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ABSTRACT: This paper deals with mechanical systems subjected to a general class of non-ideal equality con-
straints. It provides the explicit equations of motion for such systems when subjected to such nonideal, holonomic
and/or nonholonomic, constraints. It bases Lagrangian dynamics on a new and more general principle, of which
D’Alembert’s principle then becomes a special case applicable only when the constraints become ideal. By
expanding its perview, it allows Lagrangian dynamics to be directly applicable to many situations of practical
importance where non-ideal constraints arise, such as when there is sliding Coulomb friction.
INTRODUCTION

One of the central problems in the field of mechanics is the
determination of the equations of motion pertinent to con-
strained systems. The problem dates at least as far back as
Lagrange (1787), who devised the method of Lagrange mul-
tipliers specifically to handle constrained motion. Realizing
that this approach is suitable to problem-specific situations, the
basic problem of constrained motion has since been worked
on intensively by numerous scientists, including Volterra,
Boltzmann, Hamel, Novozhilov, Whittaker, and Synge, to
name a few.

About 100 years after Lagrange, Gibbs (1879) and Appell
(1899) independently devised what is today known as the
Gibbs-Appell method for obtaining the equations of motion
for constrained mechanical systems with nonintegrable equal-
ity constraints. The method relies on a felicitous choice of
quasicoordinates and, like the Lagrange multiplier method, is
amenable to problem-specific situations. The Gibbs-Appell ap-
proach relies on choosing certain quasicoordinates and elimi-
nating others, thereby falling under the general category of
elimination methods (Udwadia and Kalaba 1996). The central
idea behind these elimination methods was again first devel-
oped by Lagrange when he introduced the concept of gener-
alized coordinates. Yet, despite their discovery more than a
century ago, the Gibbs-Appell equations were considered by
many, up until very recently, to be at the pinnacle of our under-
standing of constrained motion; they have been referred to by
Pars (1979) in his opus on analytical dynamics as ‘‘probably
the simplest and most comprehensive equations of motion so
far discovered.’’

Dirac considered Hamiltonian systems with constraints that
were not explicitly dependent on time; he once more attacked
the problem of determining the Lagrange multipliers of the
Hamiltonian corresponding to the constrained dynamical sys-
tem. By ingeniously extending the concept of Poisson brack-
ets, he developed a method for determining these multipliers
in a systematic manner through the repeated use of the con-
sistency conditions (Dirac 1964; Sudarshan and Mukunda
1974). More recently, an explicit equation describing con-
strained motion of both conservative and nonconservative dy-
namical systems within the confines of classical mechanics
was developed by Udwadia and Kalaba (1992). They used as
their starting point Gauss’s principle (1829) and considered
general bilateral constraints that could be both nonlinear in the
generalized velocities and displacements and explicitly depen-
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dent on time. Furthermore, their result does not require the
constraints to be functionally independent.

All the above-mentioned methods for obtaining the equa-
tions of motion for constrained systems deal with ideal con-
straints, wherein the constraint forces do no work under virtual
displacements. The motion of an unconstrained system is, in
general, altered by the imposition of constraints; this alteration
in the motion of the unconstrained system can be viewed at
as being caused by the creation of additional ‘‘forces of con-
straint’’ brought into play through the imposition of these con-
straints. One view of the main task of analytical dynamics is
that it gives a prescription for (uniquely) determining the ac-
celerations of particles at any instant of time, given their
masses, positions, and velocities; the kinematic constraints
they need to satisfy; and the ‘‘given’’ (impressed) forces acting
on them, at that instant. The properties of the constraint forces
that are generated depend on the physical situation; these prop-
erties need to be provided in order to determine the particle
accelerations. Usually, they come from experiments. The prin-
ciple of D’Alembert, which was first stated in its generality
by Lagrange (1787), assumes that the constraints are such that
the forces of constraint do no work under virtual displace-
ments. Such constraints are often referred to as ideal con-
straints and seem to work well in many practical situations.
As pointed out by Lagrange, they provide a significant sim-
plification, which enables a relatively easy description of the
accelerations of the constrained system. This simplification
arises because under this assumption only the ‘‘given forces’’
do work under virtual displacements; the total work done by
the constraint forces is zero, and hence no forces of constraint
appear in the relation dealing with the total work done on the
system under virtual displacements. Additionally, from an al-
gebraic standpoint, the assumption of ideal constraints happens
to provide just the right amount of information for the accel-
erations of the constrained system to be uniquely determined
(Udwadia and Kalaba 1996)—that is, the problem of finding
the particle accelerations in the presence of ideal constraints
is neither overdetermined nor underdetermined.

However, the assumption of ideal constraints excludes sit-
uations that often arise in practice. Indeed, such occurrences
are commonplace in physics and engineering. Typically, the
inclusion of nonideal constraint forces that do work under vir-
tual displacements causes considerable difficulties in Lagran-
gian formulations; consequently, Lagrangian formulations of
analytical dynamics exclude these sorts of constraints. Exactly
how general, nonideal, equality constraints might be included
within the framework of Lagrangian mechanics thus remains
an open question today.

For example, the empirical sliding friction law suggested by
Coulomb has been found to be useful in modeling many me-
chanical systems; such forces of sliding friction constitute con-
straint forces that indeed do work under virtual displacements.
The special case of Coulomb friction can be handled in the
Lagrangian framework, though in a roundabout way that re-
sembles more Newtonian mechanics than Lagrangian mechan-
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ics (Rosenberg 1972). It requires a reformation of the Lagran-
gian approach by positing that the ‘‘given’’ forces are known
functions of the constraint forces. Even after all this, as stated
by Rosenberg (1972), ‘‘Lagrangian mechanics is not a con-
venient vehicle for dealing with [friction forces].’’ Goldstein
(1972), in his treatment of Lagrangian dynamics, asserts that
‘‘this [total work done by constraint forces equal to zero] is
no longer true if sliding friction forces are present, and we
must exclude such systems from our [Lagrangian] formula-
tion.’’ Moreover, as mentioned before, it leaves open the ques-
tion of how one might handle within the Lagrangian frame-
work more general forces of constraint that indeed do work
under virtual displacements. In the 200-year history of ana-
lytical dynamics, this problem has resisted a direct assault so
far as we know, because, unlike the ideal constraints situation,
now the constraint forces must appear in the relations dealing
with virtual work. More importantly, a major stumbling block
has been the question of what sort of nonideal constraints yield
a unique set of accelerations for a given unconstrained system.

In this paper, the writers obtain the explicit equations of
motion for general, conservative and nonconservative, dynam-
ical systems under the influence of a general class of nonideal
bilateral constraints. We show that such nonideal constraints
can be brought with simplicity and ease within the general
framework of Lagrangian mechanics and prove that, like ideal
constraints, they uniquely determine the accelerations of the
constrained system of particles. By deriving the explicit equa-
tions of motion for nonideal equality constraints, we expand
the perview of Lagrangian mechanics to include a much wider
variety of situations that often arise in practice, including slid-
ing Coulomb friction. Instead of D’Alembert’s principle, La-
grangian mechanics now becomes rooted in a new principle,
of which D’Alembert’s principle becomes a special case.
Three simple examples dealing with sliding friction and fric-
tional drag are provided to illustrate the main result.

EQUATIONS OF MOTION

Consider first an unconstrained system of particles, each
particle having a constant mass. By ‘‘unconstrained,’’ we
mean that the number of generalized coordinates, n, needed to
describe the configuration of the system at any time, t, equals
the number of degrees of freedom of the system. The equation
of motion for such a system can be written in the form

M(q, t)q̈ = Q(q, q̇, t); q(0) = q , q̇(0) = q̇ (1)0 0

where q(t) is the n-vector (i.e., n by 1 vector) of generalized
coordinates; M is an n by n symmetric, positive-definite ma-
trix; Q is the known n-vector of impressed forces; and the dots
refer to differentiation with respect to time. The acceleration,
a, of the unconstrained system at any time t is then given by
the relation a(q, q̇, t) = M21Q. We shall assume that both a(t)
and the displacement q(t) of the unconstrained system de-
scribed by (1) are locally unique.

We shall assume that this system is subjected to a set of m
= h 1 s consistent constraints of the form

w(q, t) = 0 (2)

and

c(q, q̇, t) = 0 (3)

where w is an h-vector and c is an s-vector. Furthermore, we
shall assume that the initial conditions q0 and q̇0 satisfy these
constraint equations at time t = 0.

Assuming that (2) and (3) are sufficiently smooth, we dif-
ferentiate (2) twice with respect to time, and (3) once with
respect to time, to obtain the equation
18 / JOURNAL OF AEROSPACE ENGINEERING / JANUARY 2000
A(q, q̇, t)q̈ = b(q, q̇, t) (4)

where the matrix A is m by n; and b is a suitably defined m-
vector that results from carrying out the differentiations. This
set of constraint equations includes, among others, the usual
holonomic, nonholonomic, scleronomic, rheonomic, catastatic,
and acatastatic varieties of constraints; combinations of such
constraints may also be permitted in (4). In the presence of
the constraints, the number of degrees of freedom of the sys-
tem is less than n. We shall resist the temptation to eliminate
the redundant coordinates (and/or quasi-coordinates), a strat-
egy that has customarily been used for the last 200 years.
Instead, the underlying theme of our approach will be to de-
termine an explicit equation for the acceleration vector q̈(t) of
the constrained system at time t, given the vectors of gener-
alized displacement, q(t); generalized velocity, q̇(t); the given
force, Q(q(t), q̇(t), t); and the nature of the constraints de-
scribed by (4) at time t.

Consider any instant of time t. When constraints are im-
posed at that instant of time on the unconstrained system, the
motion of the unconstrained system is, in general, altered from
what it might have been (at that instant of time) in the absence
of these constraints. We view this alteration in the motion of
the unconstrained system as being caused by an additional set
of forces, called the ‘‘forces of constraint,’’ acting on the sys-
tem at that instant of time. Since we shall be dealing with
nonideal constraints, we shall refrain from defining this addi-
tional set of forces—called the forces of constraint—as the
set of forces that do no work under virtual displacements, as
has been the common practice in analytical dynamics (see, for
example, Rosenberg 1972). The equation of motion of the con-
strained system can then be expressed as

cM(q, t)q̈ = Q(q, q̇, t) 1 Q (q, q̇, t), q(0) = q , q̇(0) = q̇ (5)0 0

where the additional ‘‘constraint force’’ Qc(q, q̇, t) arises by
virtue of the constraints (2) and (3) imposed on the uncon-
strained system, which is described by (1). Our aim is to de-
termine Qc explicitly at time t in terms of the known quantities
M, Q, A, and b and information about the nonideal nature of
the constraint force, at time t.

Starting from the extended D’Alembert’s principle (Udwa-
dia et al. 1997), we shall obtain the constraint force Qc ex-
plicitly, using ideal bilateral constraints; then, on the basis of
a new principle, an explicit equation for a class of nonideal
bilateral constraints will be obtained. In what follows, we will
usually omit for the sake of brevity the explicit arguments of
the various matrices and vectors.

A generalized virtual displacement at time instant t is de-
fined as any nonzero infinitesimal n-vector, v, which satisfies
the relation (Udwadia and Kalaba 1996)

Av = 0 (6)

Defining u = M1/2v, (6) is equivalent to the equation

Bu = 0 (7)

where the m by n matrix B = AM21/2. Denoting r̈ = M1/2q̈,
(4) can be expressed as

Br̈ = b (8)

The general solution of (8) is
1 1r̈ = B b 1 (I 2 B B)w (9)

where the n by m matrix B1 is the Moore-Penrose (1955)
inverse of the matrix B; and w is any arbitrary n-vector. The
first term on the right-hand side of (8) is known because both
the vector b and the matrix B are known at time t; it therefore
remains to determine the vector (I 2 B1B)w, based on the
principles of mechanics.



Ideal Constraints

By ideal constraints we mean that the constrained system
evolves in such a way that at each instant of time, the total
work done by the constraint forces under virtual displacements
is zero. This is an alternative statement of D’Alembert’s prin-
ciple; it forms the foundation of Lagrangian dynamics as we
know it today. Using (4) and (5), this requires that for all non-
zero vectors v such that Av = 0 (Udwadia et al. 1997):

T c Tv Q = v [Mq̈ 2 Q] = 0 (10)

Expressing (10) in terms of the previously defined vectors u
and r̈, and noting the equivalence between relations (6) and
(7), we find that the acceleration r̈ must be such that for all
nonzero vectors u that satisfy the relation Bu = 0, we must
have

T 21/2 c T 21/2 1/2 T 21/2u M Q = u M [M r̈ 2 Q] = u [r̈ 2 M Q] = 0 (11)

Furthermore, the acceleration r̈ must satisfy the constraints and
must therefore satisfy (8); hence, it must be of the form given
by (9). Thus, from (11) it follows that for all nonzero vectors
u that satisfy the relation Bu = 0, we require

T 1 1 21/2u [B b 1 (I 2 B B)w 2 M Q] = 0 (12)

However, Bu = 0 implies u1B1 = 0, which in turn implies
uTB1 = 0, since u ≠ 0. Requirement (12) can then be rephrased
as requiring that the vector w be such that

T 21/2u [w 2 M Q ] = 0,

T T; nonzero vectors u that satisfy the relation u B = 0 (13)

This implies that w must be given by the relation
21/2 Tw = M Q 1 B z (14)

where z is an arbitrary m-vector. Replacing w from (14) into
(9) now yields

1 1 21/2 Tr̈ = B b 1 (I 2 B B)(M Q 1 B z) (15)

But the matrix (I 2 B1B) is symmetric; hence
1 T T T 1 T 1[(I 2 B B)B z] = z B(I 2 B B) = z (B 2 BB B)

T= z (B 2 B) = 0 (16)

so that (15) reduces to

21/2 1 21/2r̈ = M Q 1 B (b 2 BM Q) (17)

Noting that r̈ = M1/2q̈ and B = AM21/2, (17) yields the equation
of motion for the constrained system as

1/2 21/2 1Mq̈ = Q 1 M (AM ) (b 2 Aa) (18)

where a is the acceleration of the unconstrained system and is
defined as a = M21Q. We have thus obtained explicitly the
constraint force at time t when the constraints are ideal as

c 1/2 21/2 1Q (q, q̇, t) = M (q, t){A(q, q̇, t)M (q, t)}i

?{b(q, q̇, t) 2 A(q, q̇, t)a(q, q̇, t)} (19)

The subscript i on Qc on the left-hand side is used to explicitly
indicate that the constraint force given by (19) is obtained
under the assumption of ideal constraints. Eq. (19) was first
derived by starting from Gauss’s principle of least constraint
(see Udwadia and Kalaba 1992).

Nonideal Constraints

We shall consider here a class of nonideal constraints. For
such constraints we need to postulate a new principle that re-
duces to D’Alembert’s principle when the constraints become
ideal. We now state this principle as follows: The total work
done at time t by the constraint forces Qc under virtual dis-
placements at time t is given by

T c Tv Q = v C(q, q̇, t) (20)

where C(q, q̇, t) is a known, prescribed, sufficiently smooth
n-vector (it needs only to be c1), and v is the virtual displace-
ment n-vector at time t. When C [ 0, this principle reduces
to D’Alembert’s principle, and all the constraints are ideal.

We thus require that for all nonzero vectors v such that Av
= 0:

T c T Tv Q = v [Mq̈ 2 Q] = v C(q, q̇, t) (21)

As before, this reduces to the requirement that for all nonzero
vectors u = M1/2v such that Bu = 0

T 21/2 T 1 1 21/2u [r̈ 2 M Q] = u [B b 1 (I 2 B B)w 2 M Q]

T 21/2= u M C(q, q̇, t) (22)

Again noting that since u ≠ 0, Bu = 0, implies uT B1 = 0, we
obtain the requirement that

T 21/2 21/2u [w 2 M Q 2 M C(q, q̇, t)] = 0 (23)

for all nonzero vectors u that satisfy the relation uTBT = 0.
Hence, w is of the form

21/2 21/2 Tw = M Q 1 M C(q, q̇, t) 1 B z (24)

Substitution of this w in (9) then gives, along the same lines
as before:

21/2 1 21/2 1 21/2r̈ = M Q 1 B (b 2 BM Q) 1 (I 2 B B)M C (25)

from which the equation of constrained motion is obtained as
1/2 21/2 1Mq̈ = Q 1 M (AM ) (b 2 Aa)

1/2 21/2 1 21/2 21/21 M {I 2 (AM ) (AM )}M C (26)

Eq. (26) thus provides the explicit equation of motion for a
dynamical system subjected to bilateral, holonomic and/or
nonholonomic equality constraints that are nonideal. When C
[ 0, all the constraints become ideal and the third member on
the right-hand side of (26) disappears, yielding (18).

We have also obtained explicitly the constraint force at time
t when one or more of the constraints are nonideal. Noting
(19), the total constraint force can be expressed as

c c cQ = Q 1 Q (27)i ni

where the n-vector is the contribution to the total constraintcQni

force from the presence of nonideal constraints; it is given by
c 1/2 21/2 1 21/2 21/2Q = M {I 2 (AM ) (AM )}M Cni

1/2 21/2 1 21= C 2 M (AM ) AM C (28)

We note that for all nonideal constraints of the form given
by (20), we obtain the particle accelerations uniquely.

Eq. (27) shows that the total constraint force Qc can be
decomposed into the sum of two constraint force n-vectors,

and The first of these is the constraint force that wouldc cQ Q .i ni

have existed had all the constraints been ideal; the second
may be thought of as a ‘‘correction term’’ to account for the
presence of nonideal constraints. In the presence of con-
straints, the first term in (27) is, in general, ever-present;cQi

the second appears only when one or more of the constraints
is nonideal.

Example 1

Consider a bead of mass m moving under gravity on a
straight wire that is inclined to the horizontal at an angle u, 0
< u < (p/2). The unconstrained motion of the bead (in the
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absence of the constraint imposed on its motion by the wire)
is given by

m 0 ẍ 0
= (29)F G F G F G0 m ÿ 2mg

where the x-direction is taken along the horizontal and the y-
direction is taken pointing upwards. The vector on the right-
hand side of (29) represents the given force Q. The wire con-
straint can be described by the equation

y = x tan u (30)

which, upon two differentiations with respect to time, yields

ÿ = ẍ tan u (31)

Since this can be written as

ẍ
[2tan u 1] = 0 (32)F Gÿ

the matrix A = [2tan u 1], and

2tan u21/2 1 1/2 2(AM ) = m cos u F G1

and the scalar b = 0.
Were the constraint represented by (30) assumed to be ideal,

the equation of motion for the system, by (18), would be

ẍ 0 2sin u cos u
m = 1 mg (33)2F G F G F Gÿ 2mg cos u

The second member on the right-hand side indicates explicitly
the constraint force generated by the ideal constraint rep-cQi

resented by (30). The magnitude of this constraint force is mg
cos u.

Were we to include Coulomb friction along the inclined
wire with a coefficient of friction m, the constraint will no
longer be ideal; the work done by the constraint force under
any virtual displacement v can then be represented as

m ẋT c T Tv Q = v C [ 2v mg cos u (34)F G2 2 ẏẋ 1 ẏÏ
Relation (34) states that the frictional force acts along the con-
straint, in a direction opposing the motion, and has a magni-
tude of We note that by virtue of (30), ẏ = ẋ tan u, socmuQ u.i

that the vector

cos u
C = 2mmg cos u sgn(ẋ) (35)F Gsin u

The nonideal constraint given by (34) now provides an addi-
tional constraint force given by

c 1/2 21/2 1 21/2 21/2Q = M {I 2 (AM ) (AM )}M Cni

2sin u 2sin u cos u
= I 2 C2H F GJ2sin u cos u cos u

2mmg cos u
= 2 sgn(ẋ)F Gmmg cos u sin u (36)

so that the constrained equation of motion is given by

ẍ 0 2sin u cos u
m = 1 mg 2F G F G F Gÿ 2mg cos u

2cos u
2 mmg sgn(ẋ)F Gcos u sin u (37)

where we have explicitly shown on the right-hand side the
three different constituents of the forces acting on the system.
The first term corresponds to the given forces Q; the second
corresponds to the force generated by the presence of thecQi
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constraint given by (30), were it an ideal constraint; and the
third corresponds to the additional force generated by thecQni

presence of the nonideal constraint given by (30), whose na-
ture is further described by (34). Equations of motion using
more general descriptions of the frictional forces can be ob-
tained in a similar manner.

It should be pointed out that and the equation of motioncQni

for the constrained system could have been directly written
down without the simplifications presented in (35) by using
(28) and (26), wherein the vector C is given by

m ẋ
C = 2 mg cos uF G2 2 ẏẋ 1 ẏÏ

Example 2

Consider a particle of unit mass constrained to move in a
circle in the vertical plane on a circular ring of radius R under
the action of gravity. The unconstrained motion of the particle
is given by

ẍ 0
= (38)F G F Gÿ 2g

and the constraint is represented by x2 1 y2 = R 2, which, upon
two differentiations with respect to time, becomes

ẍ 2 2[x y] = 2(ẋ 1 ẏ ) (39)F Gÿ
so that A = [x y], and

1 x1A = F G2 yR

Were this constraint to be ideal, the force of constraint cQi

would be given by (18) so that

2 2(ẋ 1 ẏ 2 gy)x/RcQ = 2 (40)i F Gy/R R

and the equation of motion of the constrained system becomes

2 2(ẋ 1 ẏ 2 gy)ẍ 0 x/R
= 2 (41)F G F G F Gÿ 2g y/R R

The magnitude of this constraint force, had the constraint been
ideal, is given by

2 2(ẋ 1 ẏ 2 gy)cuQ u =i U UR

Let the nature of the nonideal constraint generated by slid-
ing friction between the ring and the mass be described by

cmuQ uẋ iT c T Tv Q = v C [ 2v (42)F G 2 2ẏ (ẋ 1 ẏ )Ï

Along the circular trajectory of the particle, xẋ = 2yẏ, and we
get

c cmuQ u muQ uẋ 2y sgn(x)i iC = 2 = 2 sgn( ẏ) (43)F G F G2 2 ẏ uxuRẋ 1 ẏÏ

The contribution to the constraint force provided by this non-
ideal constraint is then given, by using (28) (note: M = I2) as

c 2muQ u 1 x xyic 1Q = {I 2 A A}C = 2 I 2ni 2H F GJ2 xy yR R

2y sgn(x) 2y sgn(x)/Rc? sgn( ẏ) = 2muQ u sgn( ẏ)iF G F Guxu uxu/R (44)

The equation of motion for the particle then becomes



2 2(ẋ 1 ẏ 2 gy)ẍ 0 x/R
= 2F G F G F Gÿ 2g y/R R

2y sgn(x)/Rc2 muQ u sgn( ẏ)i F Gx sgn(x)/R (45)

As before, we could have directly used the relation for C
[given by the first equality in (43)] in (26) to obtain the equa-
tion of motion of the nonideally constrained system.

Example 3

We consider next a particle of unit mass, moving with re-
spect to an inertial frame of reference, subjected to the given
forces fx(x, y, z, t), fy(x, y, z, t), and fz(x, y, z, t) acting on it in
the x-, y-, and z-directions, respectively. The particle is sub-
jected to the nonholonomic, nonideal, constraint

ẏ = zẋ (46)

where the work done by the constraint force Qc in a virtual
displacement v is given by

vT c T 2v Q = 2v a v (47)0S Duvu

Here, v is the velocity of the particle as it executes its con-
strained motion; and a0 is a given constant. Note that the non-
ideal constraint force Qc is brought into play only because the
particle is required to satisfy the nonholonomic, kinematical
constraint given by (46). We shall assume that the initial po-
sition and velocity of the particle is provided and that it sat-
isfies the constraint equation (46). Our aim is to determine the
equation of motion for the particle in the presence of the non-
ideal, nonholonomic constraint described by (46) and (47).

The unconstrained equation of motion of the particle is then
given by (M = I)

ẍ fx

ÿ = f = Q (48)yF G F G
z̈ fz

Differentiating (46), (4) yields

A = [2z 1 0], b = ẋż (49)

and (19) gives the contribution to the total constraint force,
were the nonholonomic constraint to be ideal, as

(ẋż 1 z f 2 f )x yc TQ = [2z 1 0] (50)i 2(1 1 z )

Additionally, the contribution to the total constraint force pro-
vided by virtue of the nonholonomic constraint being nonideal
is given by (28) as

2 2 2 1/2(ẋ 1 ẏ 1 ż )c 2 2 TQ = 2a [ẋ 1 zẏ zẋ 1 z ẏ ż(1 1 z )]ni 0 2(1 1 z )
(51)

Finally, the equation that describes the motion of the particle
with the nonholonomic, nonideal constraint [as described by
(46) and (47)] is then simply given by

ẍ f 2zx (ẋż 1 z f 2 f )x yc cÿ = Q 1 Q 1 Q = f 1 1i ni y 2F G F G F G(1 1 z )z̈ f 0z

ẋ 1 zẏ 2 2 2 1/2(ẋ 1 ẏ 1 ż )22 a zẋ 1 z ẏ0 2F G (1 1 z )2ż(1 1 z ) (52)

For this nonideal, nonholonomic system, we thus obtain an
easy decomposition of the right-hand side in terms of the given
force (vector), Q; the force of constraint that would have been
generated were the nonholonomic constraint ideal, and thecQ ;i

addition force, engendered because the constraint is notcQ ,ni

ideal. Such a decomposition of the acceleration of the particle
often assists in understanding the physics of the problem.

CONCLUSIONS

This paper deals with determining the explicit equation of
motion for a constrained dynamic system where the forces of
constraint satisfy a more general principle than that first enun-
ciated by D’Alembert and formalized by Lagrange (1787). We
state this principle as follows.

Consider an unconstrained system with n degrees of free-
dom. Let the system be subjected to general holonomic and
nonholonomic constraints. At each instant of time t, the virtual
work, vTQc, done by the force-of-constraint n-vector, Qc, under
any virtual displacement n-vector, v, is given by vTC(q, q̇, t),
where C(q, q̇, t) is a sufficiently smooth (at least c1) n-vector
function of its arguments.

The following points may be noted relevant to the equation
of motion obtained, and to the above-mentioned principle:

1. The principle generalizes D’Alembert’s principle for bi-
lateral constraints to situations when the constraint forces
do work under virtual displacements. It encompasses sit-
uations such as sliding Coulomb friction, and many other
types of constraint forces.

2. When the function C(q, q̇, t) is identically zero, the prin-
ciple stated above reduces to D’Alembert’s principle, and
the equation of motion of the constrained system reverts
back to the equation known earlier (Udwadia and Kalaba
1996).

3. A deeper understanding of the underlying physics is ob-
tained. The total constraint force Qc [see (26)–(28)] is
seen to be made up of two additive contributions. The
first contribution, to the total constraint force comescQ ,i

from consideration of the constraints as though they were
ideal; the second term comes from the fact that one or
more of the constraints are not ideal and C(q, q̇, t) is not
identically zero.

4. We have obtained a simple, explicit equation of motion
for a general conservative or nonconservative system
subjected to holonomic and/or nonholonomic bilateral
constraints that may be nonideal.

5. For any given sufficiently smooth n-vector C(q, q̇, t), the
acceleration vector of the constrained system is uniquely
determined and the trajectory is locally unique.

6. No elimination of coordinates or quasi-coordinates (as
required by the Gibbs-Appell approach) is undertaken.
The equations of motion pertinent to the constrained sys-
tem with nonideal holonomic and/or nonholonomic bi-
lateral constraints are obtained in the same set of coor-
dinates which are used to describe the unconstrained
system, thereby showing simply and explicitly the effect
of the addition of constraints on the equations of motion
of the unconstrained system.

Since its inception, Lagrangian mechanics has been built
upon the underlying principle of D’Alembert. This principle
makes the confining assumption that all constraints are ideal
constraints for which the sum total of the work done by the
forces of constraint under virtual displacements is zero.
Though often applicable, experiments show that this assump-
tion may be invalid in many practical situations, such as when
sliding friction is important. This paper releases Lagrangian
mechanics from this confinement and obtains the explicit
equations of motion allowing for holonomic and/or nonholo-
nomic bilateral constraints that are nonideal. The explicit equa-
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tions of motion obtained here are accordingly based on a more
general principle, which then includes D’Alembert’s principle
as a special case when the constraints are ideal.
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