x P3V(a” t PaN) 

For special cases of V the minimum and the maximum coincide. This happens when f(z, u) can be 

written as ~(z,u) = fo(c) + [ f~(z) frl(~)] [ul uZIT, i.e. when ~(z,u) is af%ine in u. 

3.4 Relays with hyderesis 

One possibility to get a unique solution is to use relays with hysteresis. We will use this method to 
define a unique solution to the Eq. 6 for some of the six cases. 

Case 8888 The case, ssss, with sliding motion on all four half-surfaces was treated in [ll], In this 
paper two relays with different levels of space hysteresis were used. This means that the input to the 
relay has to exceed a certain level, c, before it switches. It is straight forward to extend this to any 
combination of time and space hysteresis. Time hysteresis means that after the input passes zero the 
relay switches after a certain time, 7. If  a fast relay, (~1 or ~1 small) is used over the zl-axis and a 
slower relay, (72 or ~2 larger) is used over the ~-axis then upon letting ~1; ~1 -+ 0, 72; ~2 -+ 0 and 
E -+ 0 the multi sliding velocity is given uniquely by 

i = F1423 + cY( S), (12) 
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where F1423 is the unique result of taking Filippov convex combinations 

Fi4 = hfi t hf4, PlF14 = 0 

Fz3 = bfz t bf3, P,Fz3 = 0 
F1423 = X14F14 -1 X23F 23 , P,Fz3 = 0 

l= X1 +X4 = X2+X3 = Xl4 + X23 (13) 

(14) 

and U(E) means any of the combinations, 6(z), U(z), U(2), U( 2). Making the other relay 
faster leads to a corresponding sliding motion of 

i = F’234 + u(E) (15) 
I 

Given the information of the relative speed of the relays it is hence possible to uniquely generate the 
dynamics to use in the induced mode. 

3.5 c0Se T T T T  

This is the pure cyclic control case. Outside the set S = Plzz = 0 the controllers are used in the 
fixed sequence, cl-cs-cs-c4. The solution is well defined and depends only on the initial condition. 
Stability is checked by operations on the matrix V. The system is stable if 

c _ f41 f32 f21 fl2 < 1 

f42 f31 f22 fll 
(16) 

Switching will be faster and faster as the state approach the the set defined in Eq. 10. Finally, after 
a finite time tt, the trajectory will reach the set S. The time to reach the set S is given by 

t+ = piI tk = 2 2-lt1 = (1 - c)-1. 
j=l 

After t = tt the solution is no longer unique and most standard simulation tools fail. 

(17) 

Fig. 9 Rotational system with hysteresis 
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Again the dynamics depends on the salient features of the relays. If  we introduce hysteresis, see 
Fig. 9, the solution will tend to a unique limit cycle. Using the switching points of this limit cycle 
we can generate the dynamics to use in the new induced mode. A natural definition of the dynamics 
on S would be obtained by letting E; tend to zero. But as in the case ssss the limit linq,s PsVa(e) 
in general depends on the relative size of the EI’S. 

4. SUMMARY 
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