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Global Asymptotic Stabilization for 
Controllable Systems without Drift* 

Jean-Miche l  C o r o n t  

Abstract. This paper proves that the accessibility rank condition on R"\{0} is 
sufficient to guarantee the existence of a global smooth time-varying (but periodic) 
feedback stabilizer, for systems without drift. This implies a general result on the 
smooth stabilization of nonholonomic mechanical systems, which are generically 
not smoothly stabilizable using time-invariant feedback. 
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1. Introduction 

Let  f = { f l , . . . ,  f, ,} be m _> 2 vector  fields of  class C ~ on R". We cons ider  the 

con t ro l  system 

x: ~ = ~ uJ~(x). 
i=1  

Let L i e ( f )  be the Lie a lgebra  of vector  fields genera ted  by f .  T h r o u g h o u t  the pape r  

we assume 

L i e ( f ) ( x )  := {h(x); h ~ L i e ( f ) }  = ~" for all x ~ ~n\{0}. (1.1) 

O u r  m a i n  goal  is to prove  

Theorem 1.1. For any positive T there exists a feedback law u = (u 1 . . . . .  Urn) in 
C~ n x ~; ~m) such that: 

u(O, t) = 0 for all t in ~; (1.2) 

u(x, t + T) = u(x, t) for all x in R" and t in R; (1.3) 

the origin (of ~") is a globally asymptotically stable point of  

Yc = ~ ui(x, t)fi(x). (1.4) 
i=1  
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Remark 1.2. (a) It follows from Chow's theorem that (1.1) implies,--and is, in fact, 
equivalent iff~ is analytic for all i in [1, m]- - tha t  E is completely controllable on 

(b) Brockett proved in [B] that condition (1.1), even with ~" instead of R"\{0}, 
does not imply that E can be locally asymptotically stabilized by means of a 
continuous feedback law independent of t, u = u(x). For example, the following 
control system in ~3 

Xl  = Ul,  X2 = U2' X3 = XlU2 - -  X2/~/l' (1.5) 

satisfies (1.1)--even with R a instead of •a\ {0}--but it is proved in [B] that system 
(1.5) cannot be locally asymptotically stabilized by a continuous u = u(x). Previous 
to our work, Samson proved in IS 1] that system (1.5) can be globally asymptotically 
stabilized with a periodic time-varying feedback law. This was the starting point of 
our study of asymptotic stabilization of systems E by means of time-varying feed- 
back laws. Recently, Sepulchre generalized, with different methods, Samson's exam- 
ple. He proved in [$2] that ifm = n - 1, rank{(fi(0)); 1 < i < n - 1} = n - 1, and 
Lie(f)(0) = ~", then system ~ can be locally asymptotically stabilized by means of 
a periodic time-varying feedback law (which is given explicitly). Finally, we mention 
that recently Pomet [P] gave an interesting proof of Theorem 1.1 when the following 
property holds: 

Span{ad~,fj(x); 0 _< i, 1 < j < m} = ~". (1.6) 

Pomet also uses our idea to start with a "good" T-periodic time-varying feedback 
law ~. By "good" we mean (see Section 2) that i fdx/dt  = ~(x, t)f(x), then x(0) = x(T) 
and that the linearized control system along 2 = ~(x, t)f(x) with x(0) # 0 is con- 
trollable on [0, T]. But he introduces a new method to compute a stabilizing 
feedback law u from this ~. His method, based on the classical Jurdjevic-Quinn 
approach (see, e.g., [$5, exercise (4.8.1)]), has the advantage of giving u from 
by means of easier computations than those we propose here and it provides a 
Lyapunov function (which is useful, see Section 6). The existence of a "good" ~, 
which is trivial if (1.6) is satisfied, is the main step of our proof. Moreover, 
a "good" ~ allows the use of the method due to Pomet even if (1.6) is not satisfied 
(see [CP]). 

(c) The interest in time-varying feedback laws for global asymptotic stabilization 
of (one-dimensional) systems with drift had already been noted in 1980 by Sontag 
and Sussmann [SS]. Notice that it follows from the proof of [SS, (3.5)] that, with 
the notations of [SS], if ~r(0) = g~\{0}, then, for any positive T, the stabilizing 
time-varying feedback law K can be chosen T-periodic in t; this was not shown in 
that paper, but it can be seen by moving, if necessary, bj close to aj+l in such a way 
that t 2 ff {T/k; k ~ N}. 

(d) Many results on continuous feedback stabilization have been obtained re- 
cently. Let us just mention two surveys by Sontag on this problem [$4], [$5, Section 
4.8], and the references therein. 

As a consequence of Theorem 1.1, and of a method introduced by Tsinias in I-T], 
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we will also obtain the conclusion that the system 

= 

~: i=1 

y V, 

can be globally asymptotically stabilized with a time-varying feedback law. More 
precisely, we will prove in Section 6 the following result. 

Corollary 1.3. 
C~ • E" • ~; E") such that: 

v(0, 0, t) = 0 for  all t in ~; (1.7) 

v(x, y, t + T) = v(x, y, t) for  all (x, y, t) in E" • E" • E; (1.8) 

the origin of  ~" x Em is a globally asymptotically stable point o f  

2 = ~ yJi(x) ,  ~ = v(x, y, t). (1.9) 
i=1 

For any positive T, there exists a feedback law v = (vl . . . . .  v,,) in 

Remark 1.4. (a) In [CAB] Campion, d'Andr6a-Novel, and Bastin have shown 
that, under some natural physical assumptions, and after a partial feedback lin- 
earization, the dynamics of nonholonomic mechanical systems can be reduced to 
the form '~. 

(b) An explicit time-varying asymptotically stabilizing feedback law was previ- 
ously given in [CA] for the special case of the system 

21 = Yl cos x3, 22 = Yl sin x3, 23 = Y 2 ,  3)1 = Vl and ~92 = vz. 

These equations describe, e.g., the motion of a unicycle or car in the plane, where 
the controls vl and v2 are, respectively, the forward acceleration and the angular 
acceleration (torque) of the steering wheel. 

2. The Strategy of the Proof of Theorem 1.1 

Let v ~ C~(R" x E; W") be T-periodic in t, i.e., 

V(Xo, t + T) = v(x o, t) for all (x o, t) in ~" x ~. 

We assume that v satisfies the following oddness property: 

V(Xo, T - t) = -V(Xo,  t). for all (Xo, t) in ~" x N, 

and that 
v(0, t) = 0 for all t in ~. 

Assume that ~: ~" x ~ ~ R" is a solution of 

- ~ vi(xo, t)~(2) = V(Xo, Of(x)  
t?t i=1 

(2.1) 

(2.2) 

(2.3) 

(2.4) 
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and 
~(Xo, 0) = Xo for all Xo in N". (2.5) 

It follows from (2.2) and (2.4) that  t ~ Y(Xo, T -  t) is also a solution of (2.4); this 
solution is equal to ~(Xo, t) for t = T/2 and therefore for all t in R; in part icular  (by 
taking t = 0 and by (2.5)), 

g(Xo, T) = Xo. (2.6) 

Moreover ,  if v is "small enough," then Xo can be smoothly  expressed in terms of 
~(xo, t) and t for all t in [0, T]  (see Lemma 3.2). Therefore (2.4) can be written in 
the following form: 

02 
& - ~ ( 2 ,  t)f(~), ( 2 . 7 )  

where ~ e C~(~" • ~; ~m) and is T-periodic (see (2.6)). The  t ime-varying feedback 
control  law ~ does not  make  the origin an asymptotical ly stable equilibrium; indeed, 
all the trajectories of 2 = ~(x, t)f(x) are T-periodic (see 2.6). The idea is to try to 
introduce some dissipation by slightly perturbing v: v ~ = v + ew. We will see that ifv 
and w are appropria te ly  chosen (v = 0 is not  enough) then the t ime-varying feedback 
law u ~, which is associated with v ~ in the same manner  as ~ is associated with v, 
makes, if e is small enough but  positive, the origin a globally asymptotically stable 
equilibrium. The proof  will rely on an analysis of the linearized equat ion associated 
with (2.4). Precisely, let 2~ = ~ + ey + O(e 2) be the solution of (2.4) and (2.5) with 
v ~ used instead of v. We would like to have, for example, 

Y(Xo, T) = - t/(Xo)X o, (2.8) 

where t/(Xo) is small but  positive whenever Xo r 0. The equat ions satisfied by y are 

~y 
- W(Xo, t)f(~) + V(Xo, t)~f(2)y (2.9) & u x  

and 
y(x o, 0) = 0. (2.10) 

Let 6 be in (0, T/8). We would like to desig n W(Xo, 0 so that it connects in the interval 
[(3 T/4) - 6, (37"/4) + 6] the following two open loop solutions y* and y .  of (2.9): 

_ c3f �9 
@*at v(x o, t) ~x (~)y ' y*(xo, T) = - ~l(Xo)Xo, (2.11) 

y .  = 0. (2.12) 

To  show that  such a connect ion is possible, let d E C~([0, T]; [0, 1]) be such that 

d(t) = 0 for t < (3T/4) - (6/2) (2.13) 

and 
d(t) - 1 for t > (3T/4) + (6/2). (2.14) 

Let us define z e C~(N n x [0, T]; Nn) by 

y(Xo, t) = (1 -- d(t))y,(xo, t) + d(t)y*(xo, t) + Z(Xo, t). (2.15) 
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From (2.9) and (2.15) we get 

gz 0f_ 
W(Xo, t)f(2) -- V(Xo, t )w-(x)z  = r(x o, t) 

~3t OX 

with 

(2.16) 

r(x o, t) = d(t)(y*(x o, t) - y . (xo,  t)). (2.17) 

Let us remark that, by (2.13) and (2.14), 

r = 0 on R" x ([0, (3T/4) - (6/2)1 w [(3T/4) + (6/2), T]). (2.18) 

Now we remark that if the linear time-varying system 

Of (g)z, (2.19) = W(Xo, t)f(YO + V(Xo, t)~x 

where w is the control, is controllable with "impulsive" controls (or is uniformly 
controllable in the sense given by Silverman and Meadows in [SM]), then, ac- 
cording to a theorem due to Ilchmann, Niirnberger, and Schmale [INS; theorem 
6.41 (see also [G, 2.3.8(B)]), (2.16) has an "algebraic" solution, i.e., there exist an 
integer S and mappings (#i; 0 < i < S) and vi; 1 < i < S) with values into L,e(N"; N") 
and 5e(N"; N'), respectively, such that, if 

0ir 
z = ~ la,(Xo, t)~[~, (2.20) 

i=0 

w = ~ vi(Xo, t) dir (2.21) 
i=0 ~t i '  

then (2.16) is satisfied. Let us remark that the importance of the algebraic techniques 
presented in [G, 2.3.8(B)] has already been noticed in [G, p. 184] for a problem 
that is related to ours. We will prove in Section 4 that, for appropriate v (generic 
"small" v are in fact good, see [C], but not v = 0; see also Remark 4.2(b)), (2.19) is 
controllable with impulsive controls (on [(3T/4) - 6, (3 T/4) + 6]); in fact, proceed- 
ing as in [INS] or in [G, 2.3.8(B)], we will establish directly the existence of S, (#i; 
1 < i < S ) , a n d ( v i ; 1  < i < S ) .  

An important consequence of(2.18), (2.20), and (2.21) is 

z = 0, w = 0 on ~" x ([0, (3T/4) - (6/2)] w [(3T/4) + (6/2), T]). (2.22) 

Let x~: N" x [0, T] --* N" be such that x~( �9 , t) is the inverse of~"( ., t), see Lemma 
3.2, i.e., 

~(x~(x,  t), t) = x for all (x, t) in R" x [0, T], (2.23) 

and let u ~ be the closed-loop control 

u"(x, t) = v~(x~(x, t), t). (2.24) 

In order to have a smooth T-periodic u" we will require that v satisfy 

V(Xo, t ) = O  forall  (Xo, t ) i n R " x ( U  [ k T - ( T / 8 ) , k T + ( T / 8 ) ] ~ ;  (2.25) 
\ sZ , / k  
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indeed using (2.22), (2.24), and (2.25) we get, since ~ E (0, T/8), 

u ~ = 0 on N" x ([0, T/8] • [7T/8, T])  (2.26) 

and, therefore, if we extend u s to all Nn X N by requiring that u ~ be T-periodic in t, 
then u s is smooth. Moreover, if P: N" ~ R" is the map which associates to x0 the 
value of ~0 at time T, where ~o is defined by 

4) = u~(~o)f(~o), ~o(0) = Xo, (2.27) 

then, as e --* O, 

P(xo) = "W(x o, T) ~- (1 - er/(Xo))Xo; (2.28) 

hence we expect that the zero state in N" becomes globally asymptotically stable for 
= u~(x)f(x), ife is small enough but positive. In Section 5 we will prove this global 

asymptotic stability. 
Let us mention that our proof is strongly related to Sontag's paper [$3]. In our 

context, [$3] gives the existence of nonsingular trajectories of I2 joining Xo (in 
N"\ {0}) to itself--nonsingular means that the time-varying linear system obtained 
by linearizing along the trajectory is completely controllable. But it does not seem 
to follow directly from Sontag's method that there exist such trajectories which 
depend smoothly on x o on all ~" \  {0}. In order to take care of this problem, instead 
of Sard's theorem as in [$3], we have used [G, 2.3.8 E)], where Gromov proves that 
generic (partial) differential underdetermined linear systems have an algebraic in- 
verse. This has also the advantage of producing a more explicit stabilizing feedback 
law. 

Let us finally remark that, if in our proof we start by studying an open-loop 
problem (v depends on the initial data), what we obtain at the end is a feedback law 
(u ") which does not depend on the initial data; this is a memoryless control on the 
augmented state space ~" x (~/TZ) .  

3. Technical Results 

In order to simplify somewhat our proof we first observe: 

Lemma 3.1. Without loss of  9enerality we may assume that, for any i in [1, m], 

ll + + 
~=1 e=l /~=1 ~Xe ~Xp 

where ]Jhl[~ denotes sup{[h(x)[; x s N"}. 

Proo~ 

and 

In order to apply Lemma A.1 in Appendix A we let 

~pj(x) = 0 if j ~ N \ {0}. 

(3.1) 
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It follows from Lemma A.t that there exists a function 0 in C~(N"; [0, +oo)) such 
that 0 > 0 on R"\{0} and, ifJ~ = 0f~, then, for all i in [1, m], 

+ < + o 0  (3.2) 

Hence, by replacing f~ by 2J~ where 2 e (0, +oo) is small enough, inequality (3.1) is 
satisfied. Clearly (1.1) still holds for ).J~. Moreover, if a feedback u which globally 
asymptotically stabilizes the transformed system ~ = u ) f  then, after multiplication 
by 20, it also provides a feedback which globally asymptotically stabilizes the 
original system Z. �9 

From now on we assume that (3.1) holds. Our next lemma gives estimates on 
X(Xo, t) - Xo. 
Lemma 3.2. Let v in C~176 n x [-0, T]; ~m) satisfy (2.3)--we do not assume (2.2). 
Then, on ~n • [0, T] and for some positive constant C O independent of v, 

~ - I d  -<Co(llvlloo+ ~o oo)' (3.3) 

where Id denotes the identity map from ~" into ~', and 

( 0v ) min{1, [Xo[}" (3.4) I ~ - X o l - C o  Ilvll~+ ~Xo ~o 

Before giving a proof of Lemma 3.2 we remark from (3.3) that, for II v II ~ + I[ Ov/~x II 
less than 1~Co and for any t in [0, T], Xo ~ 2(t, Xo) is a diffeomorphism of ~". 
It follows that the map x~ ~" x [0, T] -o ~" defined by 2(x~ t), t) = x is in 
C~ x [0, T]; R"). Moreover, a useful consequence of (3.4) is that, for Ilvll~ + 
II 8v/~x Ij ~ less than (2Co) -1, 

txol/2 < I~1 -< Ixol § 1 on R" x [0, T]. (3.5) 

Proof of Lemma 3.2. Differentiating (2.4) and (2.5) with respect to x o we get 

~?t \~Xo] = fVof(2)  + V OxtX)ffXXo ' (3.6) 

- - ( X o ,  0) = Id. (3.7) 
0Xo 

Inequality (3:3) follows from (3.1), (3.6), and (3.7). In a similar way, (3.4) is a 
consequence of (2.3), (2.4), (2.5), (3.1), and (3.3). �9 

4. Algebraic Inverse of the Linearized Equation 

Our goal in this section is to prove that, for some v, (2.16) has a solution of the form 
given by (2.20) and (2.21). Let us first notice that (2.16) contains n equations with 
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n + m unknown (z, with 1 _< ~ < n and wj with 1 _< j _< m). It is proved in I-G, 2.3.8] 
that generic (partial) differential underdetermined linear systems have algebraic 
inverses. Of course, system (2.16) is not generic but the techniques used in [G, 2.3.8] 
will help us in finding an algebraic solution to (2.16), 

To make the analysis simpler we choose v as follows: 

V(Xo, t) = a(xo)b(t ), (4.1) 

where the maps b e Coo(N; ~ ' )  and a e Coo(N"; N) satisfy: 

b(t + T) = b(t) for all t in N; (4.2) 

b(T  - t) = - b ( t )  for all t in N; (4.3) 

b = 0 on [0, T/8] u [7T/8, T]; (4.4) 

a(0) = 0, a > 0 on N"\{0}. (4.5) 

Now, given 6 in (0, T/8), we define the set 

and the operators 
C~176 ~") by 

Q = N" x [(3T/4) - 6, (3T/4) + 6], (4.6) 

L: Coo(Q; N") x Coo(Q; ~ )  ~ C~(Q; R") and L: Coo(Q; ~") --* 

8z Of _ (4.7) ~(z ,  w) = ~ - wf(~)  - Vux(X)Z,  

L(z) = L(z, 0). (4.8) 

Note that L(z, w) = r is the linearized equation (see (2.16)). 
We shall also need some combinatorial notations. Let gk be the set of sequences 

I = il i2""ik  of k elements from {1, 2, . . . ,  m}; the length k of the sequence I will be 
denoted by [I[. For  convenience, we denote by go the set whose unique element is 
the empty sequence denoted by ~ ;  we have [~[  = 0. For  I = i l i2"" ik  and J = 
JlJ2""  Jk', we define I �9 J ~ 8k+k" by 

I *  J -= ix i2"'" ikJlJ2"" Jk" 

Let g = U~_o gk. For  I E g \ { ~ }  we define f l  by induction on ]I[ in Coo(R"; R") by 
requiring 

f ~ , s = [ f ~ , f s ]  f o r a l l J i n S \ { f g }  a n d a l l i i n [ 1 ,  m]. (4.9) 

Note that f~ is already defined if [I[ = 1. For  an integer l, let Liet(f) be the vector 
subspace of Lie(f)  generated by iterated Lie brackets containing I or fewer vectors 
in {fl . . . . .  f,,}. Using Jacobi's identity we easily check that, in the vector space of 
smooth tangent vector fields on •", 

Lie,(f)  = Span{f~; 0 < [I[ _< I}. (4.10) 

To make the arguments clearer we will first start with the case where we have, 
instead of (1.1), the stronger hypothesis: 

there are s vector fields X I . . . .  , X s in Lie(f)  such that Xl (x )  . . . . .  
X~(x) span •" for all x in ~ ' \{0}.  (4.11) 
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Then, by (4110) and (4.11), there exists an integer l such that  

Span{fl(x); 0 < I I I  < l} = R" for all x in R"\{0}. (4.12) 

With ~ defined by (2.4) and (2.5), let gt = vf('2). By induction we can get for p > 1, 
with gp = Lp-I(gl) ,  

gp(Xo, t) = ~ a(xo)lIICp(I)(t)fl(~(Xo, t)), (4.13) 
0<]II_<p 

where Cp(I) is defined by 

Co(fg) = 1, Co(I) = 0 if ]I1 > 1, Cp(~)  = 0 if p > 0, (4.14) 

C p ( i . l ) - - b i C p _ l ( I ) + C p _ l ( i , I  ) fo ra l l  I i n S ,  i i n [ 1 ,  m ] , a n d p > _ l .  (4.15) 

For  example, Cl(i) = b i, CI(I) = 0 if III -> 2, and C2(i ) = b} 1), C 2 ( i l i 2 )  = bilbi2. By 
induct ion arguments  we have 

Cp(i) = b} p-l) for all i in [1, m] and all p > 1, (4.16) 

Cp(I)=O if I l l > p + 1 ,  (4.17) 

and 
Cp(I) is a homogeneous  polynomial  of degree III in the variables 

b} J) with 1 _< i _< m and j < p - II I. (4.18) 

We will see in (4.29) that  the system L,(z, w) = kgp (where the data  are the functions 
k and the unknown the maps z and w) is algebraically solvable. Hence our  goal is 
to try to express fi(~), for I with 0 < I I I  -< l, in terms Ofgp with p > 1. Until  (4.20), 
and in Appendix B, we consider b} jl as formal independent  variables. Let  R be the 
field of rat ional  functions in the variables (b}J); i e [1, m], j e N) and let q(l) = 
~J=l q*(J) with q*(j) = m(m j - 1)/(m - 1). In Appendix B we prove 

Lem ma  4.1. Let, for 0 <II I  <- l, A(I) be in R and such that, in R, 

A(I)C~(I) = 0 for all r in [-1, q(/)]. (4.19) 
0<[I1_</ 

Then 
A(I) = 0 for all I with 0 < 1I[ _< I. 

Lem ma  4.1 can be rephrased in the following way. Let  us introduce an ordering 
on the I with 0 < 111 _< l (e.g., lexicographical) and let us consider the nonsquare  
q(1) x q*(1) matrix with entries C,(I), 1 <_ r <_ q(1), 0 < 1I[ <_ l. Then Lemma 4.1 just 
tells us that  this matr ix  has full co lumn rank q*(l). Therefore it has a left inverse, 
i.e., there are elements (Rp(J); 0 < I J] <_ 1, 1 <_ p <_ q(l)) in R such that  for all I, J in 

with 0 < II1 < l, 0 < l J[ < l, we have, in R, 

~" R~(I)Cp(J) = 1 if I = J, 0 if I r J. (4.20) 
1 <_p <_q(l) 

We now choose a map  b ~ C ~ (N; R") satisfying (4.2), (4.3), and (4.4) and such that  

the denomina tor  of Re(I ) evaluated at 3T/4 is not  zero for all p with 
1 <_ p <_ q(1) and all I with 0 < II[< I. (4.21) 
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By continuity, it follows from (4.17) that there exists a 6 in (0, T/8) such that, 
for 1 <_ p < q(1) and 0 < [IJ _< l, the denominator of Rp(I) does not vanish on 
[3T/4 - 6' 3T/4 + 6]. Hence each Rp(I) can now be considered as a function in 
C~([(3T/4) - 6, (3T/4) + 6]; ~). From (4.20) we get, for all I with 0 < Ill -< l, 

q(t) ~ l  f~(,2) = Z Rp(S)hp 
p=l 

with 

hp= 
0<lJl_<t 

Now using (4.13) and (4.23) we get 

hp :" gp --  

(4.22) 

alS~(~). (4.24) 
l<jJl<_p 

But from (4. l 2), using a standard partition of unity argument, we get, for I < I J[ < p, 

f j (~)= ~ o~(a,K)(~)fr(Y~), (4.25) 
O<IKI_</ 

where ~(J, K) E C~(ff~"\{0)). From (4.22), (4.24), and (4.25) we get, for ]11 < 1, 

~ ~ alSl-lSlRp(I)Cp(J)a( J, K)(x)fr(~2) + ft(x) 
1 <<p<_q(l) l<lJl<_p O<]K]_<I 

q(l) 1 
= ~ a~lRp(I)gp. (4.26) 

p=l 

Hence, using Lemma 3.2, Appendix A, and (4.26) (note that in (4.26) IJ] - Ill > 0), 
we get for some function a in C~(~"; [0, +~)) ,  with Ilall~ + IlOa/~x[l~ small, and 
for I with 0 < JII -< l, 

f1(x(Xo, t)) = ~ fl(I, p)(xo, t)gp(Xo, t), (4.27) 
1 <_p <_q(l) 

where fl(I, p)is of class C ~ on Q' = Q\({0} • [3T/4 - 6, 3T/4 + 6]). Moreover, for 
k e C~ ~), we have, for p _> 2, 

Ok 
L(kgp_:) = ~gp-1  + kgp and L(0, kv) = -kg~,  (4.28) 

and therefore, by induction on p, 

"/O~k~ 1 ) P r  = kgp. (4.29) 
( -  t,- iJ g"-'-" ( -  tO,- 

Using (4.12), (4.27), and again a partition of unity we have 

ez = ~ y(i, p)gp, 1 < i < n, (4.30) 
1 _<p_<qW 

where 7(i, P) ~ C~(Q ') and (ei) is a basis of ~". Let us denote by ~o(~,, ~ )  the set of 
linear maps from ~" into ~q. It follows from (4.29) and (4.30) that there exist maps 

a IsJCp(J)fs(~ ). (4.23) 
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(#i; 0 <_ i <_ q(l) - 2), (vfi 0 <_ j < q(1) - 1) such that: 

#, e C~ LP(~"; ~")), (4.31) 

vj ~ C~ ~e(~"; ~")), (4.32) 

vj~vj~] = r for all r in C~(Q'; ~"). (4.33) 
j=0 UU/ 

Finally, using Corollary A.2, we see that there exists t/~ C~(~"; [0, +oe)) such 
that 

r/(0) = 0, , > 0 on ~"\{0}, (4.34) 

and, if r is defined by (2.17), then z and w, defined by 

q(O-2 Oir q(t)-i ~i r 
z =  ~ # , ~ p ,  w =  Z v , ~ ,  (4.35) 

i=0 i=0 

are of class C ~ on Q and vanish on Q ~ ({0} • ~). By (4.33), z and w satisfy (2.16). 
Let us remark that they also vanish on Q\(~"  • [(3T/4) - (6/2), (3T/4) + (6/2)]) 
(see (2.18) and (4.35)). We extend them to ~" x [0, T] by 

z(x, t) = 0 and w(x, t) = 0 for all (x, t) r Q. (4.36) 

Notice that we may take a, b, and w so that 

Ow Ov 1 
Ilwl[  + + I1 11  + -< 2c ' (4.37) 

where C o is defined in Lemma 3.2. 
Finally, we briefly return to the case where (1.1) holds instead of (4.11). Let ~ be 

set of sequences (~j; j ~ N) of elements of ~". We provide ~ with the metric 

+0o 2-~l~j _ ~jl (4.38) 
= _ 

j=o 1 + I~ - ~jl 

the metric space (~, A) is complete. A theorem due to Borel (see, e.g., [D, Ex. 4, 
p. 188]) tells us that for any r in ~ there exists b in C~(~; R ' )  satisfying (4.2), (4.3), 
and (4.4) such that 

b(J)(3T/4) = zj for all j in IN. (4.39) 

From this theorem, Lemma 4.1, and Baire's theorem applied to (~, A), it follows 
that there exists b in C~176 ~ ' )  satisfying (4.2), (4.3), and (4.4) such that for all I > 0 
(4.21) holds (note that b is universal: it does not depend on f) .  Next we choose (see, 
in particular, Appendix A) a satisfying (4.5) such that, for any compact subset K of 
~"\{0),  (4.27) holds for all Xo in K but now 6, 1, and fl (may) depend on K. Using 
again Appendix A and a partition of unity we get q in C~~ [0, +oe)) and w in 
C~(~" x [0, T]; W") satisfying (4.34), 

w = 0 on ({0} x [0, T]) u (~" x ([0, T/8] ~ [7T/8, T])) (4.40) 

and such that y defined by (2.9)-(2.10) satisfies (2.8). Again we may impose (4.37) 
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Remark 4.2. (a) As mentioned in Section 2, our study of the linearized equation 
is connected to previous work by Silverman and Meadows [SM]. In particular, it 
follows from [SM], (4.27), and (4.12) that, for Xo :~ 0, the time-varying linear system 

af 
= wf('Y(Xo, ")) + V(Xo, ") ~x (2(Xo, "))y, 

where w is the control, is controllable near t = 3 T/4 with impulsive controls. This 
controllability implies the existence of the algebraic inverse by [INS, theorem 6.4]. 

(b) Let C~(~; R") be the set of functions b in C~176 N')  satisfying (4.2) and (4.3); 
Coo(R; N m) is equipped with the Whitney topology and C~(N; N") with the induced 
topology. Let us call b good if for any f satisfying (1.1) then, if a is small enough in 
the C~(R"\{0}; (0, +oo)) Whitney topology, (2.19) is controllable with impulsive 
controls at time t = 3 T/4, for all Xo in N"\ {0}. Then it follows from our proof that 
generic b are good. Indeed, let M(1) be the set orb such that the matrix {C~(I)(3T/4); 
0 < 111 _< l, r < q(l)} has rank q*(1). By Lemma 4.1 and Thorn's transversality 
theorem, the open set M(I) is dense in C~(R; N=); hence, (~t_> 1 M(l) is residual in 
the Baire space C~(R; Rm), but any b in ~L> 1 M(l) is good. Let us remark that if we 
require controllability with impulsive controls on all N instead of just at time 
t = 3T/4, then generic b in CT(N; N~) are still good (see [C] for a proof). 

5. Study of the Nonlinear Equation 

Let us estimate ~'(Xo, T) where ~" is defined by 

at - (v + ew)f(~ ~) = v~f(2~), (5.1) 

~(Xo, 0) = 0. (5.2) 

We recall, see (2.5) and Sections 2 and 4, that 

~~ T) = Xo for all Xo in N", (5.3) 

8~ ' ,=o(XO, T) = -rl(Xo)Xo for all Xo in ~". (5.4) 

Differentiating (5.1) and (5.2) with respect to ~ we get 

= wf(~ ~) + v ~x(2 ) ~ ,  (5.5) 8 t \ & J  

& (Xo, 0) = 0. (5.6) 

Going back to Section 4 we see that there exists some function 7 in L~oc(N"\{0}; 
(0, +az)) independent of q such that 

Iw(xo, t)l _ ~,(Xo)n(Xo). (5.7) 

From (3.1), (4.37), (5.5), and (5.7) we get, for some constant C 1 independent of r/and 
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in [0, 1], 

~ ( X o ,  t) < C1 (7(x0)t/(x0) + ~ -~-(Xo, t) ) ,  

which, with (5.6), gives, for some constant C again independent ofrt and e in [0, 1], 

~ ( X o ,  < CT(xo)~l(Xo) for all (Xo, t) in ~" x [0, T]. (5.8) 

Differentiating again (5.5) and (5.6) with respect to e we have 

~t\Tj-e2,] = zw~x tx  )-~- + t~x2t  x ) ~ -  + ff~x2t x j \  & ,  & ,/,], (5.9) 

~2~e 
&2 (Xo, 0) = 0. (5.10) 

From (3.1), (5.7), (5.8), (5.9), and (5.10) we have, again for some constant C indepen- 
dent of 17 and e in [0, 1], 

022~ I ~-2 (Xo, T) <_ ey(Xo)2~l(Xo) 2. (5.11) 

Using Appefldix A once more we see that we may also impose on t/ 

[Xol-172t/E L~176 (5.12) 

By (5.11), (5.12), (5.3), and (5.4) we get for e in [0, 1] small enough 

I~(Xo, T), <(1- ~~ (5.13) 

Therefore, if we take (see Section 2, Lemma 3.2, and (4.37)) 

u~(x, t) = (v + ew)(x~(x, t), t), (5.14) 

then u ' E C~176 x R; R") satisfies (1.2), (1.3), and (1.4) for e in [0, 1] small enough 
(see, in particular, (4.34) and (5.13)). 

Remark 5.1. It follows easily from the proof of Theorem 1.1 that assumption 
(1.1) can be replaced by the following weaker assumption: there exists V in 
CI(R"; [0, +oo)) with V(x) --+ +oo as x --+ +or  and such that for each x in R"\{0} 
there exists h in Lie(f)  satisfying h(x). VV(x) # 0. Under this assumption Theorem 
1.1 also holds. See [C] for more details. 

6. Proof of Corollary 1.3 

We proceed as in [T] and [S1, Lemma 4.8.3]. Let u be as in Theorem 1.1. From a 
classical converse of Lyapunov's second theorem (see [K]) we know that 2 = uf(x) 
admits a T-periodic Lyapunov function, i.e., there exists V ~ C~(R" • ~; [0, + ~ ) )  
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such that: 
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V(0, t) = 0 for all t in ~, (6.1) 

V(x, t) > 0 for all (x, t) in (R"\{0}) x ~, (6.2) 

V(x, t + T) = V(x, t) for all (x, t) in ~" • ~, (6.3) 

lira min{V(x, t); t e [0, T]} = +0% (6.4) 
]x]~+oo 

a-T + . 

Let W: ~" • ~"  x ~ - [0, +oo) be defined by 

W(x, y, t) = �89 - u(x, 012 + V(x, t). 

Then, by (6.1), (6.2), (6.3), (6.4), (1.2), and (1.3) 

W(0, 0, t) -- 0 for all t in ~, (6.6) 

W(x, y, t) > 0 for all (x, y, t)in (~" x ~m X ~)k({0} x {0} x ~), (6.7) 

W(x, y, t + T) = W(x, y, t) for all (x, y, t) in ~" x ~m x ~, (6.8) 

lira min{W(x, y, t); t ~ [0, T]} = +oo. (6.9) 
Ixl+lyl-~+~o 

Let v: ~" x ~m x ~ -~ I~ ~ be defined by 

(~?ui" ] ~ ~?ui 
v ~ = - ( y - u ) i + k ~ x x ) ( y . f ) - f ~ ( x )  + ~ f  for all i in [1, m]. (6.10) 

From (6.10) we get, for system 

OV ~V 
= - ( y  - u) 2 + ~ + ~xUf. (6.11) 

From (6.10), (1.2), (1.3), (6.1), and (6.3) we obtain (1.7) and (1.8). From Lyapunov's 
second theorem, (6.11), (6.5), (1.2), (6.6), (6.7), (6.8), and (6.9) we get (1.9). �9 

Acknowledgments. The author thanks B. d'Andr6a-Novel, M. Fliess, L. Praly, and 
R. Sepulchre for useful discussions, E. Sontag for interesting comments, and two 
anonymous referees who read the paper with great care, pointed out a large number 
of misprints and made interesting remarks. 

Note Added in Proof. In a recent preprint (Universal nonsingular controls, Rutgers 
University, December 1991) Sontag has given a different (and shorter) proof of the 
existence of a good ff when f l ,  . . . ,  f,, are analytic. 
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Appendix A 

In this appendix we prove: 
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Lemma A.1. Let  (~i; i 6 N) be a sequence of  functions in L~oc(~"\ {0}; ~). Then there 
exists a function 0 in C~(~"; [0, + ~ ) )  such that 

0 > 0 on R"\{0}, 0(0) = 0, (A.1) 

tp/?~O ~ L~~ ") for  all i in N and for  all a in N". (A.2) 

Proof. 

and let 

We have 

Let, for k e N*\{0}, 

C O k = { x e ~ " ; k < l x l < k + 2 } u  x e  ~ " ' - -  < txl < 
' k + 2  

COo = {x ~ ~"; ~ < Ixl < 2}. 

(A.3) 

(A.4) 

U COk = N"\{0}, (A.5) 
k e n  

and 

for all x in N" there exist at most two indices k such that x ~ COg. (A.6) 

Let (Ok; k ~ N) be a partition of unity associated with (COg k e N), i.e., 

O k E C~176 [0, 1]), support O k c COk, (A.7) 

Ok(X ) = 1 for all x in N"\{0}. (A.8) 
k>O 

Let Ck be a real number such that 

Ck sup{([O,(X)I + 1)" l~?=Ok(X)l; x E COk, i < k, ]el <_ k} _< 1/(k + 1), (A.9) 0 ~ Ck, 

and let 
0 = ~ ckO k. (A.10) 

k>O 

We easily verify that 0 e C ~~ ~"; I-0, +0o)) and that it satisfies (A.1) and (A.2). �9 

A consequence of Lemma A. 1 is 

Corollary A.2. Let  ~peC~((R"\{0})x [0, T]; RP). Then there exists O s 
C~(N"; [0, + ~ ) )  satisfying (A.1) such that 

O(p extended by 0 on {0} x [0, T] is in C~(~" x [0, T]; ~P), (A.11) 

~(0(o) ~ L~ ~ • [0, T]; R ' ) f o r  all ~ in N'+~. (A.12) 
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Proof. 
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Apply Lemma A.1 with 

Oi(x) = max{lOPq~(x, t)l/min(Ixl, 1); t E [0, T], fl s N "+1, Ifll < i}. (A.13) 

Appendix B 

This appendix is devoted to the proof of Lemma 4.1, Let us recall that  q*(1) = 
m(m I - 1)/(m - 1). We first prove 

Lemma B.1. Let p be an inteoer and let (A(I); 1I] < l) be elements of R such that, in R, 

~, A(I)Cr(I ) = 0 for all r in [0, q*(l) + p]; (B.1) 
Ill<<_l 

then 

Z 
IIl</-1 

A(I * k)Cr(I ) = 0 for all r ~ [0, p] and for all k a [1, m]. (B.2) 

We prove Lemma B.1 by induction on p. 

Step 1. We prove Lemma B.1 for p = 0. The proof is similar to the proof of [G, 
Lemma 1, p. 1581. Note  that  for p = 0, (B.2) becomes 

A(i) = 0 for all i in [1, m]. (B.3) 

Assume that, for example 
A(1) :~ 0. (B.4) 

Then, by induction on 1, we easily check, using (4.16), (4.17), (4.18), and (B. 1), that  

for all r in [0, q*(1) - 1], b~ r) is a polynomial in A(I)/A(1), and b/(i) 
where 0 < ]I] g I, i r 1, and j g r. (B.5) 

But the cardinality of {I; 0 < [I] g I and I ~ 1} is q*(1) - 1; hence (B.5) cannot be 
true. 

Step 2. Assuming that  Lemma B.1 is true for p, we prove now that  it is also true 
for p + 1. Let (A(I); III -< 1) be elements in R such that 

A(I)C~(I) = 0 for all r in [1, q*(l) + p + 1]. (B.6) 
Ill<l 

From (4.15) we obtain for all k in [1, m] 

E A(I*k)Cp+,(I) 
Ill~_l-1 

= Z Z b,A(  * J * k)CAJ) + Z A(I * klCAI). (B.71 
i=1 IJl<l-2 Ill<l-1 

Since Lemma B. 1 is true for p, differentiating (in the differential field R defined by 
/~/(~-1) = b/~j)) (B.2) for r = p, we have, for all k in I-1, m], 

Z A ( I * k ) d p ( I ) = -  Z A(I.k)C~(I).  (B.8) 
IXl_<t-a Ill <_t-1 
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Next using (B.6) and (4.15) we have, for all r in I-0, q*(1) + p], 

- ~ A(1)Cr(I) + ~ Z b~A(i* J)Cr(J ) = O. (B.9) 
I11<_t i=1 ISl_<Z-1 

Hence by Lemma B.1 for p, we get, for all k in [1, m], 

~, ,4(I , k)Cp(I) + ~ ~, biA(i * J * k)Cp(g) = O. (B.IO) 
Ill<l-1 i=l 111<1-2 

Finally, from (B.7), (B.8), and (B.10) we get 

A ( I . k ) C p + l ( I ) = O  for all k in [1, m]. (B.11) 
IXl-<t-1 

This completes the proof of Lemma B.1. �9 

We now deduce Lemma 4.1 from Lemma B.1. 
Let (A(I); 0 < III < I) be elements of ~ such that 

A(I)C,(I)  = 0 for all r in [1, q(/)]. (B.12) 
0<111</ 

We take A(~)  = 0. From (B.12) and Lemma B.1 with p = q(1) - q*(l) = q(l - 1) 
we have 

A(I  �9 k)C,(I) = 0 for all r ~ [0, q(l - 1)] and for all 
Ill_<t-1 

k e  [1, m]. 

(B.13) 

In particular, 

A(k) = 0 for all k in [1, m] (B.14) 

and, still for all k in [1, m], 

A(I  * k)Cr(I) = 0 for all r in [0, q(l - 1)]. (B.15) 
O<lll<_l-1 

An easy induction argument on I gives Lemma 4.1. �9 
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