
E L S E V I E R  Systems & Control Letters 27 (1996) 37~15 

SYST|MS 
CONTROL 

UTT|RS 

Discontinuous control ofnonholonomic systems 

A.  A s t o l f i  

Automatic Control Laboratory, ETH-Ziirich, CH-8092 Ziirich, Switzerland 

Received 20 January 1995; revised 10 April 1995 

Abstract 

The problem of asymptotic convergence for a class of nonholonomic control systems via discontinuous control is ad- 
dressed and solved fram a new point of view. It is shown that control laws, which ensures asymptotic (exponential) 
convergence of the closed-loop system, can be easily designed if the system is described in proper coordinates. In such 
coordinates, the system is discontinuous. Hence, the problem of local asymptotic stabilization for a class of discontinuous 
nonholonomic control systems is dealt with and a general procedure to transform a continuous system into a discontinu- 
ous one is presented. Moreover, a general strategy to design discontinuous control laws, yielding asymptotic convergence, 
for a class of nonholonomic control systems is proposed. The enclosed simulation results show the effectiveness of the 
method. 
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I. Introduction 

The problem of  feedback stabilization o f  nonlinear 
systems has occupied a central role in the nonlinear 
systems literature for at least three decades. One of  
the most challenging topics in this area is the design 
of  local (or global) stabilizing control laws for non- 
holonomic systems with more degrees of  freedom than 
controls. As pointed out in an early paper of  Brockett 
[9], such control systems cannot be stabilized by con- 
tinuously differentiable, time invariant, state feedback 
control laws. Hence, a considerable effort has been ex- 
pended in order to find continuous, time varying con- 
trol laws [13, 16, 1711, discontinuous ones [8, 10, 11] 
and middle strategies (discontinuous and time vary- 
ing) [14, 15, 19]. 

However, most of  the existing approaches, though 
extremely sophisticated and elegant, suffer from 
several drawbacks. Time varying control laws are, 
most o f  the time, extremely complex, their design 
is far from intuitive, there is no unique idea under- 
lying their synthesis and only for a special class o f  

nonholonomic systems a general strategy is avail- 
able [16]. Moreover, as pointed out in [15] any C 1, 
periodic, state feedback control law is unable to expo- 
nentially stabilize the closed-loop system. Thus, time 
varying control laws produce very slow convergence 
and, what is worse, are intrinsically oscillating. The 
oscillatory behavior shown by many controlled non- 
holonomic systems (see the results in [11, 13, 17]) is 
not intrinsic to the system and is not even necessary 
to m o v e  the system from an initial configuration to 
the desired final one. Thus, we deduce that such os- 
cillatory behavior is a byproduct of  the stabilization 
procedure and can be avoided using different ap- 
proaches or control laws. On the other hand, discon- 
tinuous control laws are able to provide exponential 
stae, ility. However, their design is not simple and only 
for a particular class of  systems, namely those feed- 
back equivalent to chained systems, exponentially 
stabilizing, discontinuous control laws are available 
[11, 19]. 

In the present work we study the class o f  nonholo- 
nomic control systems described by equations o f  the 
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fotqaq 

fc = g(x)u, (1) 

where x E ~n and u E ~m are state variable and con- 
trol input, respectively, and we restrict our attention to 
discontinuous control laws, i.e. control laws modeled 
by equations of  the form 

u = ~ ( x ) ,  

where ~: R n ---+ ~m is a discontinuous function of  
its arguments I. Discontinuous control laws have al- 
ready been dealt with, from a different point of  view, 
in [11, 12] whereas some features of  the proposed 
approach have been presented in [2-5]. 

2. On the stabilization of discontinuous 
nonholonomie systems 

This section contains our main results, namely a 
sufficient condition of  stabilizability for systems de- 
scribed by equations of  the form (1) with n > m. For, 
we establish now a preliminary result, pointing out 
the geometrical properties of  a class of  nonlinear non- 
holonomic systems. 

Lemma 1. Consider the system 

~l = gll(X2)m, 

3f 2 = g2I(Xl,X2)U 1 -[-g22(Xl,X2)U2, 
(2) 

with xl E ~P, x2 E ~n-p, x = col(Xl,X2) E [~n, Ul E 
~P, u2 E ~ m , m +  p < n, 

0 
[ gl l (X2)  g22(XI,X2)] g(x) = L g21(Xl,X2 ) 

o f  constant rank in a neighborhood Uo o f  x = 0 
(gij(Xt, X 2 ) are matrices o f  appropriate dimensions). 
Let U be an open and dense set such that U C Uo 
and { x E  U o l x l = O }  ~ U. 

Assume the following. 
(i) The matrix function g21(Xl,X2) is smooth in 

U and the matrix functions gll (xl, x2) and g22(xl, x2) 
are smooth in Uo. 

(ii) Let ul = Ul(Xl,X2) be a smooth mapping such 
that 

ul(0,x2) = 0, (3) 

I It must be noticed that control laws which are not defined at 
x = 0, i.e. are unbounded at x = 0 are allowed. 

for  all x2, and such that the vector field g21(xl, 
X2)UI(XI,X2) is smooth in Uo. 

Then,for every u2, the n - p dimensional manifold 
.J/g = {x E U:  xj = 0} is invariantJbr the system 

X1 = glI(XI,X2)Ul(Xl,X2),  

X2 ~- g21(Xl,X2)Ul(Xl,X2)-}-g22(XI,X2)U2 • 
(4) 

Proof.  To prove the claim it suffices to show that 
every trajectory of  the closed-loop system (4) starting 
a tx(0)  = (xl(0),x2(0))  = (0,x20)yieldsxl( t )  ~ 0 for 
all t~>0. This is indeed true as, by Eq. (3), the term 
gll(Xl ,X2)Ul(Xl ,X2) is zero, at xx --- 0, for every X 2. 

[] 

Remark 1. It is interesting to consider the well de- 
fined restriction of  the dynamics of  system (4) to the 
invariant manifold J//, described, if  g22(xl,x2) and 
g21(Xl,X2)Ul(Xl, X2) are smooth in Uo, by equations of  
the form 

:/2 = l i m  (g21 (Xl,  X 2 )U 1 (X l, X 2 ) )  4- 022 (0 ,  X 2 )U 2. 
xl ---*0 

Such equations play a fundamental role in all the fol- 
lowing developments. 

Remark 2. System (2) is not really a special nonholo- 
nomic system. In fact, as discussed in [8]; under mild 
hypotheses and with a proper choice of  coordinates, it 
is always possible to write the kinematic equations of  
a nonholonomic system in the form of  equations (2) 
with 

E°,l gll(Xl ) ---- Ip, g21 ~-  ~ . ( X l , X 2  , 

I'm l g22 = ~ r ( x l , x 2 )  , 

where "k(xl,x2) denotes a generic function o fx l  and 

X2. 

The existence of  an invariant manifold for the 
closed-loop system (4) has a special relevance in 
deriving sufficient conditions for stabilizability, as 
discussed in the following statement. 

Theorem 1. Consider the system (2). Let Uo be 
a neighborhood o f  the origin of  ~n and let U be an 
open and dense set such that U C Uo and {x E (-7o I xj 
=0}~u.  
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Suppose the followin 9. 
(i) The matNx functions gll(xl,x2) and 

gZ2(Xl,X2) have smooth entries in Uo. 
(ii) The matrix function g2t(x,,x2) has smooth 

entries in U. 
(iii) The matrkr function 922(xl,x2 ) is such that, 

for all i and j ,  

~(g22(Xl,XZ ) )ij /OXl = O, 

i.e. ~22(Xl,X2) is a Junction of x2 only, say ~22(x2). 
(iv) There exists a smooth vector function 

ul(xl,x2), zero for xl = 0 and for all x2, i.e. 
Ul(0,x2) = 0, such ~hat 

(iVA) --oc < xT.rglI(XI,X2)UI(Xl,X2) < O, for 
some positive-defimte matrix X and for all nonzero 
xl in Uo; 

(ivB) the vector function g21(Xl,X2)Ul(Xl,X2) is 
smooth in Uo and fidfills, for all i, 

~(g21(XI,X2)UI(XI,X:!))i/~3XI ~ 0, 

i.e. (g21(xl,x2)ul(xl,x2)) is a function of x2 only, say 
f2(x2), and f 2(O ) = O. 

(v) There exists a smooth function u2(x2) which 
renders the equilibrium x2 = 0 of the system 

)f2 = f 2(x2) + 022(~2 )U2(X2 ) (5)  

locally mymptotically stable. 
Then, the smootk, control law 

U = U ( X l ' X 2 ) =  [ uI(xI'x2)]u2(x 2) 

locally asymptotically stabilizes the system (2). 

Proof. First of  all observe that the closed-loop sys- 
tem is smooth in U0, hence, to show local asymptotic 
stability we can use standard Lyapunov theory. 

By the local inverse Lyapunov theorem [6, Ap- 
pendix A], there exists a smooth positive-definite 
function V(x2) such that 

= vx2(f2(x2)+ ~22(x2)u2(x2)) < 0, 

for all nonzero x2. Consider now the smooth positive- 
definite function 

W(xl,x2) = , .T ~xlXxl + V(x2) 

and observe that 

= xTggll(Xl  ,x2 )Ul (Xl ,x2 ) 

.-]- Vx2 ( / 2  (x2) -]- 022(x2 )u2(x2 )) 

is negative definite, for all nonzero (xl, x2), in a neigh- 
borhood of the origin. Hence the proof is complete. 

[] 

As should be evident from Theorem 1, the ex- 
istence of the invariant manifold xl = 0 for the 
closed-loop system (4) allows to solve the asymptotic 
stabilization problem in two successive steps. Hy- 
pothesis (iv) determines the component ul of  the 
control law; whereas the component u2 must be 
chosen to fulfill hypothesis (v). Observe that the 
choice of ul is crucial, as the existence of a smooth 
function u2(x2) fulfilling hypothesis (v) depends on 
such a choice. 

Remark 3. Very often, the control law u2 = u2(x2) 
can be designed on the basis of the linear system 

 2+o22(o)v. 
[ &2 ]x.~:0 

Note that if the function f2(x2), defined in hypo- 
thesis (iv) of  Theorem 1, is identically zero then, 
by Brockett theorem [9], there exists no smooth 
control law U2(X2) which renders the system (5) lo- 
cally asymptotically stable. However, if g21 (x,,x2) 
and Ul(XbX2) are continuous at xl = 0 then cer- 
tainly g21(xl,x2)ul(xl,x2) depends also on xl, i.e. the 
dependence on xl does not cancel out in the prod- 
uct. Since in Theorem 1 Ul(Xl,X2) was chosen to 
be a smooth function with UI(0, X2) ~--- 0, it follows 
that 

lim g21(Xl,X2) = -~-OO. 
xl ~0  

Hence, in this paper, we consider systems described 
by equations of the form (2) with g21(Xl,X2) such 
that there exist a smooth function ~(Xl,Xz), fulfilling 
if(0, x2) = 0, and a smooth matrix ~b(xl, x2 ), fulfilling 
~b(0,x2) • O(n_p) × p, such that 

g21 (X l, X2 ) = qS(Xl, X2 )/IP(Xl, X2 ), 

i.e. system (2) is discontinuous (not defined) for 
Xl ----0. 

3. The a process 

As a consequence of the results of the previous 
section, we conclude that a nonholonomic system de- 
scribed by equations of the form (2) admits a (local) 
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smooth stabilizer only if it is discontinuous (not de- 
fined) on the hyperplane Xl = 0. As natural systems 
are almost never discontinuous, in this section we 
address the problem of transforming a smooth 
system into a discontinuous one. Such a task can be 
performed applying to the original (smooth) system 
a discontinuous coordinates transformation, i.e. a 
process [1]. 

The a process has been introduced in the the- 
ory of dynamical systems to study the behavior of 
a system near a given point. Mainly, it consists of  
a rational (discontinuous) coordinates transforma- 
tion, possessing the property of increasing the res- 
olution around a given point. A possible example 
of a process is the rational transformation in the 
plane 

w = y~ /x  [~, z = x, 

with :~ > 0,/3 > 0 and defined for x ¢; 0. 
Consider a nonholonomic system described by 

equations of the form (2). Assume that gl l (x2)  = l p  

and that the matrices Y21 (xl ,x2 ) and 922(xl ,x2) have 
smooth entries. Consider, moreover, a coordinates 
transformation (a process) described by equations of 
the form 

¢1 = Xl~ 
(6) 

¢2 = ~2(XI ,X2) / f f (Xl  ), 

where (~2(XI,X2) is a smooth mapping in a neighbor- 
hood U ° o fx  = 0 and a(xl ) is a smooth function in a 
neighborhood W of xl = 0 and is such that cr(xl ) = O. 

Remark 4. The transformation (6) defines a a process 
if ~2(0,x2) ¢ 0n-p. 

The transformed system is described, in the new 
coordinates, always by equations of the form (2); 
but, in general, the matrix g21(¢1, ¢2) is not defined at 
¢1 = 0. Thus, we conclude that the a process allows 
to map  the space of smooth systems into the space of 
discontinuous ones. 

4. An algorithm to design discontinuous stabilizer 
for nonholonomic systems 

In the present section, using the results developed, 
we propose a procedure to design discontinuous con- 
trol laws for smooth nonholonomic systems described 
by equations of the form (2). 

The procedure is composed of the following steps: 
(I) Transform the given smooth nonholonomic 

system, by means of a a process described by equa- 
tions of the form (6), into a discontinuous system. 

(II) Check if the discontinuous system admits a 
smooth control law yielding local asymptotic stability. 
In case of positive answer proceed to step (III), other- 
wise return to step (I) and apply a different cr process. 

(III) Build a smooth stabilizer for the transformed 
system. 

(IV) Apply the inverse a process to the obtained 
stabilizer to build a discontinuous control law for the 
original system. 

Remark 5. The crucial points of the algorithm are 
the selection of the ~r process (step (I)) and the 
design of the smooth asymptotically stabilizing con- 
trol law for the transformed system (step (III)). In 
particular, step (III) can be easily solved for low 
dimensional systems; whereas there is no construc- 
tive or systematic way to perform step (I) success- 
fully. 

Remark 6. The discontinuous control law resulting 
from the above algorithm is not, in general, a dis- 
continuous stabilizer for the original smooth non- 
holonomic system. In fact, asymptotic stability of  the 
transformed system (with state ¢) does not imply 
asymptotic stability of  the original system (with 
state x) as the inverse of the coordinates transforma- 
tion (6) does not map neighborhood of ¢ = 0 into 
neighborhood of x = 0. As a consequence, asymp- 
totic (exponential) stability of  the closed-loop sys- 
tem with state ( implies only asymptotic (exponen- 
tial) convergence in an open and dense set of the 
closed-loop system with state x; see [3, 5] for further 
detail. 

5. Some examples 

In the present section we use the theory developed 
to design discontinuous control laws for some inter- 
esting and prototype nonholonomic systems. Further 
examples can be found in [2-5]. 

5.1. A kn i f e  edge 

Consider the control of  a knife edge moving in point 
contact on a planar surface [7]. Let xj and x2 denote the 
(x, y)  coordinates of the point of contact of the knife 
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edge on the plane and let x3 denote the heading angle 
of the knife edge, measured from the x axis. Then, the 
kinematic equations of motion are (all constants are 
set to unity) [71 

21 z /)1 COSX3, 

22 = vl sinx3, (7) 

-~3 = /)2, 

where/)l denotes the velocity in the direction defined 
by the heading angle and v2 the angular velocity about 
the vertical axis through the point of contact. Define 
U 1 ~- U 1 COSX 3 and U 2 : /)2. 

Execute now the proposed algorithm. 

(I) Apply the tr process 

~-1 ~ Xl,  

~2 ~ X2, 

~3 = X3/Xl" 

The transformed sy,aem is described by the equations 

~1 ~ 111.. 

~2 - t a n  (3  - ~2 ( 8 )  
" ~ 1  11 '  

~3 ~--- 112. 

(II) and (III) The control law 

U = P 2 ~ 2  4- P 3 ( 3  (9) 

with k > 0 and P2 and P3 such that the matrix 

A =  k 
P2 P3 

has all its eigenvalues with negative real part 2, locally 
asymptotically stabilizes system (8). 

(IV) In the original coordinates system the control 
law is described by equations of the form 

= ] 
/)2 [ p2X2 4- p3(X3/Xl  ) 

Remark 7. From local asymptotieal (exponential) 
stability of the closed-loop system (8)-(9) we infer 
that the discontinuoas control law (10) is well defined 

2 Note that the spectrum of  the matrix A can be completely 
assigned through P2 and P3. 

and bounded, for all t >1 0, along the trajectories of the 
closed-loop system (7)-(10) whenever x l (0) ¢ 0. 

Remark 8. The state x I satisfies the differential equa- 
tion 21 = - k x t ;  therefore, if x l ( 0 ) ¢ 0 ,  we have 
x l ( t )  ¢ 0 for all t >~0. Thus, the surface So = {x E ~3 [ 

xl = 0}, where the control law is discontinuous, is 
never crossed by any trajectory of the closed-loop 
system, but is only asymptotically approached. This 
guarantees that the trajectories of the closed-loop 
system, starting out of So, are defined for all t~>0 
and if xl(0) > 0 (xl(0) < 0) remain always in the 
semispace S+ = {x c [R3 Ix1 > 0} (S_ = {x C ~3  I 

xl < 0}). 

Remark 9. The nonholonomic system described by 
Eq. (7) is of particular interest as such equations coin- 
cide locally (after state and input transformation) with 
the kinematic attitude equations of a rigid body free 
to rotate only around two axes [ 10] as well as with the 
kinematic equations describing the motion of a mobile 
robot [ 11 ]. 

Remark 10. Observe that, although system (7) is 
feedback equivalent to a three-dimensional chained 
system, to design a discontinuous control law yielding 
exponential convergence we do not need to transform 
it into chained form. 

Fig. 1 shows the state trajectories and the control 
signals for the closed-loop system (7)-(10) with a 
prototype initial condition. Note the boundedness of 
the control signals and the exponential convergence 
of the state. 

5.2. Chained systems 

In this section we apply the proposed approach 
to design a discontinuous control law for an n- 
dimensional chained system, i.e. for a system de- 
scribed by equations of the form 

)e l  ~ Ul, 

22 ~ lt2, 

3( 3 ~--- X2111, 

24 = x3ul, (11) 

2 n z Xn I111. 

We deal with systems in chained form as they occupy a 
special place in the theory ofnonholonomic control. In 
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Fig. 1. State histories (top) and control signals (bottom) of  a controlled knife edge from the initial condition [2, - 1 ,  1]. 
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fact, many nonholonomic mechanical systems (such as 
cars pulling trailers [18], nonholonomic manipulators 
[20], etc.) can be represented by kinematic models in 
chained form or are feedback equivalent to chained 
form. 

Execute now the proposed algorithm. 
(I) Apply the a process 

41 = Xl,  

~.2 : X2, 

43 = X3/Xl ,  

~n--I = Xn--l/X~ -3,  

~n = Xn/X~ -2 .  

(12) 

The transformed syslem is described by the equations 

~ 1 = RI,  

~ 2 : H2, 

~3 - 42  - ¢3 
~1 Ul ,  

(II) 

//1 = 

U 2 = 

with k 

A = 

(13) 

~_n-1 - (n - 2)~n 
~.1 - - U I "  

and (III) The linear control law 

-k41, 

P242 + P3~3 -~- " "  + P,~, ,  

> 0 and the coefficients Pi such that the matrix 

(14) 

P2 P3 P4 ...  Pn-I  Pn 
- k  k 0 .. .  0 0 
0 - k  2k ... 0 0 
0 0 - k  ... 0 0 

0 0 0 .. .  - k  ( n -  2)k 

has all eigenvalues with negative real part 3, glob- 
ally exponentially stabilizes the discontinuous system 
(13). 

(IV) In the x coordinates the control law is 

u = = p2x2  q- p 3 x 3  + . . .  q- P n ~  " 
Xl 

(15) 

3 Note that the spectrJm of  the matrix A can be completely 

assigned through the coefficients pi's. 

Remark 11. It is possible to show, see [3, Lemma 1], 
that the discontinuous control law (15) is well defined 
and bounded, for all t/> 0, along the trajectories of  the 
closed-loop system ( 11 )-(15)  whenever xl (0) ¢ 0. 

Remark  12. As outlined in Remark 6 and as dis- 
cussed in detail in [5], the discontinuous control law 
(15) is not a discontinuous exponential stabilizer for 
system (11 ). It only guarantees exponential conver- 
gence for all the initial conditions in the open and 
dense s e t  { ( x  1 . . . . .  Xn) U" IX* 0} 

Remark 13. We stress again that asymptotic stability 
in the 4 coordinates does not imply asymptotic stabil- 
ity in the x coordinates as the a process (12) does not 
map neighborhood of  the origin of  ~ = 0 into neigh- 
borhood of  the origin o f x  = 0; see [5] for further de- 
tail. 

Fig. 2 shows simulated results for the case n = 4. 
We set k = 1 and P2, P3 and P4 such that the eigen- 
values of  the matrix (14) are all at 2 = - 2 .  Moreover 
we assume that xl (0) ~ 0 and that the initial condi- 
tions x2(0) and x3(0) are small with respect to xl (0); 
this is without lack of  generality, as discussed in [ 18]. 

6. Conclusions 

In the present paper we have shown how the prob- 
lem of  asymptotic (exponential) convergence o f  non- 
holonomic systems can be easily solved, for a certain 
class o f  systems, using discontinuous control laws. 
The key idea is the use of  a discontinuous coordinates 
transformation to map the initial system into the space 
of  discontinuous nonholonomic systems. It turns out 
that in such a space the stabilization problem can be 
solved. The obtained control law is then transformed 
back to the starting coordinates system resulting in a 
discontinuous control. The theory has been applied to 
the stabilization of  some prototype nonholonomic sys- 
tems, for more examples, including use of  a processes 
different from those considered in this work, see [2,4]. 

The author thinks that the proposed approach can 
become helpful in solving a certain number of  control 
problem, i.e. when theoretical results prevent the ex- 
istence of  smooth stabilizing control laws. Finally, we 
stress that one of  the main and new ideas contained 
in the paper is the use of  the a process as a general 
de-singularization procedure. 



44  A. Astolfi l Systems & Control Letters 27 (1996) 37-45 

1.5 

0.5 

-0.5 

-1 

0.5 1.5 2 2.5 3 3.5 4 4.5 5 

-2  

-4  

- 6  

- 8  

-10 

I I I ! 

i . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  i . . . . .  

. . . . .  ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . .  : 

: i : 

. . . . . . . . . . . . . . . . . . . . . . . . . . .  ! . . . . . . . . . . . . . . . . . . .  . . . .  : 

0.5 1.5 2 2 5  3 3 5  4 4.5 

Fig.  2. Sta te  h i s to r ies  ( t op )  a n d  con t ro l  s igna l  u2 ( b o t t o m )  o f  a n o n h o l o n o m i c  c h a i n e d  s y s t e m  o f  d i m e n s i o n  fou r  f r o m  the  ini t ial  c o n d i t i o n  
[2, - 0 . 2 ,  0.2,  l ] .  
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