
Tetsunari Inamura
Iwaki Toshima
Hiroaki Tanie
Department of Mechano-Informatics
Graduate School of Information
Science and Technology
University of Tokyo, Japan

Yoshihiko Nakamura
Department of Mechano-Informatics
Graduate School of Information
Science and Technology
University of Tokyo, Japan
and
CREST program
Japan Science and Technology Agency
Japan

Embodied Symbol
Emergence Based
on Mimesis Theory

Abstract

“Mimesis” theory focused in the cognitive science field and “mirror
neurons” found in the biology field show that the behavior gener-
ation process is not independent of the behavior cognition process.
The generation and cognition processes have a close relationship
with each other. During the behavioral imitation period, a human
being does not practice simple joint coordinate transformation, but
will acknowledge the parents’ behavior. It understands the behav-
ior after abstraction as symbols, and will generate its self-behavior.
Focusing on these facts, we propose a new method which carries
out the behavior cognition and behavior generation processes at the
same time. We also propose a mathematical model based on hid-
den Markov models in order to integrate four abilities: (1) symbol
emergence; (2) behavior recognition; (3) self-behavior generation;
(4) acquiring the motion primitives. Finally, the feasibility of this
method is shown through several experiments on a humanoid robot.

KEY WORDS—imitation learning, symbol emergence, hid-
den Markov models, dynamics abstraction, mirror neurons

1. Nomenclature

N number of nodes
M number of motion elements
T length of observation sequence
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R number of motions in the database
OOO sequence of observations
ooot observation at timet
aij probability of a transition from statei to j
cjm weight of mixture componentm in statej
µµµjm

vector of means for the mixture componentm of
statej

���jm
covariance matrix for the mixture componentm of
statej

2. Introduction

Research of humanoid robots has a long history and has ac-
cumulated a substantial amount of literature. The focus of
early efforts was mostly on the dynamics and control of bi-
pedial walking motion. Although it has not yet reached the
level of a complete solution, with liability and adaptability,
the hardware technology has been established for building
autonomous humanoids (Hirai et al. 1998; Nishiwaki et al.
2000; Kuroki et al. 2001).

Recently, human behavioral science and intelligence has
become conspicuous as a real research issue of robotics. Al-
though the motivation of the artificial intelligence originated
there, the physical limitations have forced or justified re-
searchers to carry on their research in a limited scope of
complexity. It would be a major challenge of contemporary
robotics to study robotic behaviors and intelligence in the full
scale of complexity. This could then mutually share research
outcomes and hypotheses with the human behavioral science
and human intelligence.
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The discovery of mirror neurons (Gallese and Goldman
1998) has been a notable topic of brain science concerning
such issues. Mirror neurons have been found in the brains of
primates and humans, which fire when the subject observes a
specific behavior and also fire when the subject starts to act
in the same manner. It also locates on Broka’s area, which
has a close relationship with language management. This fact
suggests that the behavior recognition process and behavior
generation process are combined as the same information pro-
cessing scheme. This scheme is nothing but a core engine of
the symbol manipulation ability. Indeed, in the “mimesis the-
ory” of Donald (1991), he said that symbol manipulation and
communicative ability are founded upon behavior imitation,
which is integration of behavior recognition and generation.
We believe that a paradigm can be proposed taking advantage
of the mirror neurons, with considerations of the contention
of Deacon (1997) that language and the brain had caused each
other to evolve.

So far, many researchers have tackled with the issues be-
tween the imitation learning for humanoids and human intel-
ligence (Schaal 1999; Matari´c 2000). There are some sugges-
tions that a module structure of basic motions is needed for the
symbolization and representation of complex behavior, such
as the work by Schaal (1999). In the approach of Kuniyoshi,
Inaba, and Inoue (1994), robots can reproduce complex be-
haviors from observation of human demonstration with the
abstraction and symbolization. However, it is difficult to ap-
ply this to general recognition and reproduction processes
because of the lack of dynamics point of view, which means
the robots have to memorize the whole flow of basic behavior.
Moreover, the basic behavior modules need to be designed by
a developer. Samejima et al. (2002) have proposed an imita-
tion learning framework with symbolization modules. In this
case, a premise has been set that the sequence of symbols is
given from others by communication, thus a certain repre-
sentation model for dynamics of the whole-body motion is
needed.

In this paper, we propose a mathematical model that ab-
stracts the whole-body motions as symbols, generates motion
patterns from the symbols, and distinguishes motion patterns
based on the symbols. In other words, it is a functional realiza-
tion of the embodied symbol emergence framework, which is
inspired by the mirror neurons and the mimesis theory. There-
fore, we call the framework the “mimesis model”.The purpose
of the research is to propose a methodology of mathematical
design for the mimesis mode.

One as an observer would view a motion pattern of the
other as the performer; the observer acquires a symbol of the
motion pattern. He recognizes similar motion patterns and
even generates it by himself. The observer would then need
to modify it from the performer’s motion to the observer’s
one, according to his own body condition. The model is de-
veloped using hidden Markov models (HMMs). One issue is
to identify appropriate motion primitives that enable both mo-

tion recognition and generation. This problem is to be solved
using continuous HMMs (CHMMs). The second issue is how
to generate the motion patterns as a time-series of the motion
primitives, which is to be solved adopting discrete HMMs
(DHMMs). The acquired models are to be modified accord-
ing to the observer’s body. This is the third issue and is to be
discussed as a problem of database managements for HMMs.

First, we introduce the mathematical model of mimesis in
Section 2. In Section 3, computational methods for symbol
emergence, motion recognition and generation are explained.
In Section 4, we discuss how to develop and design the motion
primitive representation. The conclusion follows experimen-
tal results in Section 5.

3. Mimesis Model Recognizing Others’ Motion
and Generating Self-Motion

In this section, we explain the outline of mimesis models by
showing the difference between usual imitation models.

In an imitation learning framework MOSAIC, which has
been proposed by Samejima et al. (2002) and Samejima,
Doya, and Kawato (2003), plural dynamics and inverse dy-
namics modules for the prediction and control of motion are
implemented in order to imitate the motion of others. This
framework is based on bi-directional theory suggested by
Miyamoto and Kawato (1998). Both aim to imitate human
behavior and symbolize the motion patterns as motion primi-
tives. One of disadvantages of these methods is that the motion
of others is always needed as a reference pattern, because it
has no ability of description for dynamics of time-series mo-
tion primitives. On the contrary, we aim not only to imitate the
motion of others but also to abstract the time-series motion
patterns as symbol representation. This causes a situation in
which no reference motion pattern is needed, i.e., more flex-
ible for symbol emergence from behavior imitation.

Here, we propose an imitation framework which abstracts
the dynamics of the motion as symbol representations, recog-
nizes the motions of others, and generates self-motions from
the symbol representations. The realization of the framework
leads to the implementation of the mirror neuron from an en-
gineering point of view.

3.1. Mimesis Model Based on Hidden Markov Models

The mimesis model consists of three parts, the perception part,
the generation part, and the learning part, as shown in Figure 1.
In the perception part, observed motion patterns are analyzed
into basic motion primitives, and the dynamics in the sequence
of the elements is abstracted as symbol representations.

In the generation part, a sequence of motion elements
is decoded from a proto-symbol. However, the generated
motion patterns would be inappropriate for real humanoids.
For this issue, we introduce the learning part where motion



Inamura et al. / Embodied Symbol Emergence 365

Observation

Proto-symbols

Communication
Concept Formation

Angular data level

Behavior of 
Humanoids  and  Human

Embodiement

Evaluation

G
 e

 n
 e

 r 
a 

t i
 o

 n P e r c e p t i o n

Database

Motion Elements

HMM

L e a r n i n g

Motion sequence level

Ps

BD

BC

D

Fig. 1. An outline of the proposed mimesis model.

elements are modified based on a database consist of per-
former’s motions and observer’s motions.

The characteristic needed by the mimesis model is to inte-
grate three functions: motion recognition, motion generation
and symbol emergence of motions. We focused on HMMs as
the mathematical backbone for such integration. The HMM
is a stochastic process that takes time-series data as an input,
then outputs a probability that the data are generated by the
model. The HMM is one of most famous tools as a recognition
method for time-series data, especially in speech recognition.
HMMs are divided into two types: DHMMs and CHMMs.
The former treats sequences of discrete labels, and the latter
treats sequences of continuous multi-dimensional vectors. In
this subsection, we introduce the DHMM for the first step. The
HMM consists of a finite set of statesQQQ = {q1, . . . , qN }, a
finite set of output labelSSS = {o1, . . . , oM}, a state transition
probability matrixAAA = {aij }, an output probability matrix
BBB = {bij }, and an initial distribution vectorπππ = {πi}, that
is {QQQ,SSS,AAA,BBB,πππ}. In this framework, state transition is per-
formed probabilistically and some labelsoooi are output during
the transition, as shown in Figure 2.

3.2. Motion Elements

In order to connect discrete symbol representations and time-
series motion data, a motion element is introduced. A motion
element corresponds to a point in a phase space which consists
of joint angle of humanoids, velocity, acceleration, and so on
as follows:

q1 q
2

q
N

q
3

qN-1

o1

a11 aN-1N-1a22 a33

a12 a23 aN-1 N

a13 aN-2 N

o2 o3 o4 oM

b11 b12 b33
b34b23 bN-1 M

Fig. 2. A simple left-to-right type HMM.

uuu
def= µµµ. (1)

More generally, adopting the displacement and velocity of
the base link and hands, and various sensory information, is
effective for recognizing and generating more complex be-
havior. In this paper, we do not determine the type of physical
quantity or concrete target behavior. We take the stance that a
developer determines the task and physical quantity according
to need.

A time-series motion pattern

OOO = [oook1oook2 . . . oookT
] (2)

ki ∈ {1, 2, . . . , M} (3)

indicates motion of others and self-motion at the same time
in the HMM, by correspondence of theM pieces of motion
element (uuu1, . . . ,uuuM ) to output labelo as follows:

oooi = uuui, (4)

whereOOO indicates a row vector which consists of a sequence
of motion elementsooo. Theith element from the left indicates
the motion element at theith discrete time. The question of
what type of physical quantity is effective for the model is
affected by the characteristic of target behavior. In this pa-
per, we have adopted simple joint angle space as the motion
element for the first step, and we propose motion recognition,
generation and abstract method independent of the type of
physical quantity.

3.3. HMMs as a Proto-Symbol

Definition by eq. (4) is nothing but a connection between a
label (or an index) and feature vector for a certain moment.
To represent the dynamics of feature vector sequence, certain
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Fig. 3. Motion elements and HMMs.

representation methods are needed. Symbols may be defined
in a narrow sense as ones with embodied meaning and their
mutual distances. We propose to consider the acquired HMMs
as symbols.Although, in the scope of this paper, they have em-
bodied meanings, their mutual distances have not yet been in-
troduced. We plan to discuss this in future work. In this sense,
it would be appropriate to call the HMMs proto-symbols.

We shall concentrate on the HMM parameters. As left-to-
right type HMMs as shown in Figure 2 are used in the mime-
sis model, the initial distribution vectorπππ has a fixed value of
(1, 0, . . . , 0). A set of statesQQQ and a set of output labelsSSS
have no direct relationship between output time-series data.
The state transitions probability matrixAAA and the output prob-
ability matrixBBB can be regarded as an abstraction parameter
of probabilistic dynamics of the HMM.

Thus, we define the proto-symbols as follows:

P�
def= {AAA,BBB}. (5)

The HMM is a stochastic mathematical framework for se-
quential data. It is furnished with well-established algorithms
of computation. The acquisition, recognition, and generation
of motion patterns are to be efficiently computed using the
algorithms. It is also known that HMMs are successfully used
in speech recognition.

An alternative to HMMs for such computation is the use
of recurrent neural networks (RNNs). RNNs also memorize
dynamics of patterns (Morita 1996; Morita and Murakami
1997; Tani 2001; Inamura, Nakamura, and Simozaki 2002).
The authors tested the use of RNNs for motion recognition
and generation (Inamura, Nakamura, and Simozaki 2002).
According to the result of Inamura, Nakamura, and Simozaki

(2002), more than 500 nodes and more than 200,000 weight
parameters between each node are needed in order to integrate
the memorization and generation process on the same RNN.
The RNN consists of motion element neurons, symbol repre-
sentation neurons and buffer neurons for treating time-series
data. The required number of weights increases in propor-
tion to the square of the number of all nodes. In contrast, the
number of parameters used in HMMs is proportional to the
product of the number of nodes and motion elements. To give
a concrete example, a HMM consists of 25 nodes and 80 mo-
tion elements and requires about 2500 parameters, in order
to recognize and generate the motion. Therefore, the draw-
back of RNNs is in the low efficiency of computation; RNNs
would use a large set of parameters to memorize a few motion
patterns. The parameters would require a large computation
to be adjusted.

4. Motion Abstraction, Recognition and
Generation using HMMs

4.1. Creating Proto-Symbols Through Observation

Motion abstraction, i.e., proto-symbol generation, consists of
two phases. In the first phase, observed motions are transferred
into the sequence of the motion elements by a segmentation
process. In the second phase, dynamics existing in the motion
elements sequence is abstracted, and represented as proto-
symbols.

In order to transform the observed motion pattern���(t)

into a sequence of motion elementsOOO = [oook1oook2 . . . oookT
], θθθ

for each short time period is sampled, then we calculate

j = arg max
i

exp
{−(1/2)(θθθ − µµµi)

T���−1
i (θθθ − µµµi)

}
√

(2π)D det���i

. (6)

The meaning of the above equation is lettingj be i which
causes the maximum value of the right side.D is the number
of dimensions of the motion elements, det indicates the deter-
minant of a matrix, and the superscript “T” indicates the trans-
pose of a matrix. The right-hand side represents a Gaussian
distribution function with a covariance matrix��� and a mean
vectorµµµ. The calculation contributes to selecting a suitable
motion elementuuuj which locates near to the sampled motion
xxx in the phase space. Letuuuj be a motion element for each short
time period.[uuuk1uuuk2 . . .uuukT

], namely a sequence of motion el-
ements, is output by a repetition of the above calculation for
all short time periods.

After this, a parameter of a HMM ({AAA,BBB}), which outputs
the sequential elements plausibly, is calculated and registered
as a proto-symbolP�. Humanoids gather several motion pat-
terns as a stock of observed data for the learning. When an
unknown motion is input, the robot creates a new HMM.
AAA andBBB can be calculated by the Baum–Welch algorithm,
which is one of the Expectation Maximization (EM) algo-
rithms (Young et al. 2000).
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4.2. Motion Recognition Using Proto-Symbols

To recognize motion of others, observed motions are
transformed into a sequence of motion elementsOOO =
[ooo1,ooo2, . . . , ooot ], and a parameterP(OOO|P�) is calculated.This
parameter indicates a probability that a motion patternOOO is
generated by a proto-symbolP�. This value is called a likeli-
hood, calculated by the forward algorithm (Young et al. 2000).

Each proto-symbol corresponds to each motion, thus likeli-
hood values of the input motion against each proto-symbol are
calculated. A proto-symbol that corresponds to an input pat-
tern should indicate high likelihood, and other proto-symbols
ought to indicate low likelihood. In order to distinguish these
likelihoods, the following criterion is introduced

R(OOO) = log
max{P(OOO|P�i

)}
second{P(OOO|P�i

)} , (7)

where second(xxx) denotes the second highest value in the com-
ponents ofxxx. The mimesis model recognizes the input motion
without any confusion whenR indicates a high value. In this
case, the recognition result becomesP�j

, where

j = arg max
i

{P(OOO|P�i
)}. (8)

WhenR indicates a low value, the recognition fails and the
mimesis model tries to shift to the proto-symbol creation
phase.

4.3. Motion Generation Using Proto-Symbols

Basically, original patterns are decoded using the expectation
operator in the stochastic model; however, applying the ex-
pectation operator is difficult in the HMM. The HMM has a
two-stage stochastic process: state transition and label out-
put. Applying the expectation operator is simple for the latter
process, but difficult for the former process. The results of
the recurrent state transition would not fit on the same dimen-
sional phase space. For example, the length of a state sequence
changes every trial. This means that integration of the prob-
ability values could not execute holomorphically. Therefore,
we adopt the averaging method over repetition of motion gen-
eration. The detailed order of the generation is as follows.

1. Initialization. Let the starting node beq1, let the node
token bei = 1, and let the motion elements sequence
beOOO = φ.

2. Deciding the transition destination nodeqj using tran-
sition matrixAAA stochastically.

3. Deciding the output labeloookt during the transition from
nodeqi to qj stochastically using output matrixBBB.

4. Adding the output labeloookt to the motion elements
sequenceOOO. OOO := [OOO oookt ].

5. Let the generation process be stopped when the token
reaches the end nodeqN , or returns to step 2 letting
i := j, t := t + 1.

6. Finally, the sequential motion elements are transformed
into continuous joint angle representations.

The output motions using the above operations are not the
same, but have different time lengths and orders of motion
elements, because the output operations are stochastic. How-
ever, it is possible to generate an approximate motion pattern
because the parametersAAA andBBB represent the abstraction of
dynamics in the motion pattern. Therefore, the above opera-
tions are repeated, and plural generated motions are averaged.
As the time lengths of each generated motion are different, we
make the time length uniform using

θ ′(t) = θ
(
T

t

Tu

)
(9)

whereT is the time length of each motion, andTu is the time
length of the uniformed motion. After this, each joint angle is
averaged.

Several researches have already proposed motion recogni-
tion methods based on the HMM (Yamato, Ohya, and Ishii
1992; Pook and Ballard 1993; Wada and Matsuyama 1998;
Yoshiike et al. 1998; Ogawara et al. 2002), however, no re-
search exists in which motion is generated from the HMM.
Kobayashi et al. (1996) and Imai, Tokuda, and Kobayashi
(1995) have proposed a speech parameter generation method
using the HMM; however, the generation process is not the
opposite direction of the speech recognition process. The
most important characteristic of our method is that the motion
recognition and motion generation process are integrated by
only a single HMM.

5. Development of Motion Elements
Through Repetition of Motion
Observation and Generation

The performance of motion recognition and generation is
influenced by the characteristic of motion elements. If the
number of elements were too few, the generation would fail.
If the motion elements had no relationship between the ob-
served motions, the recognition process would fail. There-
fore, we have adopted an approach that the system searches
the best motion elements with an evaluation criterion whether
the generated motion would be fit for the body and the recog-
nition would be succeeded against familiar motion. Using the
method, the humanoid can acquire adequate motion elements
through repetition of motion perception and generation.
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Fig. 4. A continuous hidden Markov model.

5.1. Introduction of Continuous Hidden Markov Models and
Application to Mimesis Model

In this phase, we introduce CHMMs (Young et al. 2000),
which can treat continuous multi-dimensional data. The dif-
ference between normal DHMMs and CHMMs is that the
transition process outputs continuous multi-dimensional vec-
tors, different from the DHMMs in which the discrete labels
are output, as shown in Figure 4. In the CHMMs, the output
probability matrixBBB becomes a probability density function.
Here, the density function is approximated with linear com-
bination of Gaussian functions as follows

Pi(ooo) =
m∑

j=1

cijNij (ooo;���,µµµ), (10)

wherePi(ooo) is the probability density function for the output
of continuous vectorooo at theith state node,m is the number of
mixture Gaussian functions, andcij is the mixture coefficient.
N(ooo;���,µµµ) is the Gaussian function

Nij (ooo;���,µµµ)

= exp
{
− 1

2 (θθθ−µµµij )T���−1
i (θθθ−µµµij )

}
√

(2π)D det���ij

(11)

where��� is the covariance matrix,µµµ is the mean vector, and
D is the number of dimensions of the continuous vectorooo.

The characteristics of the CHMMs are decided by the pa-
rameters{πππ,AAA,ccc,���,µµµ}. These parameters are calculated us-
ing the Baum–Welch algorithm.

Here, each mean vector of the Gaussian function is re-
garded as an important representation of the observed motion.
Therefore, we divide the parameters of CHMMs, and redefine
the motion elementseee as follows:

uuui
def= {���i,µµµi}. (12)

In other words, the number of motion elements is as many as
the number of mixture Gaussian components. An important
issue is that the motion elements are automatically calculated
by the Baum–Welch algorithm, as mentioned in Section 4.1.

Motion elements could be regarded as the filter between
continuous motion representation and discrete motion repre-
sentation.When continuous motion is transferred into discrete
motion,eeei , wherei = arg maxj Nj (ooo), is adopted as a typical
motion element for each time period. When discrete motion
is transferred into continuous motion, the sequence ofµµµi is
used directly.

To sum up, the mimesis system have the following advan-
tages with CHMMs.

• Motion elements are able to express the whole-body
motion, therefore various motion patterns are available
easily.

• The parameters of motion elements are automatically
calculated.

5.2. Hybrid Hidden Markov Model

Although many advantages are available, CHMMs have a
disadvantage that huge computational quantity is needed. It
should take much time for motion generation and recogni-
tion. Therefore, we propose a hybrid HMM, which consists
of CHMMs and DHMMs as shown in Figure 5.

In the motion recognition and generation phase, DHMMs
are used in which the computational quantity is small. In the
motion element acquisition phase, CHMMs are used in which
the computational quantity is large.

5.3. Closing the Mimesis Loop for Embodiment

The parameters which decide the characteristics of HMMs
and motion elements are acquired using the Baum–Welch al-
gorithm (Young et al. 2000) which is a type of EM algorithm.
This algorithm can be expressed by the following equations

D = {OOO1,OOO2, . . . ,OOOl} (13)

{AAA,BBB} := BD(D) (14)

{µµµ,���} := BC(D), (15)

whereBD, BC are operations using the Baum–Welch algo-
rithm, andD is a database consisting ofl observations. The
initial databaseD0 consists of only the observed motions of
others; that is, motion elements and proto-symbols which have
no relationship between the learner’s physical characteristic
are acquired by the above operations. Therefore, let the proto-
symbols and motion elements be acquired with database ma-
nipulation during repetitions of motion recognition and gen-
eration as follows.
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1. Generating a motionOOO from a proto-symbolP� and
motion elements.

2. Judging whether the generated motionOOO is suitable or
not.

3. Adding the motion to the database when the judged
result is good:Dt+1 := Dt ∪ OOO.

4. Acquiring the proto-symbols and motion elements us-
ing the above eqs. (14) and (15), and return to step 1.

For evaluation at step 2, two evaluation criteria were intro-
duced: an inner evaluation for checking the characteristic of
the proto-symbol, and an outside evaluation for checking the
aim and meaning of the motion from the point of view of the
teacher. For the outside evaluation, we prepared the following
criterion

Eθ = 1

T

T∫
0

|θθθin(t) − θθθout (t)| dt, (16)

whereθθθin(t) andθθθout (t) indicate the joint angles of an ob-
served ideal motion and a generated motion, respectively. For
the inner evaluation, the recognition rateR(OOO) explained in
Section 4.2 is used.

Considering the above two criteria, the following inte-
grated criterion is used for the experiment

V = αEθ + βR−1(OOO), (17)

whereα andβ are certain constants. When the valueV is
larger than a certain threshold, the mimesis model judges that
the ith motion data are suitable for the recognition process,
it adds the motion data into the database, and calculates the
motion elements again. These constants and the threshold are
adjusted according to each experiment case.

At step 3, it is desirable that the generated self-motion and
observed motions of others are distinguished. As the motion

Fig. 6. The humanoid HOAP-1.

elements are used for both motion recognition and generation,
a simple distinction leads to a deterioration of the process.
Thus, a distinction strategy has been introduced that gener-
ated self-motions are stored in the database vividly, and the
observed motions of others are stored dimly. Because of the
distinction method, the influence of the initial motion of oth-
ers would be decreases, and the database would be gradually
under the control of generated self-motions. Actually, vivid
motions are stored with little variance and dim motions are
stored with large variance. In the learning phase, the num-
ber of motion samples in the database is controlled using the
variance value.

6. Experiments of Motion Element Acquisition

The humanoid used in the experiments is shown in Figure 6.
The humanoid has four degrees of freedom at each arm, six
degrees of freedom at each leg, namely 20 degrees of freedom
for the whole body.We have confirmed the performance of our
method by experiments where the mimesis model observes
human motion and generates motions for a real humanoid.
Using the Behavior Capturing System (Kurihara et al. 2002),
joint angle data for 20 degrees of freedom are directly ob-
served because the degrees of freedom of the humanoid are
20.The time period of each motion is about 2 s with a sampling
time of 20 ms.

6.1. Experiments of Motion Generation

The humanoid used in this experiment has 20 degrees of free-
dom. We investigated the basic performance for squat behav-
iors. In the squat behavior, characteristic motion collected
around the lower body. Therefore, we adopted a simple mo-
tion element which consists of three joint angles: hip (pitch
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Fig. 8. A notion pattern using only one time generation.

axis), knee and ankle (pitch axis). In this subsection, we report
on several experiments performed using the simple motion
element.

Figure 8 shows the output motion pattern by one time out-
put operation. Compared with an original motion pattern used
in the learning (Figure 7), an approximate pattern is generated
but the noise increases drastically. The cause of the noise is
that the discrete motion elements are selected at each moment
stochastically, thus the roughness and the discontinuity stood
out.

Figure 9 shows the output motion pattern after 1000 times
operation, as explained in Section 4.3. A CG animation using
the pattern is shown in Figure 14. Compared with the motion
pattern by one time operation (Figure 8), the joint angle be-
came smoothed. There were some joint angle errors between
the original patterns. We think that the cause of the error is
the influence of coarse discrete motion elements.

The computational time for the generation process was
about 1 s using a Pentium-III 1 GHz processor. The time is
enough fast as the off-line pattern generator for humanoids.
For this sort of problem, Okada, Tatani, and Nakamura (2002)
have proposed a compression method in which a motion pat-
tern of humanoids that have over 20 degrees of freedom is
transferred into a three-dimensional vector. We think that re-
duction of the computational cost can be performed by adopt-
ing this method.

6.2. Experiments of Motion Recognition

For the motion recognition experiments, seven behaviors are
prepared, as shown in Figure 10: (a) tennis swing (swing);
(b) walking (walk); (c) Cossack dancing (dance); (d) kick-
ing (kick); (e) backward walking (back); (f) crawling (crawl).
The behaviors of (a)–(e) were treated as already-known mo-
tions, and the behavior (g) was treated as an unknown motion.
Table 1 shows the recognition results.

The values in the table indicate the logarithm of likelihood
P(OOO|AAA,BBB). Proto-symbols arranged lengthways indicate the
target of the recognition, and behavior names arranged side-
ways indicate the proto-symbols already learnt. The value
indicates larger, the target motion matches better with the
proto-symbol. The value of a certain target motion against
a proto-symbol which corresponds to the motion indicates
high, i.e., located on a diagonal line. The values of unfamiliar
motion (unknown) against each proto-symbol are almost the
same. Thus, we see that the recognition process would suc-
ceed without mistake, when the recognition rateR is set to
about 1000 empirically.

6.3. Experiments of Motion Element Acquisition

For this experiment, four types of motion were recorded:
walking, squating, picking up, and Cossack dancing. As in
Section 6.1, there are three dimensions of the motion ele-
ments: hip joint (pitch), knee and ankle joint (pitch).
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Fig. 9. A motion pattern using 1000 times generation.

Table 1. Recognition Results of the Motion of Others Using HMMs

Proto-symbols

Input Backward
Behavior Swinging Walking Dancing Kicking Walking Crawling R

Swing −430 −3915 −4077 −3940 −4114 −4007 3485
Walking −3048 −225 −3071 −1646 −3099 −3019 1420
Dance −1656 −1603 −144 −1613 −1683 −1577 1433

Kicking −2543 −1574 −2562 −199 −2585 −2519 1374
Backward
walking

−2395 −2318 −2413 −2332 −202 −2372 2117

Crawling −4083 −3950 −3815 −3976 −4151 −488 3327
Unknown
behavior

−1915 −1853 −1928 −1865 −1946 −1896 11

After the 50 observations, the motion generation process is
executed 50 times, and appropriate motions are added into the
database. Figure 11 shows the acquired motion elements. Dots
indicate the motion element, and the solid lines indicate the
original motion’s trajectory. As the figure shows, the motion
elements are located near the original motion; that is, our
method shows good performance.

6.4. Experiments of Motion Element Development Based on
Embodiment

Here, we set up a situation where the joint angle limitation of
the humanoid’s knee is about 40 deg, less than the human one.
We investigated whether motion elements for the humanoid
are acquired by observations of human motions under such a
condition. In the experiment, an 80 times loop is repeated as
explained in Section 5.3.

Figure 12 shows the original motion which is performed by
a human. Figure 15 shows the acquired motion elements from
the performance when the joint angle limitation does not exist.
A result with the limitation condition is shown in Figure 16. In
these figures, three axes indicate hip joint (pitch), knee joint
and ankle joint (pitch), as in Section 6.1. The curved line in
the figures corresponds to the motion trajectory. The dots in-

dicate acquired motion elements. As Figure 15 indicates, the
motion elements are located near the original motion trajec-
tory. Compared with Figure 15, motion elements are gathered
not only on the A area, but also on the B area in Figure 16.
These motion elements located on the B area are acquired by
the generated self-motions in the database, which fits for the
humanoid embodiment. This result shows that both motion el-
ements are acquired: elements for the recognition of motions
of others (A area) and those for the generation of self-motion
(B area).

6.5. Designing Hidden Markov Models

Here, we concentrate on the rest parameter, namely the struc-
ture of HMMs. As the HMMs adopted in this paper are left-
to-right type, the rest parameter is the number of nodes. It
is possible to use the evaluation criterion explained in Sec-
tion 5.3 for investigating the number of nodes, during the
repetition of motion recognition and generation.

A tennis swing is selected for the experiment. The error
valueEθ is measured by changing the number of nodes from
10 to 40. The result is shown in Figure 18. As the diagram
indicates, the error value decreases hardly where the number
of nodes shifts from 24 to 25. Figure 17 shows the generated
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

Fig. 10. Target behaviors: (a) tennis swing; (b) walking; (c) Cossack dance; (d) kicking; (e) backward walking; (f) crawling;
(g) unknown behavior.
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Fig. 11. A result of motion element acquisition against four types of motion.

Fig. 12. Motion capture system: step motion for learning data.

motion pattern for four conditions; the number of nodes is 20,
24, 25, and 40, respectively. The diagram focuses on the right
shoulder’s yaw joint. Solid lines indicate generated motion
pattern, and dashed lines indicate the original motion pattern.
The diagram supports the result that the desirable number of
nodes is above 25.

7. Conclusions

In this paper, we have proposed a framework called
the “mimesis model”, which integrates motion recogni-
tion/generation and symbolization of motion patterns based
on mimesis theory. In our mimesis model, proto-symbols and
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Fig. 13. Original motion for proto-symbol creation.

Fig. 14. Generated motion from proto-symbol.
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Fig. 15. Acquired motion elements without loop structure.

motion elements are introduced with HMMs in order to inte-
grate the following three abilities using only one mathematical
model: (1) abstraction of motion patterns and symbol rep-
resentation; (2) generation of self-motions from the symbol
representation; (3) recognition of motions of others using the
symbol representation. Through experiences, the feasibility
of the mimesis model is clarified. Furthermore, we proposed
an approach in which the development of motion elements is
a result of the management of the motion database. We inves-
tigated the effectiveness through an experiment in which the
learner’s physical body condition is different from that of the
teacher.

The mimesis model is not a simple method for motion
recognition, generation, and abstraction. The recognition pro-
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Fig. 16. Acquired embodied self-motion elements using loop
structure.

cess, which transfers an observed motion of others into proto-
symbol representation, and the generation process, which
transfers a proto-symbol representation into self-motions, are
implemented as opposite direction functions by only one
mathematical model. The most important characteristic, in-
tegration between imitation learning and symbol emergence,
is established by defining the bidirectional computation model
as proto-symbols.

At the current stage, the proposed model can be applied
to simple motion patterns; however, the application of the
method to complex behavior is difficult, because considera-
tion of the external environment is needed, such as tracking
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an object by eye, throwing a ball, and so on. It is desirable that
some abstracted behavior units are designed, and HMMs are
applied to such behavior units. For this issue, we plan to con-
struct hierarchical HMMs to be applied from simple motion
level to complex behavior level.

We think this result is the first step to connect language
development process to the motion acquisition process us-
ing the mimesis model; for instance, humanoids try to make
communications with others, and build a relationship repre-
sentation between proto-symbols and linguistic symbols. For
such a direction, we try to define the distance between each
HMM and to establish a computational method in order for
the proto-symbols to evolve into general symbols. We believe
that this approach leads the building of an intelligent system
which connects humanoid intelligence and behavior science.

Appendix

A.1. Viterbi Algorithm for Motion Recognition

P(OOO|AAA,BBB,πππ) is calculated using the following equation
which is called the “Viterbi algorithm”. Let the forward prob-
ability αj (t) for some modelP� be defined as

αj (t) = P(ooo1, . . . , ooot , x(t) = j |P�). (18)



376 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / April–May 2004

That is,αj (t) is the joint probability of observing the first
t motion elements and being in statej at time t . This for-
ward probability can be efficiently calculated by the following
recursion:

α1(i) = 1 (19)

αt+1(j) =
[

N∑
i=1

αt (i)aij

]
bj (ooot+1) (20)

αj (i) = a1bj (ooo1) (21)

P(OOO|AAA,BBB) =
N∑

i=1

αi(T ). (22)

A.2. Learning of Discrete Hidden Markov Model Parameters

To calculate the HMM parametersAAA = {aij },BBB = {bij } when
the observation sequenceOOO is given,

γt (i, j) = αt (i)aij bj (ot+1)βt+1(j)

N∑
i=1

αT (i)

(23)

γt (i) =
N∑

j=1

γt (i, j) (24)

are first defined. After this, new parameters are estimated us-
ing the following EM algorithms:

π̂i = γ1(i) (25)

âij =

T −1∑
t=1

γt (i, j)

T −1∑
t=1

γt (i)

(26)

b̂i(k) =

∑
t :ot=k

γt (i)

T∑
t=1

γt (i)

. (27)

After this, a parameter update is executed using the follow-
ing equations. The inferences by eqs. (25), (26), and (27) are
repeated until the value is converged:

π = π̂ (28)

aij = âij (29)

bi(k) = b̂i(k). (30)

The above processes are called Baum–Welch algorithms.

A.3. Learning of Continuous Hidden Markov Models

In the case of CHMMs, Baum–Welch algorithms are used as
well as DHMMs.

µ̂µµjm =

R∑
r=1

T∑
t=1

Ljm(t)ooot

R∑
r=1

T∑
t=1

Ljm(t)

(31)

�̂��jm =

R∑
r=1

T∑
t=1

Ljm(t)(ooot − µµµj )(ooot − µµµj )
′

R∑
r=1

T∑
t=1

Ljm(t)

(32)

ĉccjm =

R∑
r=1

T∑
t=1

Ljm(t)

R∑
r=1

T∑
t=1

Ljm(t)

(33)

where

Lj (t) = 1

P(OOO|AAA,BBB)
αj (t)βj (t) (34)

αj (t) =
{

N−1∑
i=2

αi(t − 1)aij

}
bj (ooot ) (35)

βi(t) =
N−1∑
j=2

aij bj (ooot+1)βj (t + 1) (36)

with the initial condition

α(1) = 1 (37)

β(1) =
N−1∑
j=2

a1j bj (ooo1)βj (1). (38)
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