
Covariance Representations of Partial Geometric

Constraints for 3D Pose Estimation

R. Fisher1, M. Waite1, M. Orr2, J. Hallam1

(1) Dept. of Artificial Intelligence, University of Edinburgh
5 Forrest Hill, Edinburgh EH1 2QL, Scotland, United Kingdom

(2) Advanced Robotics Research Ltd., University Road,
Salford M5 4PP, England, United Kingdom

Abstract

We explore the potential of variance matrices to represent not just statisti-
cal error on object pose estimates but also partially constrained degrees of
freedom. Using an iterated extended Kalman filter as an estimation tool,
we generate, combine and predict partially constrained pose estimates from
3D range data. We find that partial constraints on the translation com-
ponent of pose which occur frequently in practice are handled well by the
method. One key advantage of the method is that it allows simultaneous
representation of both lack of knowledge, weak constraints, a priori posi-
tion constraints and statistical error in a framework that allows incremental
reasoning.

1 Introduction

Most model-based part recognition or location vision systems establish all model-
to-data pairings during an initial matching phase, and then estimate the pose
from the consistent pairings. This is less than ideal, as insufficient features may
have been segmented to estimate fully the pose, or it may be desirable to improve
the pose estimate by locating additional features using the current pose estimate.
Or, some features may only provide partial or weak pose constraints.

This paper integrates three themes in computer vision to show how model
matching can be improved. The themes are:

1. incrementally improve pose estimates as new evidence is found,

2. represent both statistical error and lack of knowledge (i.e. partial pose con-
straints) and
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3. use partial knowledge to guide model matching.

The paper demonstrates six examples of model-matching or pose estimation prob-
lems where partial knowledge is integrated and used to improve the quality of
scene understanding. The domain of application used for examples here is 3D
model matching using 3D image feature data, but the approach can be adapted
for 2D-to-2D and 3D-to-2D problems. The examples shown in the paper are
based on a surface-patch matching system where the data surface patches are
extracted from range data (by some adaptations of [3, 9]) and the model surfaces
are specialised instances of quadratic surfaces [7].

The foundation of the approach is based on representing the uncertainty by
a variance matrix. This by itself is not new and a number of vision, robotics
and tracking projects have followed this approach [2, 13, 19, 21]. That work
has used the variance representation to encode fully constrained, but statistically
erroneous, poses. The advantage of the statistical approach is that there are
well-known and understood statistical tools for estimation (e.g. the Kalman
filter) and decision problems (e.g. the χ2 test). Using these, one can test the
likelihood of the estimates, determine when new evidence is compatible with
existing estimates, continually refine the parameter estimates, integrate evidences
with different amounts of uncertainty and determine a most-likely parameter
estimate. (Although it is not always easy to apply that theory to non-linear
vision problems.)

However, there exists a class of problems where the uncertainty is not entirely
due to statistical errors but has a component which would still be present even if
the available measurements were perfectly accurate. Such problems occur when
there are more parameters to estimate than measurements available – they are
underconstrained problems. For example, the correspondence between a model
point and a scene plane, in the sense that the transformed point must lie some-
where in the plane, is not sufficient to constrain the translational part of the
transform even if the rotational part has been estimated by some other means.
These problems leave degrees of freedom in the estimated transform which it
would be convenient to represent in the same way as statistical uncertainty, i.e.
using variance. As long as the uncertainty due to degrees of freedom is linear in
parameter space, we can do this by introducing one or more large eigenvalues in
the variance matrix.

The method that we use to solve this problem is to represent the open degrees-
of-freedom (i.e. lack of knowledge) by one or more very large eigenvalues in the
variance matrix. Unlike the interval bounding method on parameter space (see
for example [4], [8]), the covariance (off-diagonal) terms in the variance matrix
represent correlations between the components of the parameter and allow de-
grees of freedom in any direction in the parameter space, not just along the
coordinate axes (as is typical of the interval arithmetic[4]). A simple illustration
of a fundamental problem with the standard interval method is shown in Figure
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Figure 1: The figure shows how the enclosed volume within coordinate-axis aligned
bounds on a rotated interval bound may be much greater than the original volume.

1, which shows how the bounds of a rotated interval may grow large even though
the initial interval was quite tight. Other known problems of the interval method
include: very slow to compute when using symbolic algebra and, as no statistical
information about measurement error is represented, no mean or best estimate
is available.

In practice, the non-linear rotational part of a 3D transform is often easier to
constrain than the linear translational part. This is due in part to the robustness
of correspondences between plane surface normals against occlusion and segmen-
tation errors. Correspondences between points (e.g. centre of gravity, boundary
points) which are used to constrain translation are relatively fragile and subject
to occlusion and must sometimes be replaced by partial constraints (such as a
match between a point and a plane). Our approach is useful in these situations
when the rotation is fully constrained but the translation can only be partially
constrained.

What we suggest is, assuming enough evidence is available to constrain ro-
tation (to within measurement errors only), that pairings between scene points
and model points which contain degrees of freedom (over and above measurement
errors) can be used to generate partial constraints on the translation and that
furthermore, combining two or more partially constrained estimates of the same
pose can lead to a fully constrained estimate. We could either attach the de-
grees of freedom to the scene point or the model point. Where possible, we have
chosen the model point because the appropriate amount of variation in different
directions will be known a priori in the model so the variance only has to be set
up once and for all. In some cases the directions of the degrees of freedom are
unknown in the model space and they must be associated with the variance of
the observed parameter.

Based on this representation of uncertainty, we show how six different prob-
lems can be solved:

1. A partially constrained translation can be estimated using a planar surface
patch match.

2. A partially constrained translation can be estimated using a cylindrical
surface patch match.
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3. A priori problem knowledge can lead to partially constrained translation
estimates.

4. A fully constrained translation can be estimated from multiple pieces of
partially constraining evidence.

5. A fully constrained pose can be estimated from partially constrained poses
for distinct subcomponents of an object.

6. A partial pose estimate can be used to guide image search for additional
matchable features.

The solutions to these problems are discussed in separate subsections of Sec-
tion 3 and the statistical techniques underlying the solutions are described in
Section 2. In Section 5 we discuss the problems associated with representing
partial rotation constraints and then present our conclusions in Section 6.

The work reported here builds on techniques which have become standard in
robotics and vision through the work of, among others, groups at INRIA [21]
and Oxford University [13]. The approach to partial evidence representation is
similar to that of [4] and [8] except that there intervals, which are known to
be inferior to variance matrices [17], were used to represent the bounds on the
parameters. There are also links with early research into pose constraints from
object relationships as specified in a robot programming language (RAPT) [18]
though that work modeled relationships as exact (i.e. without statistical error).

2 The Statistical Framework

2.1 Kalman Filtering

The Kalman filter (and its extension for non-linear problems) is the basic esti-
mation tool we are using. Here we merely give a brief description of its function;
more details can be readily found elsewhere, e.g. [2, 12, 1].

Basically, the filter recursively processes observations to arrive at an estimate
of an unobserved parameter of interest (the state). Knowledge at time step k
(after processing the kth observation) about a parameter or state vector, x, is
represented by the estimated mean vector, x̂k, and variance matrix, Xk, of an
assumed Gaussian probability distribution. Observations, zk, pertaining to the
state are themselves uncertain with means, ẑk, and variances, Zk. To link the
observations to the state there are measurement equations of the form

fk(x, zk) = 0

which are usually non-linear and often under-constrained (i.e. cannot be put in the
form x = gk(zk)). The Kalman filter is a tool for incorporating the knowledge in
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(ẑk,Zk) -

- (x̂k,Xk) -

IEKF

(x̂k+1,Xk+1)- -

Figure 2: Inputs and outputs to the IEFK as it processes the kth observation.

the observations into the state when the measurement equations are linear. The
iterated extended Kalman filter (IEKF) is an adaptation of the basic filter to deal
with non-linear equations. In both cases incorporating the kth observation leads
to an update of the state estimate to a new mean, x̂k+1, and a new variance,
Xk+1 (see Figure 2).

In addition to the prior state estimate, the kth observation and the kth mea-
surement equation, the IEKF requires input of the Jacobians ∂fk/∂x and ∂fk/∂zk

which are functions of x and zk. These are necessary to perform the linearisation
step inside the IEKF. The appendices list all the measurement functions (and
their Jacobians) used in this paper.

The Iterated Extended Kalman Filter updating equations for the problems
described below are now given (using the notation to be used throughout the
paper). Let:

Mk =
∂fk

∂x

Wk =
∂fk

∂zk
Zk

∂fk

∂zk

T

where Zk is the observation covariance and fk is evaluated using the current values
(x̂k, ẑk).

Then, the update equation of the extended Kalman filter for producing the
next estimate x̂k+1 of the state vector is:

x̂k+1 = x̂k − Kk fk(x̂k, ẑk)

and its associated covariance estimate is:

X−1
k+1 = X−1

k + MT
k W−1

k Mk
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where
Kk = XkM

T
k (Wk + MkXkM

T
k )−1

is the Kalman gain.
If the estimate x̂k around which the Taylor expansion is performed is too far

from the its true value linearisation may not be very good. A method to reduce
the linearisation error is the iterated extended Kalman filter. This applies the
update equation for the new state mean iteratively, substituting x̂k+1 for x̂k and
re-evaluating Mk and Kk until convergence.

Inconsistency in measurements is detected if the Mahalanobis distance test
fails. The error statistic is:

fT
k (x̂k, ẑk)(Wk + MkXkM

T
k )−1fk(x̂k, ẑk)

and a χ2 test with | f | degrees of freedom is performed. If the test fails, then
we conclude that the measurements are inconsistent and the current hypothesis
should be rejected.

2.2 Representing Lack of Knowledge

The state variance matrix, X, represents the size of an assumed Gaussian proba-
bility distribution in n-dimensional space (n is the dimension of the state vector,
x). Loosely speaking, it can be thought of as representing an n-dimensional el-
lipsoid centred on the mean, x̂, and containing the true state vector, x. The
ellipsoidal axes are parallel to the eigenvectors of X in direction and proportional
to the square roots of the eigenvalues of X in length.

The uncertainty in a parameter estimate which has one linear degree of free-
dom can be represented by a variance matrix with a large eigenvalue in the
appropriate direction. Two degrees of freedom in two different directions can be
represented with two large eigenvalues, and so on. In cases where the degree of
freedom is partial (over a finite range) rather than unbounded then suitably sized
eigenvalues can be chosen. Of course, for very small uncertainties, non-linear con-
straints can be linearly approximated, and this is the basis of the usefulness of
variance as a general representation of statistical measurement error.

As an example, consider the constraint that a point lies somewhere on a line.
The position of the point, x, is the state we wish to estimate and estimates
of the end-point, e, and direction, d (a unit vector), of the line as well as the
distance, λ, of the point from the end-point are the observations supplied. If
the uncertainty of the estimate of λ is very large then the variance matrix of the
estimated position will have a large eigenvalue in the direction of d. A similar
problem to this occurred in [21] where it was necessary to represent lines from
a stereo system which had good estimates for position and orientation but poor
estimates (due to occlusion) for length.
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One way to calculate the variance matrix of a partially constrained vector
is to generate a first order approximation to the variance (as in [21]). For the
problem of a point lying on a line this method starts with the equation for the
point position

x = e + λd (1)

and the first order approximation for the variance

X =
∂x

∂e
E

∂x

∂e

T

+
∂x

∂λ
Λ

∂x

∂λ

T

+
∂x

∂d
D

∂x

∂d

T

(2)

where E, Λ and D are the variances of the estimates for, respectively, e, λ and
d. From (1) the Jacobians can be derived and substituted in (2), which leads, in
this case, to

X = E + Λd̂d̂T + λ̂2D (3)

where λ̂ and d̂ are the means of the estimates for, respectively, λ and d. To
obtain a one-dimensional degree of freedom of the point x along the line, Λ is set
to some suitably large value.

This sort of computation is very like what the IEKF does. The main differ-
ences are (1) being recursive, the IEKF requires an initial state estimate which
influences the new state estimate and (2) when the measurement equation is non-
linear, the iterative linearisation produces a more accurate result. In the above
example equation (1) would be used as the measurement equation. A nominal
initial estimate could be set up as

x̂0 = ê + λ̂d̂

X0 = σ2 I

(ê is the mean of the estimate for e) and the (single) observation is

ẑ0 =







ê

d̂

λ̂







Z0 =







E 0 0

0 D 0

0 0 Λ







The uncertainty of the initial estimate, σ2, can be made high to diminish its
influence and the variance, X1, calculated by the filter will match the result of
evaluating (3). Note that since d is a unit vector its variance, D, is singular (for
details see [21]).

To combine estimates a Kalman filter is required, but for merely generating
variances with degrees of freedom an alternative method can be used. The steps
involved are (1) set up a diagonal matrix where one or more of the diagonals
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are large (corresponding to the degrees of freedom) and the others are small or
zero and (2) rotate this matrix so that the large eigenvalues line up with the
directions of the degrees of freedom. However, this method depends on being
able to sensibly choose the diagonal entries and the rotation matrix and it is not
always obvious how to do this. We could, for example, represent the uncertainty
of a point which lies somewhere along a line whose length is of the order of σ by

Φ







ε2 0 0
0 ε2 0
0 0 σ2






ΦT

where Φ is any rotation matrix which rotates the z-axis into the line direction.
The smaller eigenvalue, ε2, can either be chosen to represent measurement error,
in the case where the parameter vector is a measured quantity, or be set to
zero for a model parameter1. This is the method we use to construct partially
constrained observation vector variances for the illustrative examples later in
the paper. While this is fine for illustration purposes, applications where the
accuracy of the uncertainty estimate is more critical may demand one of the two
more elaborate methods of calculating the variance.

2.3 Representing Partial Visual Knowledge

In this research, the key geometric representation is the pose, represented here
by a 6-vector ~P and a covariance matrix Λ. The 6-vector consists of the three
standard (X, Y, Z) translation parameters and a three parameter exponential-
form rotation specification ~r = θ~ω where θ is the amount of the rotation about
the unit vector rotation axis ~ω. We make the assumption that the errors in the
pose parameters are represented by a multi-variate Gaussian distribution (this is
undoubtedly false, but it is a simplifying and effective model).

As described above, small variances in the covariance matrix represent the
statistical uncertainty arising from erroneous image measurements. To repre-
sent lack of knowledge, we use large covariances. The typical types of partial
knowledge and their representation are:

• a point lies in a given plane: An example of this scenario occurs when
a planar data patch is observed and we know that that it must be coplanar
with a suitably rotated and translated model plane (i.e. the data patch is
an observed fragment of the model patch). As the data patch is (usually)
only a subset of the full object patch, any given model point does not
necessarily have a corresponding point in the data patch. Hence, we can
only conclude that any point in the model plane must lie in the plane

1We find it advantageous to avoid singular matrices and instead use a tiny number in place
of zero.
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defined by the data. Similarly, we can also exploit the fact that the model
and data surface normals must be parallel, which constrains the rotation,
as discussed below.

This constraint has two degrees of freedom, so is represented by a “pancake”
shaped Gaussian distribution in the translation portion of the parameter
space. The thickness of the pancake is the variance determined by the
measurement error on the point, but the width variance of the pancake is
a large value. The mean position for the point can be any point that lies
in the given plane, but we use a point near the centre-of-mass.

• a point lies on a given line: A scenario of this type arises when we
estimate the axis of a cylindrical data patch and conclude that it must
be colinear with a suitably rotated and translated model cylinder axis.
The translation constraint has one degree of freedom, so is represented by
a “cigar” shaped Gaussian distribution in the translation portion of the
parameter space. The thickness of the cigar is the variance determined by
the measurement error on the point, but the length variance of the cigar is
some large value. The mean position for the point can be any point that
lies in the given line, but we use a point near the centre-of-mass.

One problem with this representation is that the multivariate Gaussian dis-
tribution, even with large variances, expresses some constraint in the supposedly
unconstrained directions, and hence has a most likely parameter, whereas we
want to represent true lack of knowledge. Ideally some form of infinite variance
representation should be used and manipulated. However, by setting up the prob-
lems using initial mean estimates that are close to the true mean and then using
very large variances (so that the distribution is approximately flat in the region
of the allowed parameter values), we avoid significant distortion of the results.
Use of the information form of the Kalman filter might avoid this problem.

This approach to partial evidence representation is similar to that of [4] and
[8], except that there an interval encoding was used to represent the bounds on the
parameters (and also included limits on the “within-plane” degree-of-freedom).
Using the covariance matrix allows encoding correlations between parameters,
and hence can record degrees of freedom not aligned with the coordinate axes.

3 Six Applications of Partial Constraints

This section shows how a number of scene understanding problems can be rep-
resented and solved using this uncertainty approach. The first two problems
(Sections 3.1 and 3.2) are examples where partial translation constraints can be
generated from matches between points, one of which is partially constrained.
Section 3.3 shows how, in a similar manner, the representation can also support
some types of a priori evidence about feature positions. The next two Sections
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both illustrate the combining of partial pose estimates, Sections 3.4 for estimates
of the same pose and Section 3.5 for estimates of the poses of distinct subcompo-
nents of an object. Section 3.6 shows how partially or fully constraining position
evidence can be used to predict the location of additional features.

3.1 Planar Patch Matching

Suppose the model-matching and reasoning module of a vision system has paired
a number of model and data planar patch surface normals and from these es-
timated a rotation by using the method described in Appendix G, and with
variances estimated by using an IEKF with the measurement equation detailed
in Appendix A. An estimate of the translation has yet to be made but a constraint
is available from the pairing of a model patch central point and an observed (pos-
sibly partially occluded) scene patch (the true central point is unknown, due to
occlusion or segmentation effects). Three (of the six) spatial degrees of freedom
are already constrained. One translational degree of freedom can be constrained
by the requirement that the transformed model point must lie in the plane of
the data surface and there are loose constraints on the other two because the
incomplete data patch must lie within the boundaries of the transformed model
patch.

One way to account for the partial constraint is to create a pairing between
the infinite plane parameters of the model and data patches. However, a better
method, which accounts, at least in a crude way, for the finite size of the patch,
is to create a pairing between the scene point and the model point and give the
model point large variance eigenvalues in the plane of the model patch. The
variance of the model point then has the characteristic elliptical shape

Φ







σ2
1 0 0
0 σ2

2 0
0 0 ε2






ΦT

where σ1 and σ2 are the major and minor axes of the smallest ellipse fitting around
the model patch and ε2 is the variance estimate of the perpendicular position of
the data plane. Φ is the rotation matrix which rotates the z-axis into the surface
normal of the patch and the x-axis into the major axis of the surrounding ellipse.

Having created the point-to-point pairing and attached the variances as in-
dicated, the constraint can be processed into a new estimate for the translation
using a Kalman filter and the measurement equation in Appendix B.

3.2 Cylindrical Patch Matching

As for the previous section, we suppose the rotation component of a pose esti-
mate has already been established, but this time we suppose that the constraint
on translation comes from a pairing between a cylindrical model patch and a
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cylindrical data patch. When rotated and translated into position, the model
patch must have the same axis as the data patch (within measurement errors).

We can account for this partial constraint by pairing up the central point
of the scene patch axis with the central point on the model axis and by giving
the model point a degree of freedom in the direction of the cylinder axis. The
variance matrix of the model point is

Φ







ε2 0 0
0 ε2 0
0 0 σ2





ΦT

where σ is of the order of half the model axis length, ε2 is the variance of the
estimated translation of the data axes, and Φ is any rotation matrix which rotates
the z-axis into the data axis.

As in the previous subsection, we can then process the constraint using the
measurement equation in Appendix B.

3.3 A Priori Knowledge

This statistical framework is also suitable for exploiting a priori knowledge of the
position of the object. For example, we might know that the object is face up.
This knowledge defines rotation and translation constraints analogously to those
constraints defined from observed feature relationships. (However, when no fully
constrained estimate of the rotation is available, such a priori knowledge usually
leads to non-linear coupled constraints between translation and rotation which
cannot be represented with a variance matrix.) We illustrate this idea with four
types of constraints.

1. A known model point lies in a known scene plane: An example of this
constraint is when an object is known to be lying such that one of its corners
is lying on the work surface. This knowledge alone does not constrain
the orientation of the part in a way that is representable with a variance
matrix. However, once the rotation is known, the point constraint defines
the translation to lie in some plane. Since we cannot tell a priori in which
direction the surface normal is in the model frame, we are forced, unlike
in Section 3.1, to attach the degrees of freedom to the data point, using a
variance matrix of the form

Φ







σ2 0 0
0 σ2 0
0 0 ε2





ΦT

where Φ is any rotation matrix which rotates the model z-axis into the
surface normal of the work bench, σ is the size of the work bench and ε
represents measurement error.
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Figure 3: This figure shows the estimated position of the object using position
constraints from the sloping and top surfaces, plus the a priori assumption that
one of the points (not visible here) on the bottom of the object lies on the ground
plane. The mottled effect arises from the interweaving of the model surface (dark
pixels) and the range data (light pixels), because the range data has a standard
deviation of approximately 0.15 mm and the estimated object position leaves the
model surfaces within that distance of the corresponding range points.

Figure 3 shows the result of using an a priori position constraint as part of
the evidence used to estimate the object’s position.

2. Two known planar model points (or a given model edge) lie in a known scene
plane: An example of this constraint is when an object is known to be lying
such that one of its straight edges is lying on the work surface. When the
rotation has already been estimated, this knowledge does not constrain the
translation beyond that of a single point (see last case), as the pair of points
can still move freely within the scene plane. If a rotation estimate has not
yet been made the information from the constraint cannot satisfactorily be
represented in the variance matrix even though the direction of the vector
between the points is constrained to lie in the plane. Coupling between the
rotation and translation ensures the nature of the constraint is non-linear.

3. A known model direction is parallel to a known scene direction: Examples
of this constraint arise from knowing two surface normals are aligned, or the
axes of two cylinders, or that a cylinder axis is perpendicular to the surface
on which it sits, etc. The pairing of model to scene directions defines a
rotation with a single degree of freedom. This can be crudely represented by
a rotation variance whose smallest axis lies parallel to the vector difference
of the two directions. It is not a particularly useful constraint to have
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unless it can be combined with other partially constrained rotations (where
the methods of Appendix G can be used). Because the actual constraint
is stronger than that expressible in the variance matrix, predictions of the
object’s orientation on the basis of the variance (see Section 3.6) are not
sufficiently constrained. Section 5 contains further discussion of partial
rotation constraints.

4. A given model plane lies in a known scene plane: An example of this con-
straint is when we know that an object’s base is lying on a particular scene
surface. This constraint is equivalent to the combination of two previous
constraints: the aligned direction constraint (from the surface normals – see
case 3 above) and the point-in-plane constraint. Although stronger than the
two-points-in-plane constraint of case 2 above, the combined constraint still
cannot be represented in a variance matrix due of the non-linear coupling
between translation and rotation.

3.4 Integration of Partial Estimates

In general, if model-matching has produced a sufficient number of direction
matches to constrain the rotation, then there will be just as many partial con-
straints on translation by pairing up model and data points, since each surface
patch contributes one normal and one central point. The combination of three or
more partial constraints from point matches will, except in degenerate cases, lead
to a fully constrained translation estimate where the eigenvalues of the variance
matrix are primarily determined by the measurement errors. (But these might
be quite large and additional measurements could reduce errors.)

To achieve this combination of constraints, each point-to-point pairing is pro-
cessed by the IEKF using the measurement equation and Jacobians given in Ap-
pendix C. The output state estimate from the processing of one pair becomes the
input estimate for the next pairing. The initial estimate contains the previously
estimated rotation and an estimated mean translation (see Appendix G). The
final estimate, barring accidental alignment of degrees of freedom, will not have
any large variance eigenvalues (assuming that sufficient independent observations
have been made).

For example, this approach can be used to estimate the position of an object
consisting of several surfaces, three of which are observed, by first estimating
its rotation from paired surface normals (or other constrained directions, such
as axes of curvature or the vector between two points) and then using paired
points to constrain its translation. The model points have large eigenvalues in
the model planes and only the combination of all three pairings is sufficient to
constrain translation to within measurement errors. Figure 4 shows the relative
position of the model and data after each of the translation constraints have been
incorporated into the pose estimate. When a model surface (dark) is close to a

13



Figure 4: A series of images showing the increased agreement between the mean
position of an object model (dark) and the position of some real data (light) as
three partial translation constraints are used to refine the pose estimate. The first
image uses a constraint from the sloped surface. The second merges a constraint
from the cylindrical front surface of the object and the final uses the large top
surface. The decreasing variance of the model position is also depicted by showing
the decreasing size of the uncertainty ellipsoid associated with one of the model
vertices.

data surface (light) the graphics program which produced these figures tends to
intermingle dark and light pixels. The intermingling between the dark model
and light data points arises because the range data has a standard deviation
of approximately 0.15 mm and the estimated object position leaves the model
surfaces within that distance of the corresponding range points. The effect shows
clearly which surface, or surfaces, have been used to constrain the translation in
each image. In each image the variance of one of the object model’s vertices has
been depicted by drawing an ellipse around the predicted position of the point
whose size corresponds to the square root of the eigenvalues and which is aligned
with the eigenvectors. The ellipse can be seen to shrink in size as the second and
third translation constraints are added.

3.5 Integration of Subcomponent Positions

Most pose estimation processes use raw feature information (i.e. point positions
and vector directions) as their inputs. However, if a model subcomponent hierar-
chy is used, it is also possible to use partially or fully constrained subcomponent
positions to estimate the pose of the full object [8]. This allows a “hierarchical
synthesis” [20], bottom-up recognition of the object from previously recognised
subcomponents. Abstractly, the pose estimation process requires three support
functions [16]: 1) inversion of the transform between the subcomponent and ob-
ject frames, 2) composition of the subcomponent pose estimate with the inverted
transform to obtain a pose estimate for the parent, and 3) merging the new esti-
mate with the old. With the IEKF and a suitable measurement function we can
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Figure 5: A series of images showing the increased agreement between the mean
position of an object model (dark) and the position of some real data (light) as two
partially constrained subcomponent positions are used to refine the pose estimate.
The model, which consists of one small block and one large block subcomponents,
as seen in the first picture. The data is shown in the second picture. Neither sub-
component alone can accurately estimate the object’s pose (third image for when
using the large block subcomponent and fourth image for when using the small
block subcomponent). The large dark model patches not completely overlapping
the lighter data patches indicates that the part is incompletely constrained and
has drifted. The combination of both lead to an accurate estimate (image on the
right).

combine all three into one.
If pcs is the position of the subcomponent in the camera frame and pps is the

position of the subcomponent in the parent object’s coordinate system (given in
the model), then the parent object’s position in the camera frame, pcp, is the
composition of pcs with the inverse of pps. We can write

pcp = compose (pcs, inverse (pps)) .

If two or more estimates of the parent object’s position, p(1)
cp , p(2)

cp , . . . arise from
several subcomponents, then the estimates can be merged (averaged)

pcp = merge (p(1)
cp , p(2)

cp , . . .) .

The observed poses may be only partially constrained, having been generated
from pairings of the type discussed in Sections 3.1 and 3.2. In general, any degrees
of freedom in the translation parts of the subcomponent poses will intersect to
give a final estimate for pcp in which the variance eigenvalues are mainly the
result of measurement error alone (assuming at least three independent position
constraints; otherwise some degrees-of-freedom will remain). Appendix E gives
the measurement function and Jacobians which effectively combine the compose,
merge and inverse functions required to perform these pose estimates.

Figure 5 shows an example involving the accurate estimation of an object’s
pose from estimates of the pose of its two subcomponents even though neither
subcomponent’s translation is fully constrained. The model consists of two rect-
angular blocks, one large and one small. Both blocks have received pose estimates
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on the basis of two direction pairings and two partially constraining point pair-
ings of the sort in Section 3.1. Alone, each subcomponent can only generate a
partially constrained estimate of the parent’s pose, but together the pose estimate
contains no degrees of freedom, only measurement error.

3.6 Search for Missing Features

Once a few model features are recognised and a complete pose is estimated, the
pose estimate can be used to predict the image position of additional, unmatched
model features (e.g. [5, 8, 10]). Direct image verification can then occur.

In the context of our approach to representing degrees of freedom, it is possible
to make such predictions even if only partial pose estimates are known. For
example, given an estimate of position p and an estimate of model point xm, the
range of possible scene positions for the feature is given by the estimate of the
point xd, the transform of xm by p. With this information, one could predict the
range of image positions for which it is (e.g.) 95% likely that the feature appears.
Observed features in this region are then likely candidates for the desired model
feature.

The problems of predicting transformed points, directions and subcomponent
positions can be solved with the IEKF by a suitable adjustment of the state
and observation vectors and rearrangement of the Jacobians used for the corre-
sponding pose estimation problems (see Appendices B, D and F). This is how
the ellipsoids in Figure 4 were produced. They represent the uncertainty of the
predicted position of one of the object model vertices. The estimated object pose,
the vertex position and the measurement equation and Jacobians in Appendix
D were given as input to the IEKF and the output was the mean position and
variance of the point in scene coordinates. This was used to generate the size,
position and orientation of the ellipsoid in the image. As the object pose estimate
gets more accurate the ellipsoid size shrinks.

Figure 6 shows the predicted position of two unmatched planar and cylindrical
model patches superimposed over the raw range data, where the missing patch
positions were predicted from a position estimated from matching other patches.

4 Practical Details

Section 3 described the general theory of the partial constraints as used in the
IMAGINE II system. Unfortunately, there is somewhat more to their use: in
order to obtain the best results, it is necessary to use good initial states to the
Kalman filter. We believe that this is a consequence of the non-linear rotation
aspects of the problem.

When estimating the pose of an object, the main steps in the process are:
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Figure 6: The dark grey area in the left figure shows the predicted position of
two unmatched model patches superimposed on the range data, when using the
estimated mean position of the object obtained from matching other patches. The
right figure shows the full model used in the match in its estimated position.

Set up an empty constraint set

Add a priori constraints

Add planar surface rotation and translation constraints

Add cylindrical surface rotation constraints

Add subcomponent constraints

If rotation still underconstrained

add centroid rotation constraints

If translation still underconstrained

add cylindrical surface translation constraints

Merge constraints to get mean pose

Use Kalman filter to refine and get pose variance

Each of these steps is described in the subsections in Appendix G.

5 Partial Rotation Constraints

The method is not able to cope with non-linear constraints such as the coupled
constraints that are often generated between rotation and translation when there
is no initial rotation estimate (see Section 3.3, cases 2, 4).

For example, a single direction pairing constrains the rotation vector to lie
on a closed curve lying in the plane of symmetry between the two vectors. The
curve constraint, of course, cannot be represented in a variance matrix though
the plane could (by having two large eigenvalues and one small one, with its
eigenvector perpendicular to the plane). Since the pairing subtracts two degrees
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of freedom from the rotation vector, the Kalman filter produces a variance which
has only one large eigenvalue and a mean which is near the point on the curve
closest to the initial guess. This updated mean may not be very good.

The covariance representation is clearly inadequate — the straight-line dis-
tribution representing the one degree of freedom must model an entire cardioid.
However, we note that for the single model and data vector constraint, the locus
of rotations, when represented as unit quaternions is a great circle2 on the unit
sphere. This gives us a possible way of adapting the covariance representation to
encode partial constraints: Anisotropically transform quaternion space so that
the great circles become straight lines in a 3D subspace. The intersection of two
such lines is a fully constrained rotation estimate. Because the representation
is linearized, the Kalman filter can then be used as described above. The diffi-
culty with this method is that we have not yet discovered a transformation that
will do this for an arbitrary great circle. The Gauss map works for certain cir-
cles, requiring that the representation space be rotated to favorably position the
first constraint. Additionally, back-projecting the covariance matrices into the
non-deformed space may only be done when the covariance matrix is full rank.

In other circumstances, at least the first two pairs of matched directions must
be processed together by concatenating the observation vectors and the measure-
ment functions [14].

One other partial rotation constraint, where the rotation axis is fixed but the
rotation angle is variable, can be represented by a variance where there is a single
large eigenvalue along the axis. However, this constraint does not often arise in
practice.

6 Conclusions

The examples show that large variances are effective for encoding partial trans-
lation constraints, and that the Kalman filter is an effective tool for resolving
the constraints to produce fully constrained pose estimates. Moreover, the pose
estimates are very good, as demonstrated by the interweaving observed between
the raw range data and the projected model surfaces in the illustrations (Figures
4 and 5). The method is a significant improvement over previous methods which
used bounding intervals to represent uncertainty for three main reasons:

1. Many natural constraints are linear or planar in Euclidean space, but not
necessarily aligned with the coordinate axes.

2. Variance-covariance matrices are good at representing linear and planar
constraints.

2That is, a locus of unit quaternions lying in a 2D subspace of 4D quaternion space. The
actual plane is span{‖u+v‖2 +2u× v, 0+(u + v)}, where quaternions are written as the sum
of a scalar and a vector.
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3. The covariance matrix approach allows representation of both lack of knowl-
edge (i.e. unbound degrees of freedom), a priori position constraints (i.e.
those known in advance of any actual observations), weak constraints (e.g.
direction constraints formed by linking centres-of-mass) and statistical mea-
surement error in the same framework.

The incrementally constrained position estimates are also useful in that the par-
tially constrained positions can be then used to predict the location of additional
image features, which might then further constrain the pose.

We have observed that best performance is achieved with good initial mean
estimates, which might be a consequence of the linearization of the rotation fac-
tors in the Kalman filter. Further, the method is not able to cope with non-linear
constraints such as the coupled constraints that are often generated between ro-
tation and translation when there is only a partial rotation estimate (e.g. Section
3.3, cases 2, 4).

Future work could investigate the possibility of analysing the variance ma-
trix to deduce which large degrees of freedom remain, and thus what type of
constraints would be useful for optimally reducing the uncertainty and where to
search in the image for them.
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Appendix: Partial Derivatives for the IEKF

A: Estimating Rotations from Matched Directions

This is the problem of estimating a rotation vector, r (the product of the rotation
axis and angle), from pairs of matched vectors, uk and vk, such that vk is the
rotation (by r) of uk. The state vector is x = r, the observation vectors are
zk = [vT

k uT
k ]T and the measurement equation for each observation is

f(x, zk) = vk −Φuk = 0

where

Φ = I +
sin φ

φ
H +

1− cos φ

φ2
H2

φ = ‖ r ‖

and

H =







0 −r3 r2

r3 0 −r1

−r2 r1 0






.

The derivatives of the measurement function are

∂f

∂x
=

[

−
∂Φ

∂r1

uk −
∂Φ

∂r2

uk −
∂Φ

∂r3

uk

]

∂f

∂zk
= [I −Φ]

where

∂Φ

∂ri

=
sin φ

φ
Hi +

ri

φ3
(φ cos φ− sinφ)H +

ri

φ4
(φ sinφ− 2 (1− cos φ))H2 +

1− cos φ

φ2
(HHi + HiH)

for i = 1, 2, 3 and the basis matrices Hi are given by

H1 =







0 0 0
0 0 −1
0 1 0





 , H2 =







0 0 1
0 0 0
−1 0 0





 , H3 =







0 −1 0
1 0 0
0 0 0





 .

These equations have appeared before in the literature [6] but we include them
here for completeness.
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B: Predicting Rotated Directions

When the problem in Appendix A is turned around so that we start with an
estimate of the rotation, r, and the model direction, uk, and want to predict
the rotated scene direction, vk, we must change the state to xk = vk and the
observation to zk = [rT uT

k ]T . We can keep the same measurement equation,
namely

f(xk, zk) = vk −Φuk = 0

but the Jacobians change to
∂f

∂xk
= I

∂f

∂zk
=

[

−
∂Φ

∂r1
uk −

∂Φ

∂r2
uk −

∂Φ

∂r3
uk −Φ

]

.

Expressions for Φ and ∂Φ/∂ri, i = 1, 2, 3 are given in Appendix A.

C: Estimating Translation from Matched Points

This is the problem of estimating the translational component of a 3D transform
from pairs of matched points, pk and qk, such that qk is the transform (by an
already estimated rotation r and unknown translation t) of pk. The state vector
is x = [rT tT ], the observation vectors are zk = [qT

k pT
k ]T and the measurement

equation for each observation is

f(x, zk) = qk −Φpk − t = 0

where Φ (a function of r, see Appendix A) is the rotation matrix. The Jacobians
are

∂f

∂x
=

[

−
∂Φ

∂r1
pk −

∂Φ

∂r2
pk −

∂Φ

∂r3
pk −I

]

∂f

∂zk

= [I −Φ] .

Expressions for Φ and ∂Φ/∂ri, i = 1, 2, 3 are given in Appendix A.

D: Predicting Transformed Points

When the problem in Appendix C is turned around so that we start with an
estimate of the rotation, r, translation, t, and the model point, pk, and want to
predict the transformed scene point, qk, we must change the state to xk = qk

and the observation to zk = [rT tT pT
k ]T . We can keep the same measurement

equation, namely
f(xk, zk) = qk −Φpk − t = 0
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but the Jacobians change to
∂f

∂xk
= I

∂f

∂zk
=

[

−
∂Φ

∂r1
pk −

∂Φ

∂r2
pk −

∂Φ

∂r3
pk −I −Φ

]

.

Expressions for Φ and ∂Φ/∂ri, i = 1, 2, 3 are given in Appendix A.

E: Estimating the Composition of Two Transforms

Suppose we have estimates for the position, pcs, of a subcomponent object in
the camera frame and the position, pps, of the same subcomponent in its parent
object’s frame and we want to derive an estimate for the position, pcp, of the
parent object in the camera frame. This problem is one of composing the estimate
for pcs with an estimate of the inverse of pps. The state vector is x = pcp =
[rT

cp tT
cp]

T , the observation vector is z = [pT
cs pT

ps]
T = [rT

cs tT
cs rT

ps tT
ps]

T , and the
measurement equation is

f(x, z) =

[

rcp − g(rcs, rsp)
tcp − tcs + ΦcsΦ

T
pstps

]

(a 6D vector) where rsp = −rps (to invert the rotation) and Φcs and Φps are
rotation matrices (as given in Appendix A). The function g (derived in [15])
expresses rotation composition and is

g(rcs, rsp) = λw

where

λ =
2 arccos (ccp)
√

1− c2
cp

ccp = ccscsp −
scsssp

φcsφsp
rT

csrsp

w =
scscsp

φcs
rcs +

sspccs

φsp
rsp +

scsssp

φcsφsp
rcs × rsp

and where

ccs = cos(φcs/2)

scs = sin(φcs/2)

csp = cos(φsp/2)

ssp = sin(φsp/2)

φcs = ‖ rcs ‖

φsp = ‖ rsp ‖
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The Jacobians are
∂f

∂x
= I

∂f

∂z
=

[

−∂g/∂rcs 0 ∂g/∂rsp 0

(∂Φcs/∂rcs)Φ
T
pstps −I Φcs(∂Φps/∂rps)

T tps ΦcsΦ
T
ps

]

.

Note that ∂Φ/∂r is a tensor, not a matrix, so expressions like (∂Φ/∂r)t where t

is a vector are shorthand for [(∂Φ/∂r1)t (∂Φ/∂r2)t (∂Φ/∂r3)t]. The matrices
∂Φ/∂ri, i = 1, 2, 3 are given in Appendix A. Expressions for ∂g/∂rcs and ∂g/∂rsp

(see [15] for details) are

∂g

∂rcs
= w

∂λ

∂rcs
+ λ

∂w

∂rcs

∂g

∂rsp
= w

∂λ

∂rsp
+ λ

∂w

∂rsp

The derivatives of λ and w are rather messy. Those for λ are

∂λ

∂rcs
=

λccp − 2

1− c2
cp

(

scsssp

φ3
csφsp

rT
spH

2
cs −

(

scscsp

2φcs
+

sspccsr
T
csrsp

2φ2
csφsp

)

rT
cs

)

∂λ

∂rsp
=

λccp − 2

1− c2
cp

(

scsssp

φ3
spφcs

rT
csH

2
sp −

(

sspccs

2φsp
+

scscspr
T
csrsp

2φ2
spφcs

)

rT
sp

)

where Hcs and Hsp are the same type of anti-symmetric matrix duals for rcs and
rsp as H was for r in Appendix A. Finally, the derivatives of w are

∂w

∂rcs

=

(

csp I−
ssp

φsp

Hsp

)(

ccs

2
I +

(

ccs

2φ2
cs

−
scs

φ3
cs

)

H2
cs

)

−
scsssp

2φcsφsp

rspr
T
cs

∂w

∂rsp

=

(

ccs I +
scs

φcs

Hcs

)(

csp

2
I +

(

csp

2φ2
sp

−
ssp

φ3
sp

)

H2
sp

)

−
scsssp

2φcsφsp

rcsr
T
sp

F: Predicting the Composition of Two Transforms

We use the term prediction for problems in which we know an estimate for the
position of the parent object and wish to predict from it estimates for features,
such as directions, point positions or, as here, positions of subcomponent objects.
The latter case is like the problem in Appendix E except here we have estimates
for the position, pcp, of the parent object in the camera frame and the position,
pps, of the subcomponent in the parent object’s frame and wish to derive an
estimate for the position, pcs, of a subcomponent object in the camera frame.
The problem is to compose the estimate of pcp with the estimate of pps. The
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state vector is x = pcs = [rT
cs tT

cs]
T , the observation vector is z = [pT

cp pT
ps]

T =
[rT

cp tT
cp rT

ps tT
ps]

T , and the measurement equation is

f(x, z) =

[

rcs − g(rcp, rps)
tcs − tcp −Φcptps

]

(a 6D vector) where Φcp is a rotation matrix (see Appendix A). The function g

is the same as given in Appendix E with substitution of rcs for rcp and rps for
rsp. Since neither of the composed positions need be inverted, the Jacobians are
a little simpler than those in Appendix E, and are

∂f

∂x
= I

∂f

∂z
=

[

−∂g/∂rcp 0 −∂g/∂rps 0

−(∂Φcp/∂rcp)tps −I 0 −Φcp

]

The derivatives ∂g/∂rcp and ∂g/∂rps are identical to those in Appendix E
after swapping indices cs and cp and substituting ps for sp. Derivatives for
rotation matrices with respect to their rotation vector components are given in
Appendix A.

G: Implementation Details

The notation used here is:
~n

(i)
d ith data patch direction (e.g. normal or axis)

~n(i)
m ith model patch direction (e.g. normal or axis)

~C
(i)
d ith data patch centroid

~C(i)
m ith model patch centroid

Let M be a 3 × 3 matrix accumulating model evidence, and D be a 3 × 3
matrix accumulating data evidence; both are used in a generalised least-squares
estimation process. Let ωi be a weight factor reflecting the confidence in the
evidence. Let S be the set of translation constraints.

Add a priori constraints

If the constraint is a model plane lying flush against a known scene plane (e.g.
the object’s base is lying on a given surface), then the planar surface constraints
given in the next subsection are used, where the known scene plane is used for
the data surface.

If the constraint is a model cylindrical surface is fitting a known scene cylin-
drical surface (e.g. a cylindrical peg is in a hole), then the cylindrical surface
constraints of the second section following this are used, where the known scene
cylindrical surface is used for the data surface.

Similar constraints can be developed if the a priori known contact is a single
point or an edge (which we treat as if it were a single point).
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Add planar surface rotation and translation constraints

The plane surface normals ~n(i)
m and ~n

(i)
d are used to form the constraints.

Add ~n(i)
m (~n

(i)
d )T ωi to M.

Add ~n
(i)
d (~n

(i)
d )T ωi to D.

Add {[~n(i)
m , ~n(i)

m ( ~C(i)
m )Tωi], [~n

(i)
d , ~n

(i)
d ( ~C

(i)
d )T ωi]} to S.

Here, ωi = ωplane = 1.0.

Add cylindrical surface rotation constraints

Here, the cylinder axes ~n(i)
m and ~n

(i)
d are used to form the constraints.

As there is no preferential direction to the cylinder axis, there are two possi-
bilities. The two cases are handled at a higher level by splitting the hypotheses
into two and using either the model cylinder axis or its negative. Here, we assume
the original axis is used

Add ~n(i)
m (~n

(i)
d )T ωi to M.

Here, ωi = ωcyl = 10−5, which reflects the less reliable constraints obtained
from the estimates of cylindrical patch axes.

Add subcomponent constraints

For simplicity, we assume that the subcomponent is expressed in the same co-
ordinate system as the model (i.e. a null transformation between the coordinate
systems). For full generality, the model subcomponent evidence needs to be
transformed into the full model’s coordinate system. In addition, there may be
multiple instances of the subcomponent in the object model, and the subcom-
ponent may have axes of symmetry. This entails creating duplicate hypotheses
and merging the constraints in the different permutations (most of which will be
eliminated because of inconsistency). These complexities are ignored here.

Add the subcomponent’s M to object’s M.
Add the subcomponent’s D to object’s D.
Append the subcomponent’s S to object’s S.

If rotation still underconstrained

If the rotation is still underconstrained after the subcomponent, plane normal and
cylinder axis constraints, then we form weaker rotation constraints by making
paired direction vectors between the centroids of patches.

Given a pair of unoccluded model patches j and k, the model direction ~n(i)
m is

given by

~n(i)
m =

~C(j)
m − ~C(k)

m

|| ~C
(j)
m − ~C

(k)
m ||

26



A similar calculation gives the corresponding data direction. The occlusion of
model patches is recorded explicitly in the view group information in the models
[7] and for data patches can be determined from depth discontinuity boundaries
in the data for data patches.

Here, ωi = ωcent = 10−5.

If translation still underconstrained

If the translation is still underconstrained after the a priori, subcomponent and
plane centroid constraints, then we form weaker constraints by using a point
along the axis of the cylindrical patches.

At this point, we have a fully constrained rotation R. The technique we use is
to express the cylinder axis as the intersection of two arbitrary planes, and then
add two plane translation constraints to D and S.

If ~P
(i)
d is a point on the data axis and ~P (i)

m is a point on the model axis, the
constraints added to S are:

{[~n
(i)
mk, ~n

(i)
mk(

~P (i)
m )T ωi], [~n

(i)
dk , ~n

(i)
dk(~P

(i)
d )T ωi]}

for k = 1, 2.

Merge constraints to get mean pose

Let UΛVT be the singular value decomposition (see [11], page 431) of M. Then,
the mean rotation R is given by UVT. If there are less than three independent
direction constraints on the rotation, then it is possible that R also includes a
reflection. Thus, if |R| < 0, then the column of V corresponding to the smallest
diagonal element of Λ is negated.

If the rank of D is less than 3, we add additional translation constraints using
patch centroids in the direction of the null space of D.

Thereafter, if S = {[~n(i)
m , d(i)

m ], [~n
(i)
d , d

(i)
d ]} then the mean translation is given

by:
~t = D−1Σi~n

(i)
d (d

(i)
d − d(i)

m )

where the sum is over all constraints in S.

Use Kalman filter to refine and get pose variance

Here, we give the actual covariance matrices used to model the data and model
input vector and point position covariances. The means are calculated using
the methods described above. Vector directions have the covariance matrix
Pdiag(s, s, c)PT, where

s =
∫ π/2

0
sin2(x)e−

x
2

2σ
2 dx
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c =
∫ π/2

0
cos2(x)e−

x
2

2σ
2 dx

and P rotates the vector (0, 0, 1) onto the direction vector. This transforms the
angular variance σ about the direction vector into a cartesian variance.

For model planes, σ = 10−3 radians. For data planes, σ = 0.01 radians. For
model cylinder axes, σ = 10−3 radians. For data cylinder axes, σ = 0.2 radians.

Point positions have the covariance matrix Pdiag(r, s, t)PT, where P rotates
the vector (0, 0, 1) onto the surface normal or cylinder axis in the case of model
features and P = I for data features.

For model planes, (r, s, t) = (100(x extent)2, 100(y extent)2, 0.1). For data
planes, (r, s, t) = (σp, σp, σp) (here, σp = 3mm). For model cylinders, (r, s, t) =
(σc, σc,∞) (here, σc = 1mm). For data cylinders, (r, s, t) = (σc, σc,∞) (here,
σc = radius

10
mm).

With the initial mean values estimated in the previous sections, and the co-
variance estimates constructed here and in Appendices A–F, the IEKF is used to
estimate mean values and covariances of the desired state vectors.
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