
Manipulation and Active Sensing by Pushing Using Tactile Feedback

Kevin M. Lynch�

The Robotics Institute
Carnegie Mellon University
Pittsburgh, PA 15213 USA

Hitoshi Maekawa Kazuo Tanie
Cybernetics Division Biorobotics Division

Mechanical Engineering Laboratory, AIST-MITI
Namiki 1-2, Tsukuba-shi, Ibaraki-ken, 305 Japan

Abstract — We investigate manipulation and active sensingby a
pushing control system using only tactile feedback. The equations
of motion of a pushed object are derived using a model of the
object’s limit surface, and we design a control system to translate
and orient objects. The effectiveness of the proposed controller is
confirmed through simulation and experiments. Active sensing of
the object’s center of mass is described.

I. INTRODUCTION
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Pushing is a useful robotic capability for positioning and orienting
parts. Several researchers have demonstrated the utility of pushing
operations by planning open-loop pushing sequences to position and
orient polygonal objects despite the presence of uncertainty in the
initial state [1, 2, 3, 4, 5, 6, 7]. These operations typically plan for
a known object shape and center of mass (CM) and a flat pushing
fence or specially designed pusher geometry to exploit the mechanics
of pushing.

Others have proposed pushing control systems based on visual
feedback [8, 9]. The pusher makes point contact with the object, and
the position and orientation of the object is determined by a vision
system. The goal is to push the object along a desired trajectory.
Uncertainty in the frictional forces governing the object’s motion is
compensated for by the appropriate design of a feedback controller.

The purpose of this work is to investigate the possibility of useful
manipulation by a pushing control system using only tactile feedback.
Try closing your eyes and controlling the motion of an object on a table
by pushing it with a finger. This is the type of capability we would
like to give a robot. In contrast to vision, tactile sensing requires very
little data processing. The tactile sensor is mounted directly on the
manipulator and the robot requires no peripheral sensors.

The primary difficulty arises from the fact that tactile sensing can
only give local contact information. The configurationof the object has
three degrees-of-freedom: two position coordinatesandan orientation.
When the pusher is in contact with the object, these three degrees-of-
freedom may be equivalently expressed by the location of the pushing
contact, the contact point on the perimeter of the object, and the
orientation of the object. The tactile sensor we use is capable of
sensing the contact location and the object orientation at the contact,
but not the contact point on the object. With vision, all three degrees-
of-freedom are directly sensed.

Despite this missing information, we demonstrate that simple
manipulation is possible by pushing using only tactile feedback.
Specifically, we implement a controller to translate the object and
regulate its orientation.
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in Japan program sponsored by the U.S. National Science Foundation, the
Science and Technology Agency of Japan, and the Japan Foundation’s Center
for Global Partnership.

The rest of the paper is organized as follows. The remainder of this
section describes the problem formulation and the notation used in
the paper. Section II reviews the mechanics of pushing and develops
a model of the motion of a pushed object. Section III defines active
sensing as it applies to the pushing control system. In Section IV we
describe the control algorithm implemented. Section V describes the
experimental setup and presents simulation and experimental results.
We offer some conclusions in Section VI.

A. Problem Formulation
The pusher is a disk. A tactile sensor detects the contact point on

the disk, and the contact normal is in the direction of the vector from
the center of the disk to the contact. The contact orientation angle
is defined by the tangent to the disk at the contact. The object to
be manipulated is a convex polygon. During execution, the pusher
remains in contact with one edge of the object. In Section V we give
an example of manipulation of non-polygonal objects.

We assume that pusher motions are slow enough that inertial
forces are negligible compared to frictional forces. This is the quasi-
static assumption. We also assume that frictional forces conform to
Coulomb’s Law. At any contact, the tangential frictional force ft felt
by an object must satisfy the relationship f t � �fn, where � is the
coefficient of friction and fn is the normal force applied to the object.
The static and kinetic coefficients of friction are assumed to be equal.
Defining the friction angle � = tan�1 �, the total contact force must
lie on or inside the cone of vectors which intersect the contact and
make an angle � with the contact normal. If the contact is sliding,
the force felt by the object lies on the boundary of the friction cone
maximally opposing the motion of the object relative to the contacting
surface.

B. Notation
Thefollowing notation will be usedthroughout the paper (see fig. 1):

n̂ contact normal unit vector (into the object)
� angle of the pushed edge (90 degrees clockwise of

the angle of n̂)
� angle of motion of the pusher
d contact location along the pushed edge of the object

(d = 0 at the point on the edge closest to the CM,
and d is positive to the right of the ray from this point
to the CM)

l distance from the pushed edge to the CM
r radius of the disk pusher

�c friction coefficient between the pusher and object
�s friction coefficient between the object and support

Bold letters are vectors, and unit vectors are capped with a
circumflex, as in n̂. We will denote linear velocities (vx; vy) as
v, generalized velocities (vx; vy; !) as q, linear forces (fx; fy) as
f , and generalized forces (fx; fy;m) as p. All 2-vectors should be
regarded as vectors in 3-space with zero third components. Angular
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Fig. 1. Pushing system notation.

velocities and moments may be written in boldface as vectors with the
first two components zero.

II. MECHANICS OF PUSHING

In this section we review the mechanics of pushing and develop a
model of the motion of a pushed object. This model may be used in
the design of a pushing controller.

A. The Voting Theorem
Mason [6] analyzed the mechanics of quasi-static pushing

operations given a known pusher–object contact point, contact normal,
pushing direction, �c, and CM of the object. The analysis results in
a simple method for determining the sense of rotation of a pushed
object, which we will refer to as the voting theorem:

Construct three rays at the contact point: the two friction
cone limits and the ray of the pusher motion. Each ray that
passesto the left of the CM votesfor clockwiserotation, and
each ray that passes to the right votes for counterclockwise
rotation. The votes are tallied and the majority determines
the rotation sense. If two or three rays pass through the
CM, or one ray passes through the CM and the other two
vote oppositely, the object will translate along the ray from
the contact to the CM.1

Actually, this result uses the center of friction (CF), not the CM.
The CF is located at the centroid of the support friction distribution
multiplied by the pressure distribution. For the case of a uniform �s,
however, the CF is simply the projection of the CM to the support
plane. In this paper we assume a uniform �s. If this assumption is
violated, CF should be substituted where CM appears.

The power of the voting theorem comes from its insensitivity to the
form of the pressure distribution. The pressure distribution between
an object and support is usually unknown and possibly changing
due to microscopic variations in the support surface. Although the
exact motion of a pushed object depends on the form of the pressure
distribution, Mason showed that the rotation sense depends only on
the location of the CM.

We can apply the voting theorem to determine the set of pushing
contacts from which an object can be translated. The possible
translational pushing contacts are obtained by drawing the friction
cone at the CM and extending the cone until it intersects the pushed
edge. For a ray of pushing through the CM, translation occurs in the
direction of the push for contacts inside the projected friction cone,
i.e., ��cl � d � �cl. Contacts to the left of the friction cone result in

1If the object’s support is confined to a line segment perpendicular to the
pushing direction, the object may rotate [6, 10].

clockwise rotation regardless of the push direction. Similarly, contacts
to the right of the friction cone result in counterclockwise rotation.

B. Limit Surfaces
Whereas the CM is sufficient for determining the rotation sense

of a pushed object, the pressure distribution of the object must be
considered to find the exact motion. The quasi-static relationship
between the instantaneous velocity of a sliding object and the support
frictional force is governed by a closed, convex, origin-enclosing
limit surface in (fx; fy;m) space [10]. For a given reference point,
the limit surface is the boundary of the sum (respectively integral) of
the frictional forces and moments that each of the object’s individual
support points (resp. differential elements of support area) can apply
to the support plane. The limit surface in (fx; fy; m) space encloses
the set of generalized forces p which may be statically applied to the
slider.

The limit surface of a sliding object is analogous to the friction
cone for a single contact. Any applied force p inside the limit surface
is completely resisted by the support friction, and the object will not
move. If p extends outside the limit surface, static equilibrium is
violated and the object will accelerate. During quasi-static motion of
the object, p lies on the limit surface and the direction of the object’s
velocity is given by the unit vector q̂ normal to the surface at p
in (vx; vy; !) space, which is aligned with the (fx; fy; m) space.
(See [10] for further details.) The shape of the limit surface is
determined by the pressure distribution, and �s simply scales the limit
surface. Thus, if the pressure distribution is known, the relationship
between applied forces and object motions is completely described by
the limit surface.

In general, the pressure distribution is unknown and possibly
changingas the object moves. For this reason, we will developa model
using an approximation to the actual limit surface. The limit surface
will be modeled as an ellipsoid in force-moment space [11, 12, 13].
The procedure to find the ellipsoid is similar to that in [13]:

1. Choose the CM as the reference point about which moments
are measured. Find the maximum frictional moment mmax,
resulting from a pure rotation about the reference point:

mmax = �s

Z
A

jxjp(x)dA (1)

where A is the support region, dA is a differential element of
area of A, x is the position of dA, and p(x) is the pressure at x.
This defines two ellipsoid endpoints: (0; 0;�mmax).2

2. Find the maximum frictional force (pure translation):

fmax = �sfn (2)

where fn is the normal support force.
3. The approximating ellipsoid is given by the equation:�

fx
fmax

�2

+

�
fy

fmax

�2

+
�

m

mmax

�2

= 1 (3)

The calculation of mmax requires a known pressure distribution
p(x). To account for the unknown pressure distribution, the pushing
controller should be designed to be robust for limit surfaces with
a range of values of mmax. If the object’s support pressure is
concentrated near the boundaries of the object, mmax is large and
the resulting limit surface is elongated along the m-axis. The motion

2We assume the CM is coincident with the center of twist [10]. A pure
rotation about the center of twist corresponds to a pure moment.
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Fig. 2. Ellipsoidal limit surface. p is the generalized applied force and q̂ is
the associated generalized velocity unit vector.

of the pushed object tends to be largely translational. If the object’s
support pressure is concentrated near the CM, mmax is small and the
limit surface is relatively flat. The object’s motion tends to be mostly
rotational.

An example ellipsoidal limit surface is shown in fig. 2. The m = 0
cross-section of the ellipsoid is a circle of radius fmax. In order to
translate the object, a force fmax must be applied through the CM in
the direction of the desired translation. In addition, positive moment
corresponds to counterclockwise rotation, and negative moment
corresponds to clockwise rotation. These properties of the ellipsoid
are consistent with the voting theorem. For the ellipsoid model, the
translational velocity v of the CM is always parallel to the applied
linear force f . If a pure moment is applied, the object will rotate about
the CM. The ellipsoid approximation to the limit surface satisfies
the voting theorem and gives a nonlinear closed-form relationship
between forces and velocities. The accuracy of the approximation
depends on the particular pressure distribution; see Section V for an
example.

C. Equations of Motion
Defining the parameter c = mmax=fmax (with units of length),

the relative values of the components of q (defined at the CM) for an
applied force p are derived from the ellipsoid equation:

vx
!

= c2 fx
m

(4)

vy
!

= c2 fy
m

(5)

The magnitude of the applied force jpj is given by (3) and jqj is
determined by the velocity of the pusher. The object’s velocity must
be just sufficient to move out of the way of the advancing pusher.

Equations (4) and (5) relate applied forces to object velocities. It
remains to find the object’s motion in response to a position-controlled
push. The method for doing this is taken from [6]:

1. The origin is located at the CM and the pushing contact is located
at xc = (xc; yc). The pusher velocity at the contact is denoted
vp = (vpx; vpy), and the resulting velocity of the object at the
contact is written vo = (vox; voy).

2. Find the unit generalized velocities q̂ l = (vlx; vly; !l) and q̂r =
(vrx; vry; !r) resulting from forces at the left and right edge of
the friction cone, respectively. The corresponding velocities at
the contact point xc are vl = (vlx � !lyc; vly + !lxc) and
vr = (vrx � !ryc; vry + !rxc). These two velocity vectors
form the boundary of the motion cone [6]. Any force applied
at xc inside the friction cone results in a velocity vo which is a
positive linear combination of vl and vr (i.e., inside the motion
cone).
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Fig. 3. Motion cones for a square object using the ellipsoidal limit surface
approximation and mmax calculated using a uniform pressure distribution.
Contacts are sampled along the bottom edge with different values of � c . For
�c = 0, the motion cone reduces to a ray, and for � c = 1, the interior angle
of the motion cone is 180 degrees. The motion cones in this figure imply two
nonintuitive effects: 1) Infinite friction does not necessarily imply sticking
contact during pushing. The ray of pushing may lie outside the 180 degree
motion cone. 2) Vectors in the motion cone with a negative component in the
direction of the contact normal imply that it is possible to “pull” the object by
applying a force inside the friction cone.

3. If the pusher velocity vp is contained within the motion cone,
sticking contact occurs (vo = vp). If vp is to the left of
the motion cone, the pusher slides to the left with respect to the
object, resulting in an applied force at the left edge of the friction
cone. The object velocity at the contact therefore lies on the left
edge of the motion cone. If vp is to the right of the motion cone,
the pusher slides to the right with respect to the object, and v o

lies on the right edge of the motion cone. See fig. 3.

This procedure is applied using the ellipsoidal limit surface model.
1) Object Motion During Sticking Contact: When vp is inside the

motion cone, two constraints on the object’s velocity q = (vx; vy; !)
are given by vo = vp. Since the line of applied force f must pass
through the contact, this defines a constraint on the applied moment,
m = xc � f . These three constraints may be written

vx = vpx + !yc (6)

vy = vpy � !xc (7)

m = xcfy � ycfx (8)

Remembering that f is parallel to v, we solve for q using (4) and (5):

vx =
(c2 + x2

c)vpx + xcycvpy

c2 + x2
c + y2

c

(9)

vy =
xcycvpx + (c2 + y2

c)vpy
c2 + x2

c + y2
c

(10)

! =
xcvy � ycvx

c2
(11)

2) Object Motion During Slipping Contact: Whenvp is outside the
motion cone, the contact is slipping and vo lies on one of the motion
cone boundaries. The slipping velocity v slip is along the contact
tangent, and vo and vslip must satisfy

vo + vslip = vp (12)

as in fig. 4. In order to treat both slipping directions simultaneously,
we denote the boundary of the motion cone under consideration v b

and the corresponding generalized velocity q̂ b. For contact normal n̂
we define the scaling factor � = (vp � n̂)=(vb � n̂). The motion of the
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Fig. 4. vo and vslip for vp to the right of the motion cone.

object during slipping contact is given by the following equations:

vo = �vb (13)

vslip = vp � vo (14)

q = �q̂b (15)

3) Contact Velocity: The velocity of the contact along the pushed
edge has two components: slipping and rolling. The contact velocity
_d is given by

_d = vslip � t̂� !r (16)

where t̂ is the unit tangent vector in the direction of increasing d.

III. ACTIVE SENSING

In addition to manipulation, a pushing control system may be used
for active sensing. Sensory modalities which project a signal (e.g.,
light striping, radar, laser range finding) or use strategies to guide the
acquisition of data (e.g., tactile probing, active vision) are commonly
labeled active sensing. In this paper, however, active sensing refers to
the process of exploiting task mechanics by performing an action or
set of actions in order to change the system state to a known smaller
set of possible resulting states.

The voting theorem constrains the CM of the object to lie on the
ray of pushing during a finite length translation.With this knowledge
of the task mechanics, we conclude that if our pushing control system
can achieve stable translation by pushing, the CM of the object must
lie on the ray of pushing.

This constraint on the location of the CM may be used in the
following ways. 1) With the aid of a vision system, the location of the
CM of an unknown object can be determined by establishing stable
translational pushing at two or more contact points. The CM lies at
the intersection of the rays of pushing. 2) If the shape and CM of the
object are known, and the uncertainty in initial position and orientation
is bounded so that the pushed edge is known, the pushing controller
can remove uncertainty in the object location. The problem is that
d cannot be directly sensed. If the object is translating, however, d
is constant and is uniquely determined by the angle of pushing with
respect to the edge:

d =

(
l= tan(� � �) if �� � < �=2

l= tan(� + �� �) if �� � � �=2
(17)

where l is given by the object model. The sensed value of � and the
estimated value of d completely determine the position and orientation
of the object with respect to the pusher.

IV. CONTROL ALGORITHM

The configuration of the object is controllable (i.e., the object can
be pushed to any position and orientation) by pushing an edge if at
least two noncollinear q̂ vectors, at least one of which has a nonzero!
component, can be obtained by pushing the edge. Sufficient conditions
for the controllability of the object configuration are 1) the edge has
nonzero length or a nonzero coefficient of friction (and is not a point
at the CM), and 2) the support pressure is bounded everywhere, i.e.,
the limit surface is not flat at any point.

In determining the form of a pushing control law, we must consider
the nonholonomic constraints on the motion of the object arising from
the point contact with the pusher. The possible object velocities are
constrained by functions of � and d. One consequence of this fact
is that it is impossible to design a controller to push the object to a
desired configuration using a smooth feedback function of the system
state. (See, for example, [14].) A method for determining bounds on
the possible pushed object trajectories, independent of the control law,
is presented in [15].

In this work, we focus on designing a control system to achieve
stable translation of the pushed object, which allows active sensing of
the CM as described in Section III. The discrete version of the control
law can be written

�(k) = �(k � 1) + kp[�(k)� �d] + kd[�(k)� �(k � 1)] (18)

where �(k) is the commanded push angle, �(k) is the sensed contact
orientation, �d is the desired contact orientation, and kp andkd are the
proportional and derivative gains, respectively. The goal of this simple
linear controller is to stabilize the contact orientation to a constant �d,
which results in object translation (provided translation is possible).

This control scheme does not permit specification of a desired
translation direction. In general the translation direction is not
independent of the contact orientation. For the case � c = 0, for
example, the only possible translation direction is in the direction of
the contact normal.

V. SIMULATION AND EXPERIMENT

A. Experimental Setup
For our experiments we used a miniaturized version of the optical

waveguide tactile sensor described in [16] mounted on one finger of
the three-fingered hand developed at MEL [17]. The finger is mounted
horizontally above the support plane, and the first of the three finger
joints is fixed. The final two joints are used for planar finger tip
motions. The finger is shown in a typical configuration in fig. 5.

The finger tip is hemispherical and the tactile sensor returns two
angles, the azimuth and the elevation of the contact point. The
projection of the hemisphere to the support plane is semicircular,
allowing us to treat the finger as a disk, as only the hemispherical
portion of the finger tip will contact the object. The elevation of the
contact point and the finger joint angles are used to determine the
contact normal in the plane of motion.

Theradius of the tactile sensor is 16 mm, including a 2.5 mm spacing
between the rubber covering and the optical waveguide. During
contact, the rubber cover directly contacts the optical waveguide,
giving the finger tip an effective radius of 13.5 mm.

The finger is mounted above a conveyor belt which moves the
support at a constant velocity in the �y direction. The quasi-static
mechanics of pushing are the same as for the finger moving with a
constant velocity vy in the +y direction. The finger tip generates the
specifiedpush angle (0 < � < �; in practice, we use 33 o < � < 147o)
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by moving with velocity vx = vy= tan�.3 As a result of using the
conveyor belt, the length of constant time pushes varies with � and is
equal to vyt= sin�, where t is the duration of the push.

Due to the quasi-static nature of the system, it is the length of
each push, not the sampling rate, which determines whether or not the
system can be controlled. In our experiments, the constant conveyor
speed is 5 mm/s and the sampling rate is 10 Hz. This results in a push
length of between 0.5 mm and 0.9 mm, depending on �.

The object to be manipulated is a 5 cm x 4.75 cm rectangular
steel block with a CM at the center. The 5 cm edge is pushed and
l = 2:375 cm. The coefficient of friction �c between the finger and
the block is very high; for simulation purposes, we assume � c =1.

B. Simulation
In order to better understand the pushing model developed in

Section II, we wrote a simulation of the derived equations of motion.
The simulation may be used to determine appropriate control gains.

The rectangular object is modeled using three different values for
c: cmax = 3:45 cm, cuni = 1:87 cm, and cmin = 0:67 cm. cmax

is found by assuming that the support is concentrated at the corners
and cuni is found by assuming a uniform support distribution. (Fig. 6
shows the fx = 0 plane of the actual and modeled limit surfaces for
a uniform pressure distribution.) In principle, cmin could be zero if
there is only a single point of support at the CM. In this case, the limit

3We simply control the x velocity of the pole of the finger tip. This results
in added linear velocity components at other points on the finger tip due to
rotation of the finger tip. These velocities are relatively small, and contact is
usually near the pole of the finger tip, so we ignore them.

c = c min maxcc = maxcc = c = c min

cµ  = cµ  = cµ  = 0 cµ  = 0

Fig. 7. Simulated object trajectories for open-loop pushing.
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Fig. 8. Simulated step response for �(0) = 20o, d(0) = �0:6 cm.

surface is confined to the m = 0 plane and there is no quasi-static
solution to the motion of the object. Instead, we chose cmin for the
case of uniformly distributed support in a circle of radius 1 cm about
the CM.

Fig. 7 shows the simulated trajectories of the rectangular object for
� = 90o, initial orientation �(0) = 0o, initial contact d(0) = �0:5 cm
and four combinations of c and�c. Fifty pushesare simulated between
each snapshot.

Simulations indicate that the control law (18), with a proper choice
of control gains (in particular, kp, kd � 0), is effective for a wide
range of objects, �c, and initial conditions. The contact slips and rolls
to a point from which the object can be translated. Fig. 8 shows the
system response for three different combinations of kp and kd (for �
and � measured in radians) for the rectangular object with c = cuni,
�(0) = 20o, d(0) = �0:6 cm, �(0) = 90o, and �d = �10o.

C. Experimental Results
We experimented with several different combinations of kp and kd

(for � and � measured in radians) and empirically determined that
kp = 0:05, kd = 5:0 gave the best performance. Fig. 9 shows
an example time history of the system for these gain settings and
�d = �10o. The thin line represents � and the thick line represents
��90o. After 173 timesteps (17.3 s or 8.65 cm pushing in +y), � stays
within three degrees of �d. After 400 timesteps,�10:4o � � � �8:9o

and 80:2o � � � 85:8o. The object is essentially translating. During
this period the minimum value of��� is 90:6o and the maximum value
is 95:0o. Plugging these values and l into (17), we determine bounds
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on d during this time: 0:03 cm � d � 0.21 cm. By active sensing the
possible values of d have been reduced from �2:5 cm � d � 2.5 cm.

We tried the same control law for a non-polygonal object: a steel
disk of radius 2.85 cm with a CM at the center. The results for �d = 0o

are shown in fig. 10. After 110 timesteps, the contact orientation is
maintained within one degree of �d.

D. Discussion

The controller works encouragingly well in these examples. Our
implementation of the pushing controller is limited, however, by a
relatively small finger workspace, occasional sensor error, and limits
on detectable contact orientations due to the sensor design. These
factors restrict the range of stabilizable initial system states.

The simulation suggests that larger values of kp and kd give better
system response, but large experimental gains resulted in instability.
The primary reason for this is that the simulation assumes perfect
pusher position control. A more precise system model would include
a model of the response of the robot finger.

VI. CONCLUSIONS

This work demonstrates through simulation and experimentation
the feasibility of manipulation and active sensing by pushing using
only tactile feedback. To increase the utility of a pushing controller,
other control algorithms, including nonsmooth feedback laws, should
be studied.
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