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Abstract R number of motions in the database
O sequence of observations
“Mimesis” theory focused in the cognitive science field and “mirror o, observation at time
neurons” found in the biology field show that the behavior gener- a;;  probability of a transition from statieto ;
ation process is not independent of the behavior cognition process. ¢j»  weight of mixture component in state;
The generation and cognition processes have a close relationship W vector of means for the mixture componemntof
with each other. During the behavioral imitation period, a human statej ) .
being does not practice simple joint coordinate transformation, but 3 ;,, covariance matrix for the mixture componenbf
will acknowledge the parents’ behavior. It understands the behav- statej
ior after abstraction as symbols, and will generate its self-behavior. ]
Focusing on these facts, we propose a new method which carrids | ntroduction

out the behavior cognition and behavior generation processes at th@esearch of humanoid robots has a long history and has ac-
same time. We also propose a mathematical model based on high jated a substantial amount of literature. The focus of
den Markov models in order to integrate four abilities: (1) Symbobarly efforts was mostly on the dynamics and control of bi-
emergence; (2) behavior recognition; (3) self-behavior generatiorbedial walking motion. Although it has not yet reached the
(4) acquiring the motion primitives. Finally, the feasibility of thislevel of a complete solution, with liability and adaptability,
method is shown through several experiments on a humanoid rOb(l’ﬁe hardware technology has been established for building
KEY WORDS—imitation learning, symbol emergence, hidautonomous humanoids (Hirai et al. 1998; Nishiwaki et al.

den Markov models, dynamics abstraction, mirror neurons2000; Kuroki et al. 2001).
Recently, human behavioral science and intelligence has

become conspicuous as a real research issue of robotics. Al-

1. Nomenclatur o oS -
omenciature though the motivation of the artificial intelligence originated

N  number of nodes there, the physical limitations have forced or justified re-
M number of motion elements searchers to carry on their research in a limited scope of
T length of observation sequence complexity. It would be a major challenge of contemporary

_ . robotics to study robotic behaviors and intelligence in the full
The International Journal of Robotics Research scale of complexity. This could then mutually share research
Vol. 23, No. 4-5, April-May 2004, pp. 363-377, . . .
DOI: 10.1177/0278364904042199 outcomes and hypotheses with the human behavioral science
©2004 Sage Publications and human intelligence.
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The discovery of mirror neurons (Gallese and Goldmation recognition and generation. This problem is to be solved
1998) has been a notable topic of brain science concerninging continuous HMMs (CHMMSs). The second issue is how
such issues. Mirror neurons have been found in the brainstofgenerate the motion patterns as a time-series of the motion
primates and humans, which fire when the subject observepramitives, which is to be solved adopting discrete HMMs
specific behavior and also fire when the subject starts to d&8HMMs). The acquired models are to be modified accord-
in the same manner. It also locates on Broka'’s area, whidfg to the observer’s body. This is the third issue and is to be
has a close relationship with language management. This fai$cussed as a problem of database managements for HMMs.
suggests that the behavior recognition process and behaviorFirst, we introduce the mathematical model of mimesis in
generation process are combined as the same information pgeaction 2. In Section 3, computational methods for symbol
cessing scheme. This scheme is nothing but a core enginesafergence, motion recognition and generation are explained.
the symbol manipulation ability. Indeed, in the “mimesis thel Section 4, we discuss how to develop and design the motion
ory” of Donald (1991), he said that symbol manipulation ang@rimitive representation. The conclusion follows experimen-
communicative ability are founded upon behavior imitationtal results in Section 5.
which is integration of behavior recognition and generation.

We believe that a paradigm can be proposed taking advantage ) o )

of the mirror neurons, with considerations of the contentio’ég- Mimesis Model Recognizing Others' Motion
of Deacon (1997) that language and the brain had caused eattd Gener ating Self-Motion

other to evolve.

So far, many researchers have tackled with the issues lbethis section, we explain the outline of mimesis models by
tween the imitation learning for humanoids and human inteshowing the difference between usual imitation models.
ligence (Schaal 1999; Matar?000). There are some sugges- In an imitation learning framework MOSAIC, which has
tions that a module structure of basic motions is needed for theen proposed by Samejima et al. (2002) and Samejima,
symbolization and representation of complex behavior, suéboya, and Kawato (2003), plural dynamics and inverse dy-
as the work by Schaal (1999). In the approach of Kuniyoshiiamics modules for the prediction and control of motion are
Inaba, and Inoue (1994), robots can reproduce complex beplemented in order to imitate the motion of others. This
haviors from observation of human demonstration with thtsamework is based on bi-directional theory suggested by
abstraction and symbolization. However, it is difficult to apMiyamoto and Kawato (1998). Both aim to imitate human
ply this to general recognition and reproduction processé&ghavior and symbolize the motion patterns as motion primi-
because of the lack of dynamics point of view, which meartives. One of disadvantages of these methods is that the motion
the robots have to memorize the whole flow of basic behaviarf others is always needed as a reference pattern, because it
Moreover, the basic behavior modules need to be designeditgs no ability of description for dynamics of time-series mo-

a developer. Samejima et al. (2002) have proposed an imit&n primitives. On the contrary, we aim not only to imitate the
tion learning framework with symbolization modules. In thisnotion of others but also to abstract the time-series motion
case, a premise has been set that the sequence of symbofsiterns as symbol representation. This causes a situation in
given from others by communication, thus a certain repravhich no reference motion pattern is needed, i.e., more flex-
sentation model for dynamics of the whole-body motion ifle for symbol emergence from behavior imitation.

needed. Here, we propose an imitation framework which abstracts

In this paper, we propose a mathematical model that athe dynamics of the motion as symbol representations, recog-
stracts the whole-body motions as symbols, generates motitizes the motions of others, and generates self-motions from
patterns from the symbols, and distinguishes motion pattertige symbol representations. The realization of the framework
based on the symbols. In other words, it is a functional realizéeads to the implementation of the mirror neuron from an en-
tion of the embodied symbol emergence framework, which gineering point of view.
inspired by the mirror neurons and the mimesis theory. There-
fore, we call the framework the “mimesis model”. The purpos L .
of the research is to propose a methodology of mathematicga?" Mimesis Model Based on Hidden Markov Models
design for the mimesis mode. The mimesis model consists of three parts, the perception part,

One as an observer would view a motion pattern of thie generation part, and the learning part, as shown in Figure 1.
other as the performer; the observer acquires a symbol of thiethe perception part, observed motion patterns are analyzed
motion pattern. He recognizes similar motion patterns angto basic motion primitives, and the dynamics in the sequence
even generates it by himself. The observer would then negglthe elements is abstracted as symbol representations.
to modlfy it from the performer's motion to the observer's In the generation part, a sequence of motion elements
one, according to his own body condition. The model is dgs decoded from a proto-symbol. However, the generated
veloped using hidden Markov models (HMMs). One issue igotion patterns would be inappropriate for real humanoids.
to identify appropriate motion primitives that enable both mogor this issue, we introduce the learning part where motion
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Fig. 1. An outline of the proposed mimesis model. More generally, adopting the displacement and velocity of
the base link and hands, and various sensory information, is

effective for recognizing and generating more complex be-
havior. In this paper, we do not determine the type of physical
guantity or concrete target behavior. We take the stance that a

elements are modified based on a database consist of Riyeloper determines the task and physical quantity according
former’s motions and observer's motions. to need.

The characteristic needed by the mimesis model is to inte- A time-series motion pattern
grate three functions: motion recognition, motion generation
and symbol emergence of motions. We focused on HMMs as O = [04,0k, - - . 0k, ] 2
the mathematical backbone for such integration. The HMM
is a stochastic process that takes time-series data as an input,
then outputs a probability that the data are generated by the kiefl,2,..., M} ®3)
model. The HMM is one of most famous tools as a recognition . . . .
method for time-series data, especially in speech recognitidﬁq'Cates motion of others and self—motlon at the same time
HMMs are divided into two types: DHMMs and CHMNMs. in the HMM, by correspondence of the pieces of motion
The former treats sequences of discrete labels, and the |a§}§ment(¢1, -+ » ) 1o output labeb as follows:
treats sequences of continuous multi-dimensional vectors. In 0 — 4)
this subsection, we introduce the DHMM for the first step. The ! ”

HMM consists of a finite set of stat@® = {g1....,gn}, @ whereO indicates a row vector which consists of a sequence
finite set of output labes = {o1, ... , ou}, a state transition of motion elements. Theith element from the left indicates
probability matrixA = {a;;}, an output probability matrix the motion element at theh discrete time. The question of

B = {b;;}, and an initial distribution vectar = {z;}, that \ynat type of physical quantity is effective for the model is
is {Q, S, A, B, x}. In this framework, state transition is per-affected by the characteristic of target behavior. In this pa-
formed probabilistically and some labelsare output during per, we have adopted simple joint angle space as the motion

the transition, as shown in Figure 2. element for the first step, and we propose motion recognition,
generation and abstract method independent of the type of
3.2. Motion Elements physical quantity.

In order to connect discrete symbol representations and timoe
series motion data, a motion element is introduced. A motion
element corresponds to a pointin a phase space which consBginition by eq. (4) is nothing but a connection between a
of joint angle of humanoids, velocity, acceleration, and so dabel (or an index) and feature vector for a certain moment.
as follows: To represent the dynamics of feature vector sequence, certain

3. HMMs as a Proto-Symbol
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&y oy Qg3 An1n-1 (2002), more than 500 nodes and more than 200,000 weight
parameters between each node are needed in order to integrate
the memorization and generation process on the same RNN.
The RNN consists of motion element neurons, symbol repre-
sentation neurons and buffer neurons for treating time-series
data. The required number of weights increases in propor-
tion to the square of the number of all nodes. In contrast, the
number of parameters used in HMMs is proportional to the
product of the number of nodes and motion elements. To give
a concrete example, a HMM consists of 25 nodes and 80 mo-
T tion elements and requires about 2500 parameters, in order
to recognize and generate the motion. Therefore, the draw-
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would use a large set of parameters to memorize a few motion
patterns. The parameters would require a large computation
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i to be adjusted.
time
Fig. 3. Motion elements and HMMs. 4. Motion Abstraction, Recognition and

Generation usngHMMs

4.1. Creating Proto-Symbols Through Observation

representation methods are needed. Symbols may be defidefion abstraction, i.e., proto-symbol generation, consists of
in a narrow sense as ones with embodied meaning and th&wo phases. In the first phase, observed motions are transferred
mutual distances. We propose to consider the acquired HMM¥0 the sequence of the motion elements by a segmentation
as symbols. Although, in the scope of this paper, they have eprocess. In the second phase, dynamics existing in the motion
bodied meanings, their mutual distances have not yet been@lements sequence is abstracted, and represented as proto-
troduced. We plan to discuss this in future work. In this sensgymbols.
it would be appropriate to call the HMMs proto-symbols. In order to transform the observed motion patt&fr)

We shall concentrate on the HMM parameters. As left-tdnto a sequence of motion eleme@s= [ox,0x, - . - 0k, ], 0
right type HMMSs as shown in Figure 2 are used in the mimgor each short time period is sampled, then we calculate
sis model, the initial distribution vectar has a fixed value of Te-1
(1,0,...,0). A set of state®) and a set of output label j=arg maxeXp{_(l/z)(o L “i)}.
have no direct relationship between output time-series data. i V (2m)P detx;
The state transitions probability matdxand the output prob- The meaning of the above equation is lettidpe i which
ability matrix B can be regarded as an abstraction parametggsiuses the maximum value of the right sifdeis the number

(6)

of probabilistic dynamics of the HMM. of dimensions of the motion elements, det indicates the deter-
Thus, we define the proto-symbols as follows: minant of a matrix, and the superscript “T" indicates the trans-
pose of a matrix. The right-hand side represents a Gaussian
Pg %A, B). (5) distribution function with a covariance matri and a mean

vectoru. The calculation contributes to selecting a suitable

The HMM is a stochastic mathematical framework for semotion elemenik ; which locates near to the sampled motion
guential data. Itis furnished with well-established algorithms in the phase space. Lief be a motion element for each short
of computation. The acquisition, recognition, and generatidime period[uy,ux, . . . ux, ], namely a sequence of motion el-
of motion patterns are to be efficiently computed using thements, is output by a repetition of the above calculation for
algorithms. Itis also known that HMMs are successfully usedll short time periods.
in speech recognition. After this, a parameter of a HMMA, B}), which outputs

An alternative to HMMs for such computation is the usehe sequential elements plausibly, is calculated and registered
of recurrent neural networks (RNNs). RNNs also memorizas a proto-symbaPg. Humanoids gather several motion pat-
dynamics of patterns (Morita 1996; Morita and Murakamterns as a stock of observed data for the learning. When an
1997; Tani 2001; Inamura, Nakamura, and Simozaki 2002)nknown motion is input, the robot creates a new HMM.
The authors tested the use of RNNs for motion recognitioAd and B can be calculated by the Baum—Welch algorithm,
and generation (Inamura, Nakamura, and Simozaki 2002yhich is one of the Expectation Maximization (EM) algo-
According to the result of Inamura, Nakamura, and Simozakithms (Young et al. 2000).
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4.2. Motion Recognition Using Proto-Symbols 5. Let the generation process be stopped when the token
reaches the end nodgy, or returns to step 2 letting

To recognize motion of others, observed motions are Q= jit=t41

transformed into a sequence of motion elemefts =

[01,07, ... ,0:],andaparametd?(0|Pyg) is calculated. This
parameter indicates a probability that a motion patt@ris 6. Finally, the sequential motion elements are transformed
generated by a proto-symh@l. This value is called a likeli- into continuous joint angle representations.

hood, calculated by the forward algorithm (Young et al. 2000).
Each proto-sym'bol corregponds.to each motion, thus likeli- The output motions using the above operations are not the
hood values of the input motion against each proto-symbol are . . .
: ame, but have different time lengths and orders of motion
calculated. A proto-symbol that corresponds to an input pa%- ; :
o AN elements, because the output operations are stochastic. How-
tern should indicate high likelihood, and other proto-symbols o . . .
éver, it is possible to generate an approximate motion pattern
because the parametedsand B represent the abstraction of
dynamics in the motion pattern. Therefore, the above opera-
max{ P (0|Pg )} tions are repeated, and plural generated motions are averaged.
T 7 ) X .
secont{iP(OW&)} (7)  Asthetime lengths of each generated motion are different, we

make the time length uniform using

likelihoods, the following criterion is introduced

R(0O) = log

where secon@) denotes the second highest value in the com-
ponents ok.The mi.mesis modellrecognize.s the input mot.ion 0'(t) = 9<T L) (9)
without any confusion wheR indicates a high value. In this u
case, the recognition result beconsg , where

! whereT is the time length of each motion, afifi is the time

j =argmaxP(0|Pg )} (8) length of the uniformed motion. After this, each joint angle is
J ’ averaged.

When R indicates a low value, the recognition fails and the Several researches have already proposed motion recogni-

mimesis model tries to shift to the proto-symbol creatiofon methods based on the HMM (Yamato, Ohya, and Ishii
phase. 1992; Pook and Ballard 1993; Wada and Matsuyama 1998,

Yoshiike et al. 1998; Ogawara et al. 2002), however, no re-
search exists in which motion is generated from the HMM.
Kobayashi et al. (1996) and Imai, Tokuda, and Kobayashi
Basically, original patterns are decoded using the expectati¢995) have proposed a speech parameter generation method
operator in the stochastic model; however, applying the exsing the HMM; however, the generation process is not the
pectation operator is difficult in the HMM. The HMM has aopposite direction of the speech recognition process. The
two-stage stochastic process: state transition and label ootestimportant characteristic of our method is that the motion
put. Applying the expectation operator is simple for the latteiecognition and motion generation process are integrated by
process, but difficult for the former process. The results afnly a single HMM.

the recurrent state transition would not fit on the same dimen-

sional phase space. For example, the length of a state sequence

changes every trial. This means that integration of the prog-_ Development of Motion Elements

ability values could not execute holomorphically. Therefor . .
we adopt the averaging method over repetition of motion geer"-hrOUQh _Repetltlon of M (_)t'on
eration. The detailed order of the generation is as follows. OPbServation and Generation

4.3. Motion Generation Using Proto-Symbols

1. Initialization. Let the starting node lag, let the node The performance of motion recognition and generation is
token bei = 1, and let the motion elements sequencafluenced by the characteristic of motion elements. If the
beO = ¢. number of elements were too few, the generation would fail.

o - o ) If the motion elements had no relationship between the ob-

2. Deciding the transition destination nogleusing tran- - seryed motions, the recognition process would fail. There-
sition matrixA stochastically. fore, we have adopted an approach that the system searches

the best motion elements with an evaluation criterion whether

the generated motion would be fit for the body and the recog-
nition would be succeeded against familiar motion. Using the

4. Adding the output labed, to the motion elements method, the humanoid can acquire adequate motion elements
sequenc®. O := [0 oy, ]. through repetition of motion perception and generation.

3. Deciding the output labe}, during the transition from
nodeyg; to ¢; stochastically using output matri.
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Q& P> A3 AN-IN-1 In other words, the number of motion elements is as many as
the number of mixture Gaussian components. An important
issue is that the motion elements are automatically calculated
by the Baum—Welch algorithm, as mentioned in Section 4.1.

cosee M Motion elements could be regarded as the filter between

- 7 continuous motion representation and discrete motion repre-
Q3 ' H § Anan sentation. When continuous motion is transferred into discrete
;L P e motion,e;, wherei = argmax .V; (o), is adopted as a typical
ba( = ). bZ(l ) b3( ' ) bN';l( ) motion element for eagh t?rze rjeriod. Whgn discreteyrr)notion
" ¥ oo v is transferred into continuous motion, the sequencg;dt
uawg U@ U@ U@ --- U@ used directly.
To sum up, the mimesis system have the following advan-
ﬁ % ‘jﬁ\ '6‘ tages with CHMMs.
time * Motion elements are able to express the whole-body
motion, therefore various motion patterns are available
Fig. 4. A continuous hidden Markov model. easily.

» The parameters of motion elements are automatically
calculated.

5.1. Introduction of ContinuousHidden MarkovModelsand
Application to Mimesis Model

In this phase, we introduce CHMMs (Young et al. 2000y though many advantages are available, CHMMs have a
which can treat continuous multi-dimensional data. The difiSadvantage that huge computational quantity is needed. It
ference between normal DHMMs and CHMMs is that théhould take much time for motion generation and recogni-
transition process outputs continuous multi-dimensional vellon. Therefore, we propose a hyb_nd HMM' which consists
tors, different from the DHMMs in which the discrete IabelsOf CHMMs ar_‘1d DHMMS{ as shown in Flgl_Jre 5.

are output, as shown in Figure 4. In the CHMMs, the output " the motion recognition and generation phase, DHMMs
probability matrixB becomes a probability density function.2€ uUsed in which the computational quantity is small. In the
Here, the density function is approximated with linear comotion elementacquisition phase, CHMMs are used in which
bination of Gaussian functions as follows the computational quantity is large.

5.2. Hybrid Hidden Markov Model

P (0) = Z cijNij(0; 2, p), (10) 5.3.Closing the Mimesis Loop for Embodiment

j=1 The parameters which decide the characteristics of HMMs

whereP; (o) is the probability density function for the outputand motion elements are acquired using the Baum-Welch al-
of continuous vectas at theith state noden is the number of gorithm (Young et al. 2000) which is a type of EM algorithm.
mixture Gaussian functions, ang is the mixture coefficient. This algorithm can be expressed by the following equations
Mo; X, n) is the Gaussian function

D=1{0%0%...,0% (13)
Nij(0; X, 1)
_ o3 0-wTE 0w {A, B} := Bp (D) (14)
= (11)
/(2r)P detz;;
whereX is the covariance matriy is the mean vector, and 1, T} = Bc(D), (15)

D is the number of dimensions of the continuous veator
The characteristics of the CHMMs are decided by the pavhere8p, B¢ are operations using the Baum-Welch algo-
rametergm, A, ¢, ¥, u}. These parameters are calculated ugithm, and® is a database consisting bbbservations. The
ing the Baum—Welch algorithm. initial databaseD® consists of only the observed motions of
Here, each mean vector of the Gaussian function is rethers;thatis, motion elements and proto-symbols which have
garded as an important representation of the observed motiog. relationship between the learner’s physical characteristic
Therefore, we divide the parameters of CHMMs, and redefirafe acquired by the above operations. Therefore, let the proto-
the motion elements as follows: symbols and motion elements be acquired with database ma-
def nipulation during repetitions of motion recognition and gen-
ui = (X, ui}- (12)  eration as follows.
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Fig. 5. A model of a hybrid hidden Markov model.

Fig. 6. The humanoid HOAP-1.

1. Generating a motio® from a proto-symbolPg and
motion elements.

2. Judging whether the generated mot@s suitable or - glements are used for both motion recognition and generation,
not. a simple distinction leads to a deterioration of the process.
3. Adding the motion to the database when the judge-Bhus’ a d'St'r!Ct'on strategy h_as been mtroduct_aql that gener-
: N+l . oy ated self-motions are stored in the database vividly, and the
result is good:D' ™ := D' U O. ) .
observed motions of others are stored dimly. Because of the
4. Acquiring the proto-symbols and motion elements ugdistinction method, the influence of the initial motion of oth-
ing the above egs. (14) and (15), and return to step lers would be decreases, and the database would be gradually
_ _ o ~under the control of generated self-motions. Actually, vivid
For evaluation at step 2, two evaluation criteria were intranotions are stored with little variance and dim motions are
duced: an inner evaluation for checking the characteristic gfored with large variance. In the learning phase, the num-

the proto-symbol, and an outside evaluation for checking thgsr of motion samples in the database is controlled using the
aim and meaning of the motion from the point of view of th&,ariance value.

teacher. For the outside evaluation, we prepared the following

criterion . . L
. 6. Experiments of Motion Element Acquisition
1
Ey = 7/ 10in (1) — 6our ()] dt, (16)  The humanoid used in the experiments is shown in Figure 6.
0 The humanoid has four degrees of freedom at each arm, six

. . degrees of freedom at each leg, namely 20 degrees of freedom
wheree_,-n(t) and_o””’(t) indicate the Jomt_angles of an ob- for the whole body. We have confirmed the performance of our
seryed ideal motl_on and agener_a'Fed motion, resp(_actwgly. Frﬂ%thod by experiments where the mimesis model observes
the Inner evgluatlon, the recognition rat¢0) explained in human motion and generates motions for a real humanoid.
Section .4'2 IS used. o .. Using the Behavior Capturing System (Kurihara et al. 2002),

Consplen_ng _the above two crlte_rla, the following Inte]oint angle data for 20 degrees of freedom are directly ob-
grated criterion is used for the experiment served because the degrees of freedom of the humanoid are
V = «Ey + BR™Y(0), 17) 20. The time period of each motion is ath@s with a sampling
time of 20 ms.
wherea and g8 are certain constants. When the valds
Iarger than_a certain threshold, the mimesis moq_el judges tr@l_ Experiments of Motion Generation
theith motion data are suitable for the recognition process,
it adds the motion data into the database, and calculates e humanoid used in this experiment has 20 degrees of free-
motion elements again. These constants and the threshold @doen. We investigated the basic performance for squat behav-
adjusted according to each experiment case. iors. In the squat behavior, characteristic motion collected
At step 3, it is desirable that the generated self-motion aratound the lower body. Therefore, we adopted a simple mo-
observed motions of others are distinguished. As the motidion element which consists of three joint angles: hip (pitch
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(deg) — Hip Joint
==+ Knee Joint

100 e T T e el ===+ Ankle Joint
-----------
-

04;""""111-..-‘,,__ --------

0.0 0.5 1.0 15 2.0 2.5(sec)

Fig. 7. Original motion pattern.

— Hip Joint
del
(de9 ==+ Knee Joint
Y A = Ankle Joint
100 — hmrac
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1 =11 1 1 a1
- Foalpr PR Ijpudl ra
L L] e T l_.ll LHL |

04W

0.0 0.5 1.0 15 2.0 2.5(sec)

Fig. 8. A notion pattern using only one time generation.

axis), knee and ankle (pitch axis). In this subsection, we repd2. Experiments of Motion Recognition

on several experiments performed using the simple moti . . . .
P P 9 P cfyor the motion recognition experiments, seven behaviors are

element. . ) . .
Fi h h : - yrepared, as shown in Figure 10: (a) tennis swing (swing);
igure 8 shows the output motion pattern by one time ou ) walking (walk): () Cossack dancing (dance): (d) kick-

put operation. Compared with an original motion pattern us . . . .
in the learning (Figure 7), an approximate pattern is generat (kick); (e) backward walking (back); (f) crawling (crawl).

but the noise increases drastically. The cause of the noise, e behaviors of (a)—(e) were treated as already-known mo-

that the discrete motion elements are selected at each momt s, and the behavior (g).v_vas treated as an unknown motion.
le 1 shows the recognition results.

tochastically, thus th h d the discontinuity stoo : ol . .
stochastically, thus the roughness and the discontinuity sto The values in the table indicate the logarithm of likelihood

out. o
Figure 9 shows the output motion pattern after 1000 timeg(olA’ B). Proto-symbols arranged lengthways indicate the

operation, as explained in Section 4.3. A CG animation usi rget _Of Fhe recognition, and behavior names arranged side-
the pattern is shown in Figure 14. Compared with the motig) ays indicate the proto-symbol_s already learnt. The_ value
pattern by one time operation (Figure 8), the joint angle bér]dlcates larger, the target motion matches better with the

came smoothed. There were some joint angle errors betwe¥| to-symbol. The _value of a certain target mptior) against
the original patterns. We think that the cause of the error proto-symbol which corresponds to the motion indicates

the influence of coarse discrete motion elements igh, i.e., located on a diagonal line. The values of unfamiliar
The computational time for the generation process Wégotion (unknown) against each protq-_symbol are almost the
abou 1 s using a Pentium-Iil 1 GHz processor. The time jsame. Thus, we see that the recognition process would suc-

enough fast as the off-line pattern generator for humanoi ?edtvi'(t)%%m m@t_aki, when the recognition r&tés set to
For this sort of problem, Okada, Tatani, and Nakamura (200? ou empiricaily.

have proposed a compression method in which a motion pat- . . L

tern of humanoids that have over 20 degrees of freedom%sg' Ex-perlmen'Fs of Motion Element ACQUI-SI'[IOI’I

transferred into a three-dimensional vector. We think that r&or this experiment, four types of motion were recorded:

duction of the computational cost can be performed by adopalking, squating, picking up, and Cossack dancing. As in
ing this method. Section 6.1, there are three dimensions of the motion ele-

ments: hip joint (pitch), knee and ankle joint (pitch).
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Fig. 9. A motion pattern using 1000 times generation.
Table 1. Recognition Results of the Motion of OthersUsing HMMs
Proto-symbols
Input Backward

Behavior Swinging Walking Dancing Kicking Walking Crawling R

Swing —430 —3915 —4077 —3940 —4114 —4007 3485
Walking —3048 —225 —3071 —1646 —3099 —3019 1420

Dance —1656 —1603 —144 —1613 —1683 —1577 1433
Kicking —2543 —1574 —2562 —199 —2585 —2519 1374
Backward —2395 —2318 —2413 —2332 —202 —2372 2117
walking
Crawling —4083 —3950 —3815 —3976 —4151 —488 3327
Unknown —1915 —1853 —1928 —1865 —1946 —1896 11
behavior

After the 50 observations, the motion generation processdgcate acquired motion elements. As Figure 15 indicates, the
executed 50 times, and appropriate motions are added into thetion elements are located near the original motion trajec-
database. Figure 11 shows the acquired motion elements. Diaiy. Compared with Figure 15, motion elements are gathered
indicate the motion element, and the solid lines indicate th@t only on the A area, but also on the B area in Figure 16.
original motion’s trajectory. As the figure shows, the motiorThese motion elements located on the B area are acquired by
elements are located near the original motion; that is, otiie generated self-motions in the database, which fits for the
method shows good performance. humanoid embodiment. This result shows that both motion el-

ements are acquired: elements for the recognition of motions

6.4. Experimentsof Motion Element Development Basedon  Of others (A area) and those for the generation of self-motion
Embodiment (B area).

Here, we set up a situation where the joint angle limitation of o .

the humanoid’s knee is about 40 deg, less than the human oft@: Pesigning Hidden Markov Models

We investigated whether motion elements for the humanoldere, we concentrate on the rest parameter, namely the struc-

are acquired by observations of human motions under suchuase of HMMs. As the HMMs adopted in this paper are left-

condition. In the experiment, an 80 times loop is repeated &sright type, the rest parameter is the number of nodes. It

explained in Section 5.3. is possible to use the evaluation criterion explained in Sec-
Figure 12 shows the original motion which is performed byion 5.3 for investigating the number of nodes, during the

a human. Figure 15 shows the acquired motion elements frampetition of motion recognition and generation.

the performance when the joint angle limitation does not exist. A tennis swing is selected for the experiment. The error

Aresult with the limitation condition is shown in Figure 16. Invalue Ey is measured by changing the number of nodes from

these figures, three axes indicate hip joint (pitch), knee joidD to 40. The result is shown in Figure 18. As the diagram

and ankle joint (pitch), as in Section 6.1. The curved line imdicates, the error value decreases hardly where the number

the figures corresponds to the motion trajectory. The dots inf nodes shifts from 24 to 25. Figure 17 shows the generated
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Fig. 10. Target behaviors: (a) tennis swing; (b) walking; (c) Cossack dance; (d) kicking; (e) backward walking; (f) crawling;
(g) unknown behavior.
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042

: 04
picking up

Fig. 11. A result of motion element acquisition against four types of motion.

.

Fig. 12. Motion capture system: step motion for learning data.

motion pattern for four conditions; the number of nodes is 2(,. Conclusions

24, 25, and 40, respectively. The diagram focuses on the right

shoulder’s yaw joint. Solid lines indicate generated motiofh this paper, we have proposed a framework called
pattern, and dashed lines indicate the original motion patteffie “mimesis model”, which integrates motion recogni-
The diagram supports the result that the desirable numbertfn/generation and symbolization of motion patterns based
nodes is above 25. on mimesis theory. In our mimesis model, proto-symbols and
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Fig. 14. Generated motion from proto-symbol.
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Fig. 15. Acquired motion elements without loop structure.
Fig. 16. Acquired embodied self-motion elements using loop
structure.
motion elements are introduced with HMMs in order to inte-
grate the following three abilities using only one mathematical
model: (1) abstraction of motion patterns and symbol repess, which transfers an observed motion of others into proto-
resentation; (2) generation of self-motions from the symbalymbol representation, and the generation process, which
representation; (3) recognition of motions of others using theansfers a proto-symbol representation into self-motions, are
symbol representation. Through experiences, the feasibilitpplemented as opposite direction functions by only one
of the mimesis model is clarified. Furthermore, we proposadathematical model. The most important characteristic, in-
an approach in which the development of motion elementstisgration between imitation learning and symbol emergence,
a result of the management of the motion database. We invésestablished by defining the bidirectional computation model
tigated the effectiveness through an experiment in which tlas proto-symbols.
learner’s physical body condition is different from that of the At the current stage, the proposed model can be applied
teacher. to simple motion patterns; however, the application of the
The mimesis model is not a simple method for motiomethod to complex behavior is difficult, because considera-
recognition, generation, and abstraction. The recognition prisen of the external environment is needed, such as tracking
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Fig. 17. Generated motion (shoulder yaw joint) for each number of nodes.
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Fig. 18. Error valueEy and the number of nodes.

an object by eye, throwing a ball, and so on. Itis desirable that
some abstracted behavior units are designed, and HMMs are
applied to such behavior units. For this issue, we plan to con-
struct hierarchical HMMs to be applied from simple motion
level to complex behavior level.

We think this result is the first step to connect language
development process to the motion acquisition process us-
ing the mimesis model; for instance, humanoids try to make
communications with others, and build a relationship repre-
sentation between proto-symbols and linguistic symbols. For
such a direction, we try to define the distance between each
HMM and to establish a computational method in order for
the proto-symbols to evolve into general symbols. We believe
that this approach leads the building of an intelligent system
which connects humanoid intelligence and behavior science.

Appendix
A.1. Viterbi Algorithm for Motion Recognition

P(O|A, B, ) is calculated using the following equation
which is called the “Viterbi algorithm”. Let the forward prob-
ability «; () for some modelPg be defined as

(18)

aj(t) = P(o1,...,0,,x(t) = j|Pg).
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That is,«;(?) is the joint probability of observing the first A.3. Learning of Continuous Hidden Markov Models

¢t motion elements and being in stateat time¢. This for-

ward probability can be efficiently calculated by the followingtv

recursion:
a1(i) =1 (29)
N
o 11()) = [Z o (i)aij:| bj(011) (20)
i=1
aj(i) =aibj(o1) (21)
N
P(O|A,B) =) ai(T). (22)
i=1

A.2.Learningof DiscreteHidden MarkovModel Parameters

To calculate the HMM parametefs= {q;;}, B = {b;;} when
the observation sequenckis given,

a;(D)aijbj(0r+1)Br+1(j)

vili, j) = N (23)
> ar()
i=1
N
i) =Y v, j) (24)

j=1

are first defined. After this, new parameters are estimated us-

ing the following EM algorithms:

i = y1(i) (25)
T-1
> wl )
aij = (26)
PRI0!
t=1
PIR0)
l;j(k) _ t:0,=k (27)

- .
PRAQ!
=1

n the case of CHMMs, Baum—Welch algorithms are used as
ell as DHMMs.

-

>

Ljm()o;

Bojm = "5 (31)
DY Lim)
r=1r=1
R T
DD Lim0 —ppo: —py)
ﬁ:jm _ r=11t=1 — (32)
Z Z ij (t)
r=1r=1
R T
SO Lim®
e'jm _ r;l l?l (33)
DY Lim@)
r=1r=1
where
1
Li@) = maj(f)ﬁj(t) (34)
N-1
o) = { o (t — 1)aij} bj(oy) (35)
i=2
N-1
Bi(t) =Y aijbj(0i)Bj(t + 1) (36)
j=2
with the initial condition
a) =1 (37)
N-1
B =Y aijbjonp;(D). (38)
j=2

After this, a parameter update is executed using the follow-
ing equations. The inferences by egs. (25), (26), and (27) are

repeated until the value is converged:

P (28)
ajj = aj (29)
bik) = bigw- (30)
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