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Abstract

The general explicit equations of motion for constrained discrete dynamical systems

are obtained. These new equations lead to a simple and new fundamental view of con-

strained motion where the forces of constraint may be ideal and/or non-ideal.

� 2004 Elsevier Inc. All rights reserved.
The general problem of obtaining the equations of motion of a constrained

discrete mechanical system is one of the central issues in analytical dynamics.

While it was formulated at least as far back as Lagrange, the determination
of the explicit equations of motion, even within the restricted compass of

lagrangian dynamics, has been a major hurdle. The Lagrange multiplier

method relies on problem specific approaches to the determination of the mul-

tipliers which are often difficult to obtain for systems with a large number of

degrees of freedom and many non-integrable constraints. Formulations offered

by Gibbs, Volterra, Appell, Boltzmann, and Poincare require a felicitous

choice of problem specific quasi-coordinates and suffer from similar problems

in dealing with systems with large numbers of degrees of freedom and many
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non-integrable constraints. Dirac offers a formulation for hamiltonian systems

with singular lagrangians where the constraints do not explicitly depend on

time.

The explicit equations of motion obtained by Udwadia and Kalaba [4] pro-

vide a new and different perspective on constrained motion. They introduce the

notion of generalized inverses in the description of such motion and, through
their use, obtain a simple and general explicit equation of motion for con-

strained mechanical systems without the use of, or any need for, the notion

of Lagrange multipliers. These equations are applicable to general mechanical

systems and include situations where the constraints may be: (1) nonlinear

functions of the velocities, (2) explicitly dependent on time, and, (3) function-

ally dependent. However, they deal only with systems where the constraints are

ideal and satisfy D�Alembert�s principle. This principle says that the motion of

a constrained mechanical system occurs in such a way that at every instant of
time the sum total of the work done under virtual displacements by the forces

of constraint is zero.

In this paper, we extend these results along two directions. First, we extend

D�Alembert�s Principle to include constraints that may be, in general, non-ideal

so that the forces of constraint may therefore do positive, negative, or zero

work under virtual displacements at any given instant of time during the mo-

tion of the constrained system. We thus expand lagrangian mechanics to in-

clude non-ideal constraint forces within its compass. We then obtain the
general, explicit equations of motion for such systems. Second, we use a differ-

ent kind of generalized inverse that makes the explicit equations of motion

much simpler and leads to deeper insights into the way Nature seems to work.

With the help of these equations we provide a new fundamental principle gov-

erning the motion of constrained mechanical systems.

Consider first an unconstrained, discrete dynamical system whose configura-

tion is described by the n generalized coordinates q = [q1,q2, . . .,qn]
T. By

�unconstrained� we mean that the components, _qi, of the velocity of the system
can be independently assigned at any given initial time, say, t = t0. Its equation

of motion can be obtained, using newtonian or lagrangian mechanics, by the

relation

Mðq; tÞ€q ¼ Qðq; _q; tÞ; ð1Þ

where the n by n matrix M is symmetric and positive definite. The matrix

M (q, t) and the generalized force n-vector (n by 1 matrix), Qðq; _q; tÞ, are known.
In this paper, by �known� we shall mean known functions of their arguments.

The generalized acceleration of the unconstrained system, which we denote

by the n-vector a, is then given by

€q ¼ M�1Q ¼ aðq; _q; tÞ: ð2Þ
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We next suppose that the system is subjected to h holonomic constraints of the

form

uiðq; tÞ ¼ 0 i ¼ 1; 2; . . . ; h ð3Þ
and m�h nonholonomic constraints of the form

uiðq; _q; tÞ ¼ 0; i ¼ hþ 1; hþ 2; . . . ;m: ð4Þ
The initial conditions q0 = q(t = t0) and _q0 ¼ _qðt ¼ t0Þ are assumed to satisfy

these constraints so that ui (q0, t0) = 0, i = 1,2, . . .,h, and uiðq0; _q0; t0Þ ¼ 0,

i = h + 1,h + 2, . . . ,m. We note that the constraints may be explicit functions

of time, and the nonholonomic constraints may be nonlinear in the velocity

components _qi. Under the assumption of sufficient smoothness, we can differ-
entiate equations (3) twice with respect to time and Eq. (4) once with respect to

time to obtain the consistent equation set

Aðq; _q; tÞ€q ¼ bðq; _q; tÞ; ð5Þ
where the constraint matrix, A, is a known m by n matrix and b is a known

m-vector. It is important to note that for a given set of initial conditions, equa-

tion set (5) is equivalent to Eqs. (3) and (4), which can be obtained by appro-
priately integrating the set (5).

The presence of the constraints (5) imposes additional forces of constraint

on the system that alter its acceleration so that the explicit equation of motion

of the constrained system becomes

M€q ¼ Qðq; _q; tÞ þ Qcðq; _q; tÞ: ð6Þ
The additional term, Qc, on the right-hand side arises by virtue of the imposed
constraints prescribed by Eq. (5).

We begin by generalizing D�Alembert�s Principle to include forces of con-

straint that may do positive, negative, or zero work under virtual

displacements.

We assume that for any virtual displacement vector, v (t), the total work

done, W = vTQc, by the forces of constraint at each instant of time t, is pre-

scribed (for the given, specific dynamical system under consideration) through

the specification of a known n-vector Cðq; _q; tÞ such that

W ¼ vTC: ð7Þ
Eq. (7) reduces to the usual D�Alembert�s Principle when C (t) � 0, for then the

total work done under virtual displacements is prescribed to be zero, and the

constraints are then said to be ideal. In general, the prescription of C is the task

of the mechanician who is modeling the specific constrained system whose

equation of motion is to be found. It may be determined for the specific system

at hand through experimentation, analogy with other systems, or otherwise.

We include the situation here when the constraints may be ideal over certain
intervals of time and non-ideal over other intervals. Also, W at any given
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instant of time may be negative, positive, or zero, allowing us to include

mechanical systems where energy may be extracted from, or fed into, them

through the presence of the constraints. We shall denote the acceleration of

the unconstrained system subjected to this prescribed force C by c (t) = M�1C.

We begin by stating our result for the constrained system described above.

For convenience we state it in two equivalent forms.

1. The explicit equation of motion that governs the evolution of the con-

strained system is

M€q ¼ Qþ Qc
i þ Qc

ni ¼ QþMAþ
Mðb� AM�1QÞ þMðI � Aþ

MAÞM�1C ð8Þ
or

€q ¼ aþ Aþ
Mðb� AaÞ þ ðI � Aþ

MAÞc ð9Þ
or

D ¼ €q� a ¼ Aþ
Mðb� AaÞ þ ðI � Aþ

MAÞc; ð10Þ
where, Aþ

M denotes the generalized Moore–Penrose M-inverse [7] of the con-
straint matrix A. In Eq. (10) we have denoted by D (t) the deviation of the

acceleration of the constrained system, €q, at time t from its unconstrained

value at that time, a (t). The quantity e (t): = (b � Aa) in Eqs. (9) and (10)

represents the extent to which the acceleration a, at the time t, corresponding

to the unconstrained motion does not satisfy the constraint equation (5).

2. At each instant of time t, the total force of constraint, Qc, is made up of two

additive parts. The first part, Qc
i , is the force of constraint that would have

been generated were the constraints ideal at the time t; the second part, Qc
ni,

is created by the non-ideal nature of the constraints at the time t. These two

contributions to the total constraint force are explicitly given by

Qc
i ¼ MAþ

Mðb� AaÞ ð11Þ
and

Qc
ni ¼ ðI � Aþ

MAÞ
TC ¼ MðI � Aþ

MAÞM�1C; ð12Þ
where Qc ¼ Qc

i þ Qc
ni. The subscripts �i� and �ni� refer to ideal and non-

ideal, respectively. When C (t) � 0, the constraints are all ideal and then

Qc ¼ Qc
i .

Eq. (10) leads to the following new fundamental principle of motion of con-

strained mechanical systems:
The motion of a discrete dynamical system subjected to constraints evolves, at

each instant in time, in such a way that the deviation in its acceleration from what

it would have at that instant if there were no constraints on it, is the sum of two

M-orthogonal components; the first component is directly proportional to the
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extent, e, to which the accelerations corresponding to its unconstrained motion, at

that instant, do not satisfy the constraints, the matrix of proportionality being

Aþ
M; and, the second component is proportional to the given n-vector c, the matrix

of proportionality being ðI � Aþ
MAÞ.

We define two n-vectors u and w to be M-orthogonal if uTMw = 0. Since the

generalized Moore–Penrose M-inverse of a matrix, Aþ
M, is not as well known as

the (regular) generalized Moore–Penrose inverse, A+, we provide here some of

its properties, which we shall shortly use. Given an m by n matrix A, and an n

by n positive definite matrix M, the n by m matrix Aþ
M is a unique matrix that

satisfies the following four relations [2]:

ð1Þ AAþ
MA ¼ A; ð13aÞ

ð2Þ Aþ
MAA

þ
M ¼ Aþ

M; ð13bÞ

ð3Þ ðAAþ
MÞ

T ¼ AAþ
M and ð13cÞ

ð4Þ ðAþ
MAÞ

T ¼ MAþ
MAM

�1: ð13dÞ

We note that Aþ
M differs from the regular Moore–Penrose (MP) generalized in-

verse, A+, in the fourth property stated in Eq. (13d). When M = l I, relation
(13d) reduces to the standard so-called fourth MP condition, and then

Aþ
M ¼ Aþ.

As stated in our fundamental principle above, the two components of accel-

eration engendered by the presence of the constraints are explicitly given by the
last two members of Eq. (9). Their M-orthogonality follows from the relations

ðI � Aþ
MAÞ

TMðAþ
MÞ ¼ ½IT �MðAþ

MAÞM�1�MAþ
M ¼ MðI � Aþ

MAÞAþ
M ¼ 0, where we

have used relation (13d) in the first equality and Eq. (13b) in the last.

The derivation of our result is as follows. The acceleration, €q, of the con-

strained system must satisfy two requirements. It must be such that:

(1) at each instant of time it must satisfy the constraints given by Eq. (5), and,

(2) the workW done under any virtual displacement by the force of constraint,
Qc, must, at each instant of time t, be as prescribed by relation (7).

Since we require the acceleration of the constrained system to satisfy the con-

sistent set of equations A€q ¼ AðDþ aÞ ¼ b, we have, from the theory of gener-

alized inverses

D ¼ Aþ
Mðb� AaÞ þ ðI � Aþ

MAÞz ð14Þ

where z is any arbitrary n-vector, and Aþ
M is the generalized Moore–Penrose

M-inverse (of the constraint matrix A) whose properties are described in

Eqs. (13a)–(13d). From Eq. (14) we then have
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M€q ¼ Mðaþ DÞ ¼ QþMAþ
Mðb� AaÞ þMðI � Aþ

MAÞz ¼ Qþ Qc; ð15Þ
so that

Qc ¼ MAþ
Mðb� AaÞ þMðI � Aþ

MAÞz: ð16Þ
To explicitly find Qc, we next determine the second member on the right in

Eq. (16) in such a way as to ensure that the second of the above-mentioned

requirements is satisfied. A virtual displacement at time t is any displacement

that satisfies the relation Av = 0 at that time [6]. But the explicit solution of this

homogeneous set of equations is simply

v ¼ ðI � Aþ
MAÞy; ð17Þ

where y is any arbitrary n-vector. And so from relation (7) we require that

W ¼ vTQc ¼ vT½MAþ
Mðb� AaÞ þMðI � Aþ

MAÞz� ¼ vTC; ð18Þ
where, at each instant of time, C is specified by the mechanician who is mode-

ling the specific mechanical system. Using Eq. (17) in the last equality in (18)
we get

yTðI � Aþ
MAÞ

T½MAþ
Mðb� AaÞ þMðI � Aþ

MAÞz� ¼ yTðI � Aþ
MAÞ

TC; ð19Þ
which, because y is arbitrary, yields

MðI � Aþ
MAÞz ¼ ðI � Aþ

MAÞ
TC ¼ MðI � Aþ

MAÞM�1C: ð20Þ
Relation (20) follows from (19) through the use of relations (13d) and

(13b) because ðI � Aþ
MAÞ

TMAþ
M ¼ ½I � ðAþ

MAÞ
T�MAþ

M ¼ ½I �MAþ
MAM

�1�MAþ
M ¼

MðI � Aþ
MAÞAþ

M ¼ 0; and ðI � Aþ
MAÞ

TMðI � Aþ
MAÞ ¼ MðI � Aþ

MA ÞðI � Aþ
MAÞ ¼

MðI � Aþ
MAÞ:

Using (20) in the second member on the right of Eq. (16) we obtain Qc, and

the result follows from Eq. (15).

We observe that Eq. (9) explicitly gives the acceleration of the constrained

system in terms of the two matrices Aþ
M and A, and the three column vectors

a, b, and c. Of these, the matrix A and the vectors a, b, and c are known func-

tions of their arguments. What remains to be found on the right-hand side of

Eq. (9) is the matrix Aþ
M. Here we explain the connection of Aþ

M to the singular

value decomposition of the m by nmatrix A for which there are several fast and
robust numerical algorithms available. One way of obtaining such a decompo-

sition is to determine the positive eigenvalues, k2i , of the semi-definite m by m

matrix AM�1AT and the corresponding orthonormal eigenvectors wi,

1,2, . . ., r, where r is the rank of A. Then the singular value decomposition of

the matrix A can be expressed as A = WKVT where, the m by r matrix

W = [w1 w2 . . . wr], the n by rmatrix V is such that VTM�1V = Ir, and the diag-

onal matrix K has as its nonzero elements the r positive singular values ki. The
matrix Aþ

M is then simply Aþ
M ¼ M�1V K�1W T. In most computing environ-
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ments, such as MATLAB, the computations needed to determine Aþ
M can be

carried out with considerable ease, speed, and reliably; the quantities MAþ
M

and MðI � Aþ
MAÞM�1 that appear in Eqs. (11) and (12) are then simply

VK�1WT and (I � VVTM�1), respectively. Furthermore, we point out that

A+ and Aþ
M are related, because ðAM�1=2Þþ ¼ M�1=2V K�1W T ¼ M1=2Aþ

M.

We see from Eqs. (8)–(12), however, that in the dynamics of constrained
motion a fundamental role is more directly played by the generalized

Moore–Penrose M-inverse, Aþ
M, rather than the (regular) generalized Moore–

Penrose inverse, A+, though the two are related. The matrix Aþ
M is in fact the

minimum length least-squares solution to the equation Ax = b when the length

of the vector x is defined as jxjM ¼ þ
ffiffiffiffiffiffiffiffiffiffiffi

xTMx
p

. The length defined in this way

pays heed to the fact that for a dynamical system of discrete particles the kin-

ematical line element in configuration space has a �length�, ds, defined by

ds2 ¼ 2Tdt2 ¼ _qTM _qdt2 ¼ dqTMdq where T is the kinetic energy of the system.
Hence the matrix M arises quite naturally in defining the metric in the config-

uration space of the system, and the elements ofM form the components of the

metric tensor [3].

The explicit equations of motion obtained herein, like those obtained earlier

for ideal constraints [5], are completely innocent of the notion of Lagrange

multipliers. Over the last 200 years, Lagrange multipliers have been so widely

used in the development of the equations of motion of constrained mechanical

systems that it is sometimes tempting to mistakenly believe that they have an
instrinsic presence in the description of constrained motion. This is not true.

As shown in this paper, neither in the formulation of the physical problem

of the motion of constrained mechanical systems nor in the equations govern-

ing their motion are any Lagrange multipliers involved. The use of Lagrange

multipliers (a mathematical tool invented by Lagrange [1]) constitutes just

one of the several intermediary mathematical devices invented for handling

constraints. And, in fact, the direct use of this device appears difficult when

the constraints are functionally dependent. Lagrange multipliers do not appear
in the physical description of constrained motion, and therefore cannot, and do

not, ultimately appear in the equations governing such motion.

The simplicity of the general explicit equation of motion obtained herein re-

lies on the interplay of four central observations:

(1) No transformation of coordinates, or their elimination, is undertaken when

constraints are present; the coordinates in which the unconstrained system

is described are the same as those used to describe the constrained system.
This, at first, appears to be counter-intuitive and indeed goes against a 200

year-old, well-accepted current of practice in analytical dynamics and the-

oretical physics that was first initiated by Lagrange. Though such transfor-

mations and eliminations are often useful in handling problems of

mathematical physics, it is the fact that we do not use them that appears
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to be ultimately responsible for the simplicity of the explicit equation

obtained herein, and the fundamental insights about the nature of con-

strained motion provided by it.

(2) The constraints are described in their differentiated form by Eq. (5); this a

consequence of the realization that, at any instant of time t, the �state� of
the system ðqðtÞ; _qðtÞÞ is assumed known, and it is the state immediately fol-
lowing this instant that must then be the focus of our inquiry.

(3) For a physical system where the constraint forces do work the equations of

motion cannot be obtained solely through knowledge of the kinematical

nature of the constraints as described by Eqs. (3) and (4); one needs to have

an additional dynamical characterization of the constraints given by the

extension of D�Alembert�s principle (or some equivalent of it), as stated

in Eq. (7). Such a characterization yields a unique equation of motion,

as expected from, and consistent with, practical observation.
(4) The generalized M-inverse of the constraint matrix A plays a quintessential

role in describing constrained motion in Nature. The constraints in our

equations can be nonlinear in the _qi�s, functionally dependent, and/or

explicitly depend on time. Knowledge of the rank of the matrix A is not

required to obtain the explicit form of the equation of motion governing

the constrained dynamical system; it is this fact that allows deeper insights

into the nature of constrained motion.

In this paper we have extended the Lagrangian formulation of mechanics to

include constraints that may be ideal and/or non-ideal, and the equations of

motion presented in this paper are applicable to mechanical systems that in-

clude such constraints. They appear to be the simplest and most comprehensive

equations of motion so far discovered for such systems.
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