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1 Introduction

When the generalized velocity of a mechanical system satisfies an equality condition that
cannot be written as an equivalent condition on the generalized position, the system is called
a nonholonomic system [1, 2]. Nonholonomic condition may arise from constraints such as
pure rolling of a wheel or from physical conservation laws such as the conservation of angular
momentum of a free floating body.

Nonholonomic systems pose a particular challenge from the control point of view, as any
one who has tried to parallel park a car in a tight space can attest. The basic problem
involves finding a path that connects an initial configuration to the final configuration and
satisfies all the holonomic and nonholonomic conditions for the system. Both open loop and
closed loop solutions are of interest: open loop solution is useful for off-line path generation,
closed loop solution is needed for the real time control.

Nonholonomic systems typically arise in the following classes of systems:

1. No-slip constraint.

Consider a single wheel rolling on a flat plane (see Figure 1). The no slippage (or pure
rolling) contact condition means that the linear velocity at the contact point is zero.
Let & and ¥, respectively, denote the angular and linear velocity of the body frame
attached to the center of the wheel. Then the no slippage condition at the contact
point can be written as

v—V0d x Z7=0. (1)

We will see later that part of this constraint is non-integrable (i.e., not reducible to a
position constraint) and, therefore, nonholonomic.

In modeling the grasping of an object by a robot hand, the so—called soft finger contact
is sometime used. In this model, the finger is not allowed to rotate about the local
normal, - & = 0, but free to rotate about the local  and y axes. This velocity
constraint is non-integrable.



Figure 1: A Wheel with No-Slip Contact

The dynamic equations of wheeled vehicles and finger grasping are of very similar
forms. There are two sets of equations of motions: one for the unconstrained vehicle or
finger, the other for the ground (stationary) or the payload. These two sets of equations
are coupled by the constraint force/torque that keep the vehicle on the ground with no
wheel slippage or fingers on the object with no rotation about the local normal axis.
Symbolically, these equations can be summarized in the following form:

(@):  M(q)i+Cl(q.9)q+glq)=u—J"f
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Eq.’s (2a)—(2b) are the equations of motion, f is the constraint force related to the
vehicle or fingers via the Jacobian JT, the null space of H, a full rank fat matrix,
specifies the directions where motion at contact is allowed (therefore, no constraint
force), vt and v~ are the velocity at two sides of the contacts, similarly, ™ and «~

denote accelerations, W parameterizes the admissible velocity across the contact. The
velocity constraint follows (2d), premultiplying by the annihilator of HT, HT:
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HT(J6 — Av,) = 0. (3)

In the single wheel case as in Figure 1, we have

|

J = [&fx ?] o H=[I,0 , H' =[0, I (4)
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The velocity constraint (3) is then the same as (1).

. Conservation of Angular Momentum.

Consider a free floating multi-body system with no external torque (for example, a
robot attached to a floating platform in space, or an astronaut unassisted by the jet
pack, as shown in Figure 2.



Figure 2: Examples of Free Floating Multi-body Systems

The equation of motion for such systems is give by [3]

o e[ S G ][] =[] o

where w is the angular velocity of the multi-body system about the center of mass. By
integrating the bottom portion in time, we obtain

M (q)g + My(q)w =0 (6)

which is a non-integrable condition.

More generally, in a Lagrangian system, if a subset of the generalized coordinate ¢, do
not appear in the mass matrix M(q), they are called the cyclic coordinate [4]. In this
case, the Lagrangian equation associated with g, is

d ( OL oL

— - = =0. (7)
After integration, we obtain the conservation of generalized momentum condition as-
sociated with the cyclic coordinates. Eq. (6) is a special case of this situation.

. Underactuated Mechanical System.

An underactuated mechanical system is one that does not have all of its degrees of
freedom independently actuated. The non-integrable condition can arise in terms of
velocity as we have seen above, or in terms of acceleration which cannot be integrated to
a velocity condition. The latter case is called the second order nonholonomic condition
[5].

First Order Condition. Consider a rigid spacecraft with less than three independent

torquers.
Io +w x Iw = Bu (8)

where B is a full column rank matrix with rank less than three. Let B be the annihilator
of B, i.e., BB = 0. Then premultiplying (8) by B gives 4(BIw) = 0. Assuming the
initial velocity is zero, then we arrive at a non-integrable velocity constraint:

Blw = 0.



Second Order Condition. Consider a robot with some of the joints unactuated. The
general dynamic equation can be written as

M@+ Cl i+ ol = | § ] )

~

By premultiplying by B = [0 I] which annihilates the input vector, we obtain a condi-
tion involving the acceleration:

B(M(q)i + C(g,d)d + g(q)) = 0. (10)

It can be shown that this equation is integrable to a velocity condition, h(q,q,t) = 0,
if and only if the following conditions hold [5]:

(a) the gravitational torque for the unactuated variables g,(q) = Bg(q) is a constant;

(b) the mass matrix M (q) does not depend on the unactuated coordinate, Bg.

This implies that any earthbound robots with non-planar, articulated, underactuated
degrees of freedom would satisfy a non-integrable second order constraint as g,(q)
would not be constant.

The control problem associated with a nonholonomic system can be posed based on the
kinematics alone (with an ideal dynamic controller assumed) or the full dynamical model.
In the kinematics case, nonholonomic conditions are linear in the velocity, v:

Q(q)v = 0. (11)
Assuming that the rank of Q(q) is constant over ¢, then (11) can be equivalently stated:

v=flq)u (12)

where the columns of f(g) form a basis of the null space of Q(q). Eq. (12) can be regarded
as a control problem with u as the control variable and the configuration variable, ¢, as the
state if v = ¢. If v is non-integrable (as is the case for the angular velocity), there would be
an additional kinematic equation ¢ = h(q)v (such as the attitude kinematic equation); the
control problem then becomes ¢ = h(q)f(¢)u. Note that in either case, the right hand side
of the differential equation is linear in u. Such systems are called driftless systems [6].
Solving the control problem associated with the kinematic equation (12) produces a
feasible path. To actually follow the path, a real-time controller is needed to produce the
required force or torque. This procedure of decomposing path planning and path following is
common in industrial robot motion control. Alternatively, one can also consider the control
of the full dynamical system directly. In other words, consider (2) for the rolling constraint
case, or (5), (8) or (9) for the underactuated case, with u as the control input. In the
rolling constraint case, the contact force may also needs to be controlled, similar to a robot
performing a contact task. Otherwise, slippage or even lost of contact may result (e.g.,
witness occasional truck roll over on highway exit ramps). The dynamical equations also
differ from the kinematic problem (12) in a fundamental way: a control-independent term,
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called the drift term, is present in the dynamics. In contrast to driftless systems, there is
no known general global controllability condition for such systems. However, the presence
of the drift term sometimes simplifies the problem by rendering the linearized system locally
controllable.

There are also systems subject to nonholonomic inequality condition in the form of
Q(q)d < 0, but little analytic results are known for such systems.

This article will focus mainly on the kinematic control problem. In addition to the many
research papers already published on this subject, excellent summary of the current state of
research can be found in [7, 8, 9]. Specialized results for specific dynamic problems can be
found in [10, 5, 11] for underactuated attitude and robot control, and pure rolling motion
control problems. Elementary machinery in differential geometry that will be presented
in this article can be found in several recently published texts in nonlinear control theory
6, 12, 13].

In the remainder of this article, we will address the following aspects on the kinematic
control of a nonholonomic system:

1. Determination of Nonholonomy. Given a set of constraints, how does one classify them
as holonomic or nonholonomic?

2. Controllability. Given a nonholonomic system, does there exist a path that connects
an initial configuration to the desired final configuration?

3. Path Planning. Given a controllable nonholonomic system, how does one construct a
path that connects an initial configuration to the desired final configuration?

4. Stabilizability. Given a nonholonomic system, can and how does one construct a sta-
bilizing feedback controller?

5. Qutput stabilizability. Given a nonholonomic system, can and how does one construct
a feedback controller that drives a specified output to the desired target while main-
taining the boundedness of all the states?

We shall use a simple example to illustrate various concept and results throughout this
section. Consider a unicycle with a fat wheel, i.e., it cannot fall (see Figure 3). For this

Figure 3: Unicycle Model and Coordinate Definition

system, there are four constraints:
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2 Test of Nonholonomy

As motivated in the previous section, consider a set of constraints in the following form:

Q(q)g =0 (14)

where ¢ € R" is the configuration variable, ¢ is the corresponding velocity, and (g) € R*>™
is a matrix of constraints.

The complete integrability of the velocity condition in (14) means that €(g) is the Jaco-
bian of some function, h(q) € R, i.e.,

oh
— = Q(q). 15
50 = 2a) (15)
In this case, (14) can be written as an equivalent holonomic condition: h(q) = ¢, where ¢
is some constant vector. The condition (14) may be only partially integrable which means
some of the rows of (q), say, Qk41, ..., satisfy

Oh,;
—Q , i=k+1,....L 16
94 l + (16)
for some scalar functions h;(g). Substituting (16) in (14), we have £—k integrable constraints
oh;
] = 0. 17
70 ¢ (17)

which can be equivalently written as h;(q) = ¢; for some constants ¢;. If /—k is the maximum
number of such h;(q) functions, the rest k& constraints are then nonholonomic.

To determine if the constraint (14) is integrable, we can apply the Frobenius Theorem.
We first need some definitions:

Definition 1
1. A vector field is a smooth mapping from the configuration space to the tangent space.

2. A distribution s the space generated by a collection of vector fields.

o

The Lie Bracket between two vector fields, f and g, is defined as

MQé%(@—%mm

4. An involutive distribution s a distribution that is closed with respect to the Lie Bracket.

5. A distribution, A, consisting of vector fields in R™ with constant dimension m s inte-
grable if there exist n — m functions, hy, ..., h, ., such that
Oh;
Lshi(q) & = =0
rhi(q) 9 ! (q)
for all f € A.



6. The involutive closure of a distribution A is the smallest involutive distribution that
contains A.

The Frobenius Theorem can be simply stated:
Theorem 1 A distribution is integrable if and only if it is involutive.

To apply the Frobenius Theorem to (14), first observe that ¢ must be within the null space
of Q(¢) denoted by A. Suppose the constraints are independent throughout the configuration
space, then the dimension of A is n — ¢; let a basis of A be ¢1(q),- .., gn_¢(q), i.e.;:

A = span{gi(q), .- -, gn—e(q)}-

Let A be the involutive closure of A. Suppose A has constant dimension n — ¢+ k. Since A
is involutive by definition, from the Frobenius Theorem, A is integrable. This means that
there exist functions h;, i = 1,...,¢ — k, such that %—'f;f =0 for all f € A D A. This implies
that the flows of the system lie on a n — ¢ 4+ k£ dimensional manifold given by h; =constant,
i=1,...,0 — k. Hence, among the ¢ constraints given by (14), ¢ — k is holonomic (obtained
from the annihilator of A) and k is nonholonomic.

To illustrate the above discussion, consider the unicycle example presented at the end of
Section 1. First write the constraints (13) in the same form as (11)

ip- 0] _
[é?x 1_[ ]—0'

o ed[ 5 10

Represent the top portion of each vector field in the body coordinate, iz = [0,1,0]%,
7 =10,0,1]", and the bottom portion in the world coordinate, Tp = [lcy, (59, 0], cy = cos®
and sy = sinf, 0 is the steering angle, we have
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This implies that
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The involutive closure of A can be computed by taking repeated Lie Brackets:

([ 0 ] (0' 0 170 7)
1 0 0 0
- 0 1 0 0
A= spatl { 609 ’ 0 ’ —689 ’ 609
680 0 660 gSa
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which is of constant dimension four. The annihilator of A is
A* = span{[1,0,0,0,0,0],[0,0,0,0,0,1]}

From the Frobenius Theorem, the annihilator of A is integrable. Indeed, the corresponding
holonomic constraints are what one could have obtained by inspection

z = constant , ¢ = roll angle = 0.

Eliminating the holonomic constraints result in the common form the kinematic equation
for unicycle:

T gCa 0
?J_ . gSa 0
o= o Wt |ws (19)
b 1 0

Since the exact wheel rotational angle is frequently inconsequential, the ¢ equation is often
omitted. Denoting w,, and w, as inputs u; and us, the kinematic equation (19) can now be
written as

T 660 0
y. = 680 Uy + 0 Ua. (20)
0 0 1

We shall refer to the system described by this set of equation as the unicycle problem.

3 Nonholonomic Path Planning Problem

The nonholonomic path planning problem, also called the nonholonomic motion planning,
involves finding a path connecting specified configurations that satisfies the nonholonomic
condition as in (14). As discussed in Section 1, this problem can be written as an equivalent
nonlinear control problem:

Given the following system
i=flQu; g€ R" ,ueR™ (21)

and initial and desired final configurations, ¢(0) = qo and g5, find uw = {u(t) : t €
[0,1]} such that the solution of (21) satisfies q(1) = ¢;-.

Note the terminal time has been normalized to 1. In (21), f(g) is a full rank matrix whose
columns span the null space of Q(g) in (14), and u parameterizes the degree of freedom in
the velocity space. Note that by construction, f(q) is necessarily a tall matrix.



3.1 Controllability

For w = 0, every ¢ in R" is an equilibrium. The linearized system about any equilibrium ¢*
is

d

—(q—4q¢") = u. 22

=) =f@)u (22)
Since f(q) is tall, this linear time invariant system is not controllable (the controllability
matrix, [f(¢*)|0] ... |0], has maximum rank m). This is intuitively plausible, as the non-

holonomic condition restricts the flows in the tangent space, the system can locally only move
in directions compatible with the nonholonomic condition, contradicting the controllability
requirement. However, the system may still be controllable globally.

A system such as (21) is called a system with no drift as the vector field does not contain
a term only dependent on ¢. For such systems, the controllability of a nonlinear system can
be ascertained through the following sufficient condition (sometimes called Chow’s Theorem
as it first appeared in [14]):

Theorem 2 The system given by (21) is controllable if the involutive closure of the columns
of f(q) is of constant rank n for all q.

The involutive closure of a set of vector fields is in general called the Lie Algebra generated by
these vector fields. In the context of control systems where the vector fields are the columns
of the input matrix f(q), the Lie Algebra is called the Control Lie Algebra.

For systems with drift terms, the full rank condition is only sufficient for local accessibility.
For a linear time invariant system, this condition simply reduces to the usual controllability
rank condition. This theorem is non-constructive, however. The path planning problem
basically deals with finding a specific control input to steer the system from a given initial
condition to a given final condition, once the controllability rank condition is satisfied.

From the discussion in Section 2, it is clear that if the involutive closure of the null space
of the constraints (14) (i.e., the Control Lie Algebra) is of constant rank for all configurations,
the control system with the holonomic constraints removed is globally controllable. For the
unicycle problem given by (19) or (20), the system is clearly globally controllable.

An alternate way to view (21) is to regard it as a nonlinear functional mapping of the
input function u to the final state ¢(1):

q(1) = F(go, ). (23)
Given u, denote the solution of (21) by
q(t) = éu(t; q0)- (24)

Then, F(qo,u) = éu(1;q). In general, the analytic expression for F' is impossible to obtain.

By definition, global controllability means that F'(qo,-) is an onto mapping for every gpo.
For a given u, V,F'(qo, ) corresponds to the system linearized about a trajectory ¢ = {q(t) :
t € [0,1]} which is generated by w:

6¢ = A(t)og + B(t)ou , 0q(0) =0 (25)



where, A(t) = [#£(q(t))u(t) | --- | 2%(q()u(®)] and B(t) = f(g(t)). Since dq(0) = 0, the

. . 8q1 . . aqn
solution to this equation is:

5q(1) = /01 B(1, ) B(s)ou(s) ds (26)

where ® is the state transition matrix of the linearized system. It follows that

(VuF (g0, w)) v = /01 B(1, 5)B(s)v(s) ds. (27)

Controllability of the system in equation (25) implies that for any final state dg(1) € R”",
there exists a control du which drives the linear system from d¢(0) = 0 to d¢(1). This
is equivalent to the operator V,F' being onto (equivalently, the null space of the adjoint

operator, [VQF}*, being zero). In the case that u = 0, V,F reduces to the linear time
invariant system (22). In this case, V,F" obviously cannot be of full rank.

3.2 Path Planning Algorithms
3.2.1 Steering with Cyclic Input
In (21), since f(q) is full rank for all ¢, there is a coordinate transformation so that f(q)

1 . . o .
becomes (@) ] In other words, the inputs are simply the velocities of m configuration

fi
variables. For example, in the unicycle problem described by (19), u; and usy are equal to
0 and gb The subspace corresponding to these variables is called the base space (also called
the shape space). A cyclic motion in the base space returns to the base variables to their
starting point, but the configuration variables would have a net change (called the geometric
phase) as shown in Figure 4. In the unicycle case, a cyclic motion in € and ¢ results in the
following net change in the x and y coordinates:

() — (0) :/(]Tcosﬁgz.ﬁdt:fcosﬁdqﬁ . y(T) — 2(0) :/[]Tsinﬁédt:%siHGdgﬁ. (28)

By the Green’s Theorem, they can be written as surface integrals

() — z(0) ://S—sinﬁ dodo . y(T)—y(0) ://Scose do do (29)

where S is the surface enclosed by the closed contour in the ¢ — € space.

A general strategy for path planning would then consists of two steps: first drive the
base variables to the desired final location, then appropriately choose a closed contour in the
base space to achieve the desired change in the configuration variables without affecting the
base variables. This basic idea has served as the basis of many path planning algorithms
[15, 16, 17, 18].

To illustrate this procedure for path planning for the unicycle example, assume that the
base variables, ¢ and 6, have reached their target values. We choose them to be sinusoids
with integral frequencies, so that at ¢ = 1, they return to their initial values:

uy = ay cos(4nt) ,  up = agcos(2wt). (30)

10



%ﬁoagﬁricl configuration space

- lift of cyclic path

Figure 4: Geometric Phase

By direct integration, we have

6= % sin(drt) , 0= ;—; sin(2nt). (31)
For several values of a; and ag, the closed contours in the ¢ — 6 plane given by (31) are as
shown in Figure 3.2.1. The net changes in x and y over the period [0, 1] are given by the
surface integrals (29) over the area enclosed by the contours. To achieve the desired values
for x and y, the two equations can be numerically solved for a; and a,.

Figure 5: Closed Contour in Base Space

This procedure can also be carried directly in the time domain. For the chosen sinusoidal
inputs, the changes in « and y are

1
Ax = / ay cos(4mt) cos (;—2 sin(27rt)> dt (32)
0 m
1
Ay = / ay cos(4mt) sin <;—2 sin(27rt)> dt. (33)
0 m

Using Fourier series expansion for even functions, we have

cos (;—2 sin(27rt)> = > aycos(2mkt)

T k—0

™

sin (;—2 sin(27rt)> = io: By cos(2mt).
k=0
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After the integration, we obtain

1 1
Ar = §a1a1 , Ay = ialﬂl' (34)
Since «; and (3; depend on as, given the desired motion in z and y, (34) results in a one-

dimensional line search for as:

Ax Ay
ai(az)  Pi(az)
Once ay is found (there may be multiple solutions), a; can be solved from (34).
The above procedure of using sinusoidal inputs for path planning can be generalized to

systems in the following canonical form (written for systems with two inputs), called the
chain form:

= 0. (35)

q1 ui

o Uz

qgs gau1

qa - q3u1 (36)
L Qn i L gn—1U1. |

For example, the unicycle problem can be converted to the chain form by defining

@ = 0
Q2 = Cox + Spy
g3 = SpT — CpY.
Then
G = u
G = —qsur + luy
s = QUi.

By defining the right hand side of the ¢, equation as the new wus,, the system is now in the
chain form.
For a general chain system, consider the following sinusoidal inputs,

uy = asin(27t) ,  up = beos(2wkt) (37)

It follows that, for ¢ < k+2, ¢;(t) consists of sinusoids with period 1; therefore, ¢;(1) = ¢;(0).
The net change in g can be computed to be

1) a0 = () 2 (39
dk+2 Qr+2\V) = i) B

The parameters a and b can then be chosen so that gy, o is driven to the desired value in
[0, 1] without affecting all the states preceding it: ¢;, i < k + 2. A steering algorithm will
then consists of the following steps

12



1. Drive ¢; and g2 to the desired values.

2. For each qgi10, Kk =1,...,n— 2, drive g;, 2 to its desired values by using the sinusoidal
input (37) with a and b determined from (38).

Many systems can be converted to the chain form, e.g., kinematic car, space robot etc.
However, there are also some systems that cannot be transformed to the chain form, e.g., a
tractor with multiple trailers [19]. There has also been some recent generalizations as in [20].
In [17, 9], a general procedure is provided to transform a given system to the chain form.

3.2.2 Optimal Control

Another approach to nonholonomic path planning is optimal control. Consider the following
two-input, three-state chain system (we have shown that the unicycle can be converted to
this form):
Uy
= u , 4(0) = qo. (39)
qau,

The inputs u; are to be chosen to drive ¢(t) from ¢y to ¢(1) = 0 while minimizing the input
energy:
11
J = / ~u()|
Sl
The Hamiltonian associated with this optimal control problem is
1
H (g, u, ) = 5 [Jull* + A" f (q)u (40)

where A is the co-state vector. From the Maximum Principle, the optimal control can be
found by minimizing H with respect to u:

u = —(A1 +A3q2) , Uz = —Ao. (41)
The co-state satisfies: 0
A= —%—ZI = —)\S,ul : (42)
Differentiating the optimal control in (41), we obtain
U = cug , Uy = —cuy (43)
where ¢ is a constant (¢ = —\3). This implies that u; and uy are sinusoids:
u(t) = —acosct +uy(0) , wus(t) = asinct + uy(0). (44)

Substituting in the equation of motion (39) and choosing ¢ = 27, we have

¢1(1) = wi(0)+ ¢:(0)
(1) = uz(0) + ¢2(0) (45)
a (5} (0) i q2(0)u1 (0) i (5} (O)UQ(O) ‘

1) =
qg() 47r+ 2T 2
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The requirement on the zero final state can be used to solve for the constants in the control:
u(0) = —q(0)

uz(0) —42(0) (46)
a = qi(0) + sqrtg; (0) + 2mq1(0)g2(0).

If the expression within the square root is negative, then the constant ¢ should be chosen as
—27 to render it positive.

The optimization approach described above can be generalized to certain higher order
systems, but, in general, the optimal control for nonholonomic systems is more complicated.
One can also try finding an optimal solution numerically, this would in general entail the
solution of a two-point boundary value problem. In [21, 22], a Ritz approximation approach
is used where the input function is restricted to a finite dimensional functional space (e.g.,
finite Fourier basis):

u(t) = Z: i (1) (47)

where v;’s are chosen to be independent orthonormal functions and «4’s are constant vec-
tors parameterizing the input function. The minimum input energy criterion can then be
combined with a final state penalty term, resulting in the following optimization criterion:

1 N
J = llas —a()|” +/0 lu@))1* dt = [lgy — ()" + 3 laxl* (48)
k=0

The optimal ay’s can be solved numerically by using nonlinear programming. The penalty
weighting v can be increased to achieve the final target state while minimizing the control
energy. The problem is not necessarily convex in general, consequently, as in any nonlinear
programming problem, only local convergence can be asserted. This method is very similar
to the approach in the next section, the main difference lies in that the control energy term
is dropped in J. As a result of this modification, a stronger convergence condition can be
established.

3.2.3 Path Space Iterative Approach

As shown in the beginning of Section 3, the differential equation governing the nonholonomic
motion (21) can be written as a nonlinear operator relating an input function, u, to a path,
g. By writing the final state error as

y=qr — F(qo,u) (49)

the path planning problem can be regarded as a nonlinear least square problem. Global
controllability means that for any ¢; there is at least one solution u. Many numerical
algorithms exist for the solution of this problem. In general, the solution involves lifting a
path connecting the initial y to the desired y = 0 to the u space (see Figure 6). Let u(0) be
the first guess of the input function and y(0) be the corresponding final state error as given
by (49). The goal is to iteratively modify u so y converges to 0 asymptotically. To this end,
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Figure 6: Path Planning by Lifting a Path in Output Error Space

choose a path in the error space connecting y(0) to 0, call it y4(7) where 7 is the iteration
variable. The derivative of y(7) is

dy du

v, Flg,u) 2. 50
dr VuF (9, 1) dr (50)
If V,F(qo,w) is full rank, then we can choose the following update rule for u(7) to force y

to follow y4:

== [VuF 0] [l - v+ 5 51)

dr dr
where oo > 0 and [VQF(QO,Q)]JF denotes the Moore-Penrose pseudo-inverse of V,F'(u). This
is essentially the continuous version of Newton’s Method. Eq. (51) is an initial value problem
in u with a chosen u(0). With u discretized by a finite dimensional approximation (e.g., using
Fourier basis as in (47)), it can be solved numerically by an ordinary differential equation
solver.

As discussed in Section 3.1, the gradient of F', V,F(qo,u) can be computed from the
system (21) linearized about the path corresponding to u. A sufficient condition for the
convergence of the iterative algorithm (51) is that V, F'(go, u(7)) for all 7, or equivalently, the
time varying linearized system (25) generated by linearizing (21) about u(7) is controllable.
For controllable systems without drift, it has been shown in [23] that this full rank condition
is true generically (i.e., for almost all u in the Cy, topology). The paths over which the time
varying linearized system is uncontrollable (e.g., including all constant configurations) are
called the abnormal extremals. In [24, 25], a sufficient condition is obtained to guaranteed
the non-existence of such cases except for constant configuration paths. This has been
generalized to the case of a unicycle where as long as the wheel velocity is not identically
zero, the corresponding path is not an abnormal extremal.

In the cases where V,F'(qo,u) loses rank (causing the algorithm to possibly get stuck),
[26] observed that a generic loop (see Figure 7) can be appended to the singular control
causing the composite control to be nonsingular and thus allowing the algorithm to continue
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its progress toward a solution. A generic loop can be described as follows. For some small
time interval [0,7/2], generate a nonsingular control v, then let v be the control on [0, T]
consisting of v, on [0,7/2] and —v, on [T/2,T]. Since nonholonomic systems have no drift
term, it follows that the system makes a “loop” starting at ¢(1) = F(qo, u) and ending once
again at the same point. Appending v to u and renormalizing the time interval to [0, 1]
yields a nonsingular control which does not change y. The algorithm is therefore guaranteed
to converge to any arbitrary neighborhood of the desired final configuration.

Generic Loop

Singular Control

Figure 7: Generic Loop

This algorithm has been extended to include inequality constraints such as joint limits,
collision avoidance etc. [27]. This is done by using an exterior penalty function approach
[28]. The state inequality constraints given by

c(g) <0 (52)

where ¢ is the complete path in the configuration space, c(-) is a vector and the inequality is
interpreted in the component-wise sense. The state trajectory, ¢, can be related to the input
function u through a nonlinear operator (which is typically impossible to find analytically)

¢ = F(qo, u). (53)
The inequality constraint (52) can then be expressed in terms of u:
c(F(qo,u)) <0. (54)

Inequality constraints in optimization problems are typically handled through penalty
functions [28]. There are two types: interior and exterior penalty functions. Interior penalty
function sets up barriers at the boundary of the inequality constraints. As the height of the
barrier increases, the corresponding path becomes closer to being feasible. If the optimization
problem — in our case, the feasible path problem — can be solved for each finite barrier,
then convergence to the optimal solution is assured as the barrier height tends to infinity.
In the exterior penalty function approach, the i'® inequality constraint is converted to an
equality constraint by using an exterior penalty functions:

Zz(@) =% ;g(ci(]:j(QO,@))) (55)
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where 7; > 0, ¢; is the " constraint, F; denotes the 4" discretized time point where the
constraint is checked, ¢ is a continuous scalar function with the property that g is equal to
zero when c¢; is less than or equal to zero and is greater than zero and monotonic when ¢;
is greater than zero. The same iterative approach presented for the equality-only case can
now be applied to the composite constraint vector:

_ | y(w
P(u) = l +(u) ] : (56)
For a certain class of convex polyhedral constraints, the generic full rank condition for the
augmented problem still holds. This approach has been successfully applied to many complex
examples such as cars with multiple trailers subject to a variety of collision avoidance and
joint limits constraints [29].

3.2.4 Other Methods

There has also been work by using piecewise constant input by Lafferriere and Sussmann
[30, 31] for nilpotent systems. This was further extended by Sussmann and Liu to approx-
imate any path, which may violate the nonholonomic constraint, arbitrarily closely by a
nonholonomic one [32]. The resulting path may contain may forward and backup maneuver,
however. In [33], this idea is coupled with a general path planner (which includes colli-
sion avoidance but not nonholonomic constraints) but added with a refinement step that
smoothes the path to produce an acceptable final path.

The path planning problem can also be tackled directly by using search algorithms with-
out first posing it as a control problem. Work along this line include [34, 35, 36]. Due to
the nature of the approach, inequality constraints such as joint limits, obstacles in the work
space can be directly considered. However, the computation load associated with search
methods has so far limited applications to only relatively simple systems, such as a truck
with one trailer.

4 Stabilization

4.1 State Stabilization

Stabilizability means the existence of a feedback controller that will render the closed loop
system asymptotically stable about an equilibrium point. For linear systems, controllability
implies stabilizability. It would be of great value if this were true for special classes of
nonlinear systems such as driftless systems such as nonholonomic systems considered in
this paper (where controllability can be checked through a rank condition on the Control
Lie Algebra). It was shown by [37, 38] that this assertion is not true in general. For a
general nonlinear system ¢ = fy(¢g,u) with equilibrium at gy, fo(g,0) = 0, and fo(-,")
continuous in a neighborhood of (g, 0), a necessary condition for the existence of a continuous
time invariant control law which renders (go,0) asymptotically stable is that f maps any
neighborhood of (gg,0) to a neighborhood of 0. For a nonholonomic system described by
(21), fo(q,u) = f(g)u. Then the range of {fo(¢,u) : (¢,u) in a neighborhood of (g, 0)} is
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equal to the span of the columns of f(g) which is of dimension m (number of inputs). Since
a neighborhood about the zero state is n dimensional, the necessary condition above is not
satisfied unless m > n.

There are two approaches to deal with the lack of continuous time invariant feedback.
The first is to relax on the continuity requirement to allow for piecewise smooth control
law; the second is to relax on the time invariance requirement and allow for a time varying
feedback.

In either approach, an obvious starting point is to begin with an initial feasible path
obtained by using any one of the open loop methods discussed in Section 3 and then apply
a feedback to stabilize the system around the path. This can be done using a switching type
of controller as in [11, 39] or a time varying controller as in [40, 41, 42]. This problem is
essentially a feedback path following problem. As the nonholonomic model is highly idealized
(for example, in a real car, the wheels can slip), using feedback to maintain the system on
the planned path is indispensable.

Given an initial feasible path, if the nonlinear kinematic model linearized about the path
is controllable, which is almost always true as mentioned in Section 3.2.3, a time varying
stabilizing controller can be constructed by using standard techniques, see, for example, [43].
The resulting system will then be locally asymptotically stable.

Consider the unicycle as an example. Suppose an open loop trajectory, {(z*(t), y*(t), 0*(t),t €
[0,1]}, and the corresponding input, {u}(¢), us(t),t € [0,1]}, are already generated by using
any of the methods discussed in Section 3. The system equation can be linearized about this
path:

i = —(sin(6* (1)) ui(£)) 00 + cos(6* (1)) duy
55 = (cos(6"(1))ui(1)) 60 + sin(6" (1)) duy (57)
50 = Sus.

This is a linear time varying system. It can easily verified that as long as ] is not identically
zero, the system is controllable. One can then construct a (time-varying) stabilizing feedback
to keep the system on the planned open loop path.

Stabilizing control laws can also be directly constructed without first finding a feasible
open loop path. In [44], it was shown that all nonholonomic systems can be feedback stabi-
lized with a smooth periodic controller. For specific classes of systems, such as mobile robots
in [40, 39] or, more generally, the so-called power systems as in [41], explicit constructive
procedures for such controllers have been demonstrated. It is also possible to find piece-
wise smooth time-invariant controllers based on output stabilization (see next section for an
example) or transformation of the configuration space [39].

We will again use the unicycle example to illustrate the basic idea of constructing a time
varying stabilizing feedback by using a time dependent coordinate transformation so that
the equation of motion contains a time varying drift term. Define a new variable z by

z2=0+k(t,z,y) (58)
where k is a function that will be specified later. Differentiating z, we get
ok ok ok
zZ= é U9 + a + (%COSH—F a—ysin@)ul.
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Consider a quadratic Lyapunov function candidate V = %(332 +1y? + 2?), the derivative along
the solution trajectory is '
V = (xcos® + ysinO)u; + zv.

By choosing

uy = —aq(zrcosf +ysinf) |, v=—wz ar,an >0, (59)
which means % % 9%

up = = = (% cos 6 + % sinf)u; — o (0 + k(t, x,v)),
we obtain a negative semidefinite V=—q (xcos® + ysin0)? — ay2®. This implies that, as

t — 00, z— 0 and xcosf + ysinf — 0. Substituting in the definition of z, we get 0(t) —
—k(t,x(t),y(t)). From the other asymptotic condition, 0(¢) also converges to — tan_l(%).
As & and y asymptotically vanishes, x(t) and y(t), and therefore, 6(t¢), tend to a constant.
Equating the two asymptotic expressions for 6(t), we conclude that k(t, z(t),y(t)) converges
to a constant. By suitably choosing k(t,z,vy), e.g., k(t,z,y) = (2? + y?)sin(t), the only
condition under which k(¢ z,y) can converge to a constant is that x* 4+ y? converges to zero,
which in turn implies that 6(¢) — 0. In contrast to the indirect approach (i.e., use a linear
time varying control law to stabilize system about a planned open loop path), this control

law is globally stabilizing.

4.2 Output Stabilization

In certain cases, it may only be necessary to control the state to a certain manifold rather
than to a particular configuration. For example, in the case of a robot manipulator on a free
floating mobile base, it may only be necessary to just control the tip of the manipulator so it
can perform useful task. In this case, a smooth output stabilizing controller can frequently
be found.

Suppose the output of interest is

y=g9(q), ye R’ (60)
and p < n. at a particular configuration, ¢,
= Va9(q) fq) u. (61)

Define K(q) = Vq9(q) f(q). If K(q) is onto, i.e., p < m and K(g) is full rank, then the
system is locally output controllable (there is a u that can move y arbitrarily within a small
enough ball) though it is not locally state controllable.

The output stabilization problem involves finding a feedback controller u (possibly de-
pendent on the full state) to drive y to a setpoint, y4. Provided that K (q) is of full row rank,
an output stabilizing controller can be easily found:

u=-QK"(¢)(y—ya) ., Q>0. (62)

Therefore, y is governed by
= —K(@)QK"(0)(y — ya)- (63)
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Under the full row rank assumption on K(q), K(q)QK™(q) is positive definite which implies
that y converges to y4 asymptotically. In general, either y converges to y, or ¢ converges to
a singular configuration of K(¢) (where K (gq) loses rank).

We will again use the unicycle problem as an illustration. Suppose the output of interest
is (x,0) and the goal is to drive (z, 0) to (x4, 04) where 6, is not a multiple of 7. By choosing
the control law

uy = —agcosb(z —xy) , uy = —as(0—0y). (64)

The closed loop system for the output is

i=—a(cos’0)(z —xq) , 0= —a(f—0). (65)

The closed loop system contains a singularity at 0 = 7, but if ; # 7, this singularity will
not be attractive. The output stabilization of (x,#) can be concatenated with other output
stabilizing controllers with other choices of outputs to obtain full state stabilization. For
example, once x is driven to zero, f can be independently driven to zero (with u; = 0), and,
finally, y can be driven to zero without affecting  and 6. These stages can be combined
together as a piecewise smooth state stabilizing feedback controller.

Consider a space robot on a platform as another example. Suppose the output of interest
is the end effector coordinate, y. The singular configurations in this case are called the
dynamic singularities. The output velocity is related to the joint velocity and center of mass
angular velocity by the kinematic Jacobians:

v =J(q)q+ Jp(q)w.

As discussed in Section 1, the nonholonomic nature of the problem follows from the conser-
vation of the angular momentum (6):

M (q)q + My(q)w = 0.
Eliminating w, we obtain
§ = (J (@) = JpMy, "M (g))q.

The effective Jacobian, K = J(q) — Jy,M,; ' M (¢), sometimes called the dynamic Jacobian,
now contains inertia parameters (hence the modifier “dynamic”) in contrast to a terrestrial
robot Jacobians which only depend on the kinematic parameters. If the dimension of ¢ is at
least as large as the dimension of y, the output can be effectively controlled provided that
the dynamic Jacobian does not lose rank (i.e., ¢ is away from the dynamic singularities).

References

[1] J.I. Neimark and N.A. Fufaev. Dynamics of Nonholonomic systems. American Mathe-
matical Society, 1972.

(2] H. Goldstein. Classical mechanics. Addison-Wesley, Reading, MA, 2nd edition, 1980.

20



3]

[10]

[11]

[12]

[13]
[14]

[15]

[16]

[17]

E. Papadopoulos and S. Dubowsky. Coordinated manipulator/spacecraft motion control
for space robotic systems. In Proc. 1991 IEEE Robotics and Automation Conference,
pages 1696-1701, Sacramento, CA, April 1991.

V.I. Arnold. Mathematical Methods of classical mechanics. Springer-Verlag, New York,
1989.

G. Oriolo and Y. Nakamura. Free—joint manipulators: Motion control under second—
order nonholonomic constraints. In IEEE/RSJ International Workshop on Intelligent
Robots and Systems, Osaka, Japan, November 1991.

A. Tsidori. Nonlinear Control Systems. Springer—Verlag, 2nd edition, 1989.

M. Enos. On the dynamics and control of cats, satellites, and gymnasts, parts I and II.
SIAM News, Sep. and Nov. 1992.

Z. Li and J.F. Canny, editors. Nonholonomic motion planning. Kluwer Academic,
Boston, MA, 1993.

S.S. Sastry R.M. Murray, Z. Li. A Mathematical Introduction to Robotic Manipulation.
CRC Press, Boca Raton, FL, 1993.

P.E. Crouch. Spacecraft attitude control and stabilization: Applications of geometric
control theory to rigid body models. IEEE Transaction on Automatic Control, 29:321—
331, 1984.

A.M. Bloch, M. Reyhanoglu, and N.H. McClamroch. Control and stabilization of non-
holonomic dynamic systems. IEEE Transactions on Automatic Control, 37:1746-1757,
November 1992.

H. Nijmeijer and A.J. van der Schaft. Nonlinear Dynamical Control Systems. Springer-
Verlag, New York, NY, 1993.

M. Vidyasagar. Nonlinear System Analysis. Prentice-Hall, 2nd edition, 1993.

W.L Chow. Uber systeme von linearen partiellen differentialgleichungen ester ordnung.
Math. Ann., pages 117, 98-105, 1939.

Z. Vafa and S. Dubowsky. On the dynamics of manipulators in space using the vir-
tual manipulator approach. In Proc. 1987 IEEE Robotics and Automation Conference,
Raleigh, NC, March 1987.

72.X. Li and J. Canny. Motion of two rigid bodies with rolling constraint. IEEE Trans-
actions on Robotics and Automation, 6(1):62-72, February 1990.

R.M. Murray and S.S. Sastry. Nonholonomic motion planning — steering using sinusoids.
IEEFE Transactions on Automatic Control, 38:700-716, May 1993.

21



[18]

[19]

[20]

[21]

22]

23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

[31]

N.E. Leonard and P.S. Krishnaprasad. Averaging for attitude control and motion plan-
ning. In Proceedings of the IEEE Conference on Decision and Control, pages 3098-3104,
San Antonio, TX, December 1993.

J.P. Laumond. Controllability of a multibody mobile robot. In Proc. IEEE 5th Int.
Conf. on Advanced Robotics, pages 1033-1038, Pisa, Italy, June 1991.

D. Tilbury, R.M. Murray, and S.S. Sastry. Trajectory generation for the N-trailer prob-
lem using Goursat normal form. In Proceedings of the IEEE Conference on Decision
and Control, pages 971-977, San Antonio, TX, December 1993.

C. Fernandes, L. Gurvits, and Z. Li. Foundations of nonholonomic motion planning.
In 1991 IEEE RE&A Workshop on Nonholonomic Motion Planning, Sacramento, CA,
April 1991.

C. Fernandes, L. Gurvits, and Z.X. Li. Near-optimal nonholonomic motion planning for
a system of coupled rigid bodies. IEEE Transactions on Automatic Control, 39(3):450—
463, March 1994.

Y. Lin and E.D. Sontag. Universal formula for stabilization with bounded controls.
Systems € Control Letters, 16(6):393-397, June 1991.

H.J. Sussmann and Y. Chitour. A continuation method for nonholonomic path finding
problem. IMA Workshop on Robotics, January 1993.

H.J. Sussmann. A continuation method for nonholonomic path-finding problem. In
Proc. 32nd IEEE Conference on Decision and Control, pages 2718-2723, San Antonio,
TX, December 1993.

E.D. Sontag and Y. Lin. Gradient techniques for systems with no drift. In Proceedings
of Conference in Signals and Systems, 1992.

A. Divelbiss and J.T. Wen. Nonholonomic motion planning with inequality constraints.
In Proceedings of 199 IEEE International Conference on Robotics and Automation,
San Diego, CA, May 1994.

D.G. Luenberger. Linear and Nonlinear Programming. Addison—Wesley, 2nd edition,
1984.

A. Divelbiss and J.T. Wen. Trajectory tracking control of a car—trailer system. to appear
in IEEE Transaction on Control System Technology, 1997.

G. Lafferriere and H.J. Sussmann. Motion planning for controllable systems without
drift: A preliminary report. Technical Report SYCON-90-04, Rutgers Center for Sys-
tems and Control, June 1990.

G. Lafferriere and H.J. Sussmann. Motion planning for controllable systems without
drift. In 1991 IEEE REA Workshop on Nonholonomic Motion Planning, Sacramento,
CA, April 1991.

22



[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

H.J. Sussmann, Y. Yang, and W. Liu. Limits of highly oscillatory controls and the
approximation of general paths by admissible trajectories. In Proceedings of the IEEE
Conference on Decision and Control, pages 437-442, Tucson, AZ, December 1992.

P. Jacobs, J.-P. Laumond, and M. Taix. Eficient motion planners for nonholonomic
mobile robots. In IEEE/RSJ International Workshop on Intelligent Robots and Systems,
pages 1229-1235, Osaka, Japan, November 1991.

J. Barraquand and J. Latombe. On nonholonomic mobile robots and optimal maneu-
vering. In Intelligent Control Workshop, pages 340-347, Albany, NY, September 1989.

J.-P. Laumond. Finding collision—{ree somooth trajecotries for a non-holonomic mobile
robot. In Int. Joint Conference on Artificial Intelligence, pages 1120-1123, 1987.

L. Dorst, I. Mandhyan, and K. Trovato. The geometrical representation of path plan-
ning problems. Technical report, Philips Laboratories North American Philips Corp.,
Briarcliff Manor, New York, 1991.

R.W. Brockett. Asymptotoc stability and feedback stabilization. In Differential Ge-
ometric Control Theory, edited by R.W. Brockett, R.S. Millman and J.J. Sussmann,
volume 27, pages 181-208. Birkhauser, 1983.

J. Zabczyk. Some comments on stabilizability. Applied Mathematics and Optimization,
19:1-9, 1989.

C. Canudas de Wit and O.J. Sordalen. Exponential stabilization of mobile robots with
nonholonomic constraints. IEEE Transaction on Automatic Control, 37(11):1791-1797,
1992.

C. Samson and K. Ait-Abderrahim. Feedback stabilization of a nonholonomic wheeled
mobile robot. In IEEE/RSJ International Workshop on Intelligent Robots and Systems,
pages 1242-1247, Osaka, Japan, November 1991.

A. Teel, R. Murray, and G. Walsh. Nonholonomic control systems: From steering to
stabilization with sinusoids. In Proc. 31th IEEE Conference on Decision and Control,
Tucson, AZ, December 1992.

R.T. M’Closkey and R.M. Murray. Convergence rates for nonholonomic systems in
power form. In Proceedings of 1993 American Control Conference, San Francisco, CA,
1993.

R.A. DeCarlo. Linear Systems — A state variable approach with numerical implementa-
tion. Prentice—Hall, 1993.

J.-M. Coron. Global asymptotic stabilization for controllable systems without drift.
Mathematics of Control, Signals, and Systems, 5(3), 1992.

23



