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Abstract

In this paper, we present the general structure for the explicit equations of motion for general mechanical systems
subjected to holonomic and non-holonomic equality constraints. The constraints considered here need not satisfy
D’Alembert’s principle, and our derivation is not based on the principle of virtual work. Therefore, the equations
obtained here have general applicability. They show that in the presence of such constraints, the constraint force acting
on the system can always be viewed as made up of the sum of two components. The explicit form for each of the two
components is provided. The 5rst of these components is the constraint force that would have existed, were all the
constraints ideal; the second is caused by the non-ideal nature of the constraints, and though it needs speci5cation by
the mechanician and depends on the particular situation at hand, this component nonetheless has a speci5c form. The
paper also provides a generalized form of D’Alembert’s principle which is then used to obtain the explicit equations
of motion for constrained mechanical systems where the constraints may be non-ideal. We show an example where
the new general, explicit equations of motion obtained in this paper are used to directly write the equations of motion
for describing a non-holonomically constrained system with non-ideal constraints. Lastly, we provide a geometrical
description of constrained motion and thereby exhibit the simplicity with which Nature seems to operate. ? 2002
Elsevier Science Ltd. All rights reserved.

1. Introduction

Ever since the initial description of constrained
motion given by Lagrange [1] the problem of
obtaining the equations of motion for constrained
mechanical systems has been of considerable inter-
est to both mathematicians and engineers. Various
ways have been devised [2–7] for determining these
equations under the assumption that the work done
by the forces of constraint under virtual displace-
ments is always zero. Such constraints are often
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referred to as ideal constraints, and the assumption
that they do no work under virtual displacements is
referred to as D’Alembert’s principle [8]. However,
the inclusion of general constraint forces (which
may do work under virtual displacements) within
the framework of Lagrangian mechanics has posed
a considerable problem to date. Such forces indeed
do exist and are in fact commonplace in Nature, like
the force of sliding friction. No general equation of
motion within the Lagrangian framework for such
systems has so far been developed. As stated by
Goldstein (1981), “This [total work done by forces
of constraint equal to zero] is no longer true if slid-
ing friction is present, and we must exclude such
systems from our [Lagrangian] formulation” [9].
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And Pars (1979, p. 14) in his treatise [5] on ana-
lytical dynamics writes, “There are in fact systems
for which the principle enunciated [D’Alembert’s
Principle] : : : does not hold. But such systems will
not be considered in this book.”
In this paper we obtain the general form of

the equation of motion for holonomically and
non-holonomically constrained systems that is
valid independent of whether or not the constraints
satisfy D’Alembert’s principle. Unlike our previ-
ous results [10,11], we derive the general form of
the equation of motion without considerations of
virtual work. We 5nd that the total constraint force
can always be thought of as made up of two com-
ponents. The 5rst component is ever-present and
can be uniquely determined from information about
the unconstrained system and the kinematic equa-
tions of constraint that this unconstrained system
is required to satisfy. It is the force of constraint
that would have arisen had all the constraints been
ideal. The second component is caused by the
presence of the non-ideal nature of the constraints,
if such non-ideal constraints exist. We show that
this second component must appear in the equation
of motion of a constrained mechanical system in
a speci8c form, though. Using this form we then
particularize these non-ideal constraint forces to
situations where the work that they do under vir-
tual displacements is known and prescribed by the
mechanician. This leads us to state a generaliza-
tion of D’Alembert’s principle, and we show that
for constrained systems that satisfy this general-
ized principle one obtains an explicit and unique
equation of motion. This equation is then used to
further understand the general form of the equation
previously obtained. An example (a generalization
of Appell’s problem [12]) showing the application
of our results to a non-holonomically constrained
system with non-ideal constraints is provided. The
last section of the paper exposes the geometry of
constrained motion with non-ideal constraints.

2. Statement of problem

Consider an unconstrained mechanical system
described by the Lagrange equations

M (q; t) Mq=Q(q; q̇; t); q(0) = q0; q̇(0) = q̇0; (1)

where q(t) is the n-vector (i.e. n by 1 vector) of
generalized coordinates, M is an n× n symmetric,
positive-de5nite matrix, Q is the ‘known’ n-vector
of impressed (also, called ‘given’) forces, and the
dots refer to diQerentiation with respect to time.
By unconstrained, we mean that the components
of the n-vector q̇0 can be arbitrarily speci5ed. By
‘known’, we mean that Q is a known function of its
arguments. The acceleration, a, of the unconstrained
system at any time t is then given by the relation
a(q; q̇; t) =M−1(q; t)Q(q; q̇; t).
We shall assume that this system is subjected to

a set of m= h+ s consistent equality constraints of
the form

’(q; t) = 0 (2)

and

 (q; q̇; t) = 0; (3)

where ’ is an h-vector and  an s-vector. Further-
more, we shall assume that the initial conditions
q0 and q̇0 satisfy these constraint equations at time
t = 0, i.e., ’(q0; 0) = 0, and  (q0; q̇0; 0) = 0.
Assuming that Eqs. (2) and (3) are suRciently

smooth, 1 we diQerentiate Eq. (2) twice with respect
to time, and Eq. (3) once with respect to time, to
obtain an equation of the form:

A(q; q̇; t) Mq= b(q; q̇; t); (4)

where the matrix A is m× n, and b is the m-vector
that results from carrying out the diQerentiations.
We place no restrictions on the rank of the matrix A.
This set of constraint equations includes among

others, the usual holonomic, non-holonomic,
scleronomic, rheonomic, catastatic and acatastatic
varieties of constraints; combinations of such
constraints may also be permitted in Eq. (4). It is
important to note that Eq. (4), together with the
initial conditions, is equivalent to Eqs. (2) and (3).
Consider now any instant of time t. When the

equality constraints (Eqs. (2) and (3)) are imposed

1 We assume throughout this paper that the presence of
constraints does not change the rank of the matrix M . This is
almost always true in mechanical systems.
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at that instant of time on the unconstrained system,
the motion of the unconstrained system is, in gen-
eral, altered from what it would have been (at that
instant of time) in the absence of these constraints.
We view this alteration in the motion of the uncon-
strained system as being caused by an additional
set of forces, called the ‘forces of constraint’, act-
ing on the system at that instant of time. The equa-
tion of motion of the constrained system can then
be expressed as

M (q; t) Mq=Q(q; q̇; t) +Qc(q; q̇; t);

q(0) = q0; q̇(0) = q̇0; (5)

where the additional ‘constraint force’ n-vector,
Qc(q; q̇; t), arises by virtue of the constraints (2)
and (3) imposed on the unconstrained system,
which is described by Eq. (1). Our aim is to
determine a general explicit form for Qc at any
time t. In what follows, for brevity, we shall sup-
press the arguments of the various quantities, unless
necessary for purposes of clari5cation.
Following Gauss [2], another way of viewing

constrained motion is as follows. Let us premultiply
Eq. (5) by M−1. We then obtain the acceleration
equation

Mq= a+ Mqc; (6)

where a=M−1Q, and Mqc =M−1Qc. Now imagine
that the constrained mechanical system has evolved
up until some time, say t. We assume that we know
the velocity of the constrained system, q̇(t) , and
its con5guration, q(t), at that time. Our aim is to
5nd the subsequent motion of the constrained sys-
tem at the next instant of time. This would naturally
be accomplished if we knew the acceleration, Mq(t),
of the constrained system at time t. Now since the
acceleration of the unconstrained system, a, is a
function of q; q̇, and t, it is, by assumption, known
at time t. Hence we see that the problem of con-
strained motion can be viewed as requiring us to
5nd the deviation, S Mq, at each instant of time, of
the acceleration of the constrained system from that
it would have had, were there no constraints (i.e.,
from that of the unconstrained system). This devi-
ation can be expressed, using Eq. (6), as

S Mq(t) = Mq− a= Mqc: (7)

In what follows, instead of the accelerations we
shall use, for convenience, the ‘scaled’ accelera-
tions de5ned by

Mqs =M 1=2 Mq; (8)

as =M−1=2Q =M 1=2a; (9)

and

Mqcs =M−1=2Qc =M 1=2 Mqc: (10)

Thus ‘scaling’ consists of simply premultiplication
of the acceleration n-vectors at any time t, by the
matrixM 1=2 at that time. Eq. (6) can now be written
in terms of the scaled accelerations. These scaled
accelerations then satisfy, at each time t, the relation

Mqs = as + Mqcs ; (11)

and, by Eq. (4), also the relation

B Mqs = b; (12)

where

B= AM−1=2: (13)

We note that since, by assumption we know q and
q̇ at time t, the quantities M; A; B; Q, and b are
all known at time t. Eq. (11), therefore, informs
us that at time t, the (scaled) acceleration of the
constrained system, Mqs, deviates from the known
(scaled) acceleration of the unconstrained system,
as, by the quantity Mq

c
s . (As before, the unconstrained

acceleration as is known at time t, because as =
M−1=2Q.) This (scaled) deviation is caused by the
presence of the constraints (12) and their nature,
and it is the general form of this deviation, Mqcs , that
we shall now determine. By virtue of Eq. (10) the
knowledge of this deviation is tantamount to the
knowledge of the constraint force Qc.

3. General form for the equation of motion for
constrained mechanical systems

We begin by considering the matrices T = B+B
and N = (I − B+B), where the matrix B+ is
the Moore–Penrose (MP) inverse of the ma-
trix B [13]. 2 The matrix T is an orthogonal

2 Some of the basic properties of the Moore–Penrose inverse
used in this paper may be found in Chapter 2 of Reference 8.
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projection operator since (B+B)T = B+B, and T 2 =
(B+B)(B+B) = B+B= T . Both these results follow
from the de5nition of the MP inverse of the ma-
trix B. Also, N is an orthogonal projection opera-
tor since (I − B+B)T = I − (B+B)T = I − B+B, and
N 2 = N .
Furthermore, given an n-vector, w, the vector Nw

is such that B(Nw) = B(I − B+B)w= 0; hence Nw
belongs to the null space of the matrix B. Also the
vector Tw belongs to the range space of BT [8].
Since Rn = R(BT) ⊕ N(B), any n-vector w has a
unique orthogonal decomposition w=B+Bw+(I −
B+B)w; and so also our n-vector Mqs. We can thus
write the identity

Mqs = B+B Mqs + (I − B+B) Mqs; (14)

where the right-hand side simpli5es to Mqs. Since
the (scaled) acceleration of the constrained system
must satisfy Eqs. (11) and (12), we can replace,
on the right-hand side of Eq. (14), Mqs in the second
member by (as + Mqcs), and B Mqs in the 5rst member
by the m-vector b. This yields the relation

Mqs = B+b+ (I − B+B)(as + Mqcs)

= B+b+ (I − B+B)as + (I − B+B) Mqcs ; (15)

which can also be expressed as

Mqs = as + B+(b− Bas) + (I − B+B) Mqcs : (16)

Comparing the right-hand sides of Eqs. (11) and
(16) we see that

B+B Mqcs = B+(b− Bas) (17)

which, upon solving for Mqcs , gives

Mqcs = B+BB+(b− Bas) + {I − (B+B)+(B+B)}z
= B+(b− Bas) + (I − B+B)z (18)

for any n-vector z. We have thus obtained the most
general form that the (scaled) acceleration, Mqcs , of
a mechanical system subjected to the constraints
(2) and (3) can have. From Eq. (10), we note that
the force of constraint Qc = M 1=2 Mqcs , and Eq. (18)
becomes

Qc =M 1=2B+(b− Aa) +M 1=2(I − B+B)z; (19)

where we have used the relations (9) and (13) to
yield Bas = BM 1=2a = Aa. This then is the most
general form in which the force of constraint can
appear in a mechanical system constrained by
Eqs. (2) and (3).
We note that to obtain the unique constraint force

acting on a given constrained mechanical system,
we need a further speci5cation of the constraints
(beyond that provided through the knowledge of
the matrix A and the vector b); that is, we need a
speci8cation of the vector z at each instant of time.
In the next section we shall consider this in detail.
We now consider the 5rst member on the

right-hand side of Eq. (19). We note that were
the acceleration, a = M−1Q, of the unconstrained
system at time t to be inserted into the equation of
constraint (4), this equation would not, in general,
be satis5ed at that time. The extent to which the
constraint (Eq. (4)) would not be satis5ed by this
acceleration, a, of the unconstrained system at time
t would then be given by

e= b− Aa: (20)

Eq. (19) can now be rewritten as

Qc =M 1=2B+e+M 1=2(I − B+B)z (21)

and, using Eqs. (18), (7) and (10), the deviation,
S Mq, becomes

S Mq= Mq− a=M−1=2B+e+M−1=2(I − B+B)z:
(22)

Eqs. (21) and (22) encapsulate a new fundamen-
tal principle of mechanics which we state in two
equivalent statements.

1. A constrained mechanical system evolves in
such a way that, at each instant of time, the
deviation, S Mq, of its acceleration from what it
would have been at that instant had there been
no constraints on it, is given by a sum of two
components: the 5rst component is proportional
to the extent, e, to which the unconstrained ac-
celeration does not satisfy the constraints at that
instant of time, the matrix of proportionality
being the matrix M−1=2B+; the second is pro-
portional to an n-vector z that needs, in general,
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to be speci5ed at each instant of time, the matrix
of proportionality being M−1=2(I −B+B), where
B= AM−1=2.

2. At each instant of time, the force of constraint
acting on a constrained mechanical system is
made up of two components: the 5rst compo-
nent is proportional to the extent, e, to which the
unconstrained acceleration of the system does
not satisfy the constraints at that instant of time,
and the matrix of proportionality is M 1=2B+; the
second is proportional to an n-vector z that, in
general, needs further speci5cation at each in-
stant of time, the matrix of proportionality being
M 1=2(I − B+B), where B= AM−1=2. This vector
z is speci5c to a given mechanical system and
needs to be prescribed by the mechanician who
is modeling the system.

We note that these statements are natural extensions
of those previously obtained only for the case of
ideal constraints [7]. Using Eq. (21) in Eq. (5) we
are now ready to state the following fundamental
result.

Result 1. The equation of motion of any mechani-
cal system subjected to the constraints (2) and (3)
has, at each instant of time t, the explicit general
form

M Mq=Q +M 1=2B+(b− Aa) +M 1=2(I − B+B)z

=Q +Qc; (23)

where B=AM−1=2, and a=M−1Q. The n-vector z
needs to be speci5ed at each instant of time t, and
it depends on the nature of the speci5c mechanical
system under consideration. In general, A; B; a; b,
and z are each functions of q; q̇ and t; the matrix
M is a function of q and t.

We remark that the generality of this result stems
from the fact that we have been led to it, somewhat
surprisingly, simply through the use of Eqs. (11)–
(14). No appeal to the principle of virtual work
was made in obtaining it, and therefore the result is
valid, irrespective of whether the constraint forces
are ideal or not.
We next explore the speci5cation of the vector

z, which we shall show reTects the nature of the

non-ideal constraints in any given mechanical sys-
tem whose equation of motion we want to obtain.
As we shall soon see, it is useful to express the

total force of constraint, Qc, as being made up of
the two additive components:

Qci =M 1=2B+(b− Aa) (24)

and

Qcni =M 1=2(I − B+B)z; (25)

so that the total constraint force n-vector, Qc, is
given by

Qc =Qci +Qcni (26)

and Eq. (23) takes the less formidable form

M Mq=Q +Qci +Qcni: (27)

The reason for using the subscripts ‘i’ and ‘ni’ will
become clear in the following section.

4. Understanding the two components Qc
i and

Qc
ni of the force of constraint Q

c

To understand the two components of the total
constraint force n-vector, Qc, given by Eqs. (24)–
(26) we note 5rstly that the component, Qci , is ex-
plicitly known and is dependent on the description
of: the unconstrained system given by Eq. (1); and,
the constraints as given by Eq. (4). It thus only de-
pends on the four known entities A; M; Q, and b.
By ‘known’ we mean, as usual, known functions of
their arguments.
The second component, Qcni, of Q

c is dependent
on a vector z (which may be, in general, a function
of q; q̇ and t) that needs to be suitably speci5ed
for a given mechanical system, beyond the speci5-
cation of the four quantities just mentioned before.
We shall now attempt to understand the physical
meaning of the speci5cation of this vector z, that
appears in Eq. (23) and remains to be speci5ed so
that the appropriate equations of motion relevant to
a speci5c constrained mechanical system may be
obtained.
We begin by showing that if the constraints

satisfy D’Alemebert’s principle, then the n-vector
Qcni ≡ 0 for all time. For, D’Alembert’s principle
states that at each instant of time t, and for all vir-
tual displacements, v, at that time t, the work done
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by the force of constraint, Qc, under these virtual
displacements, v, must be zero; that is, vTQc = 0 at
each instant of time t. A virtual displacement [8]
at time t is any non-zero n-vector, v, such that at
that time, Av= 0.
Let us consider a speci5c instant of time t, and

assume that vTQc=0, but only at that instant of time
t. We shall refer to this assumption as D’Alembert’s
prescription. When D’Alembert’s prescription is
satis5ed at every instant of time, we obviously ob-
tain D’Alembert’s Principle, and the constraints are
then called ideal. If D’Alembert’s Principle is not
satis5ed, the constraint forces (and, for short, the
constraints) will be referred to as non-ideal.
Setting v=M−1=2�, we note that Av= 0 implies

AM−1=2(M 1=2v)=B�=0. D’Alembert’s prescription
then requires that at the instant of time t,

{� |B�= 0; � �= 0}}⇒ �TM−1=2Qc

= �TM−1=2Qci + �TM−1=2Qcni

= 0: (28)

The 5rst term on the left-hand side of the last equal-
ity in Eq. (28) gives the work done at time t under
virtual displacements by the component Qci , and the
second term the work done by the component Qcni.
But B� = 0 implies � = (I − B+B)u, for any

n-vector u at that time [8]. Thus relation (28) im-
plies that for all n-vectors u; uT(I−B+B)M−1=2Qc=
0 at time t. By Eqs. (24)–(28) we then require that
at time t, for all n-vectors u,

uT(I − B+B)M−1=2Qc = uT(I − B+B)M−1=2Qci

+ uT(I − B+B)M−1=2Qcni

= uT(I − B+B)B+(b− Aa)

+ uT(I − B+B)(I − B+B)z

=0+ uT(I − B+B)z = 0:

(29)

Notice that we have explicitly pointed out that the
5rst member on the right in the second equation
above is always zero, proving that the work done
by the component,Qci , of the total constraint force,
Qc, under virtual displacements is always (for all
time) zero.

Let us further decompose the n-vector z at time
t into its orthogonal components z= zn + zr , where
zn belongs to the null space of the matrix B, and
zr = BTw (for some m-vector w) belongs to the
range space of BT. Then the last equality in Eq. (29)
requires that at time t, for all n-vectors u,

uT(I − B+B)z= uT(I − B+B)(zn + zr)

= uTzn + uT(I − B+B)BTw

= uTzn = 0: (30)

For the last equality in Eq. (30) to be valid for all
n-vectors u, we must have zn = 0, and therefore
we see that at each instant of time t at which the
constraint force n-vector Qc satis5es D’Alembert’s
prescription, z = zr = BTw, for some m-vector w.
Furthermore, at each such instant of time we have

Qcni =M 1=2(I − B+B)z

=M 1=2(I − B+B)BTw

=M 1=2{I − (B+B)T}BTw
=M 1=2{BT − BT(BT)+BT}= 0: (31)

Hence at those instants of time at which the con-
straint forces satisfy D’Alembert’s prescription, we
must have Qc = Qci , and Qcni = 0! When the con-
straints are ideal and therefore satisfy D’Alembert’s
prescription for every instant of time, (i.e., they sat-
isfy D’Alembert’s Principle), Qc = Qci is then al-
ways true. We have shown the following important
result.

Result 2. At each instant of time at which the
forces of constraint obey D’Alembert’s prescrip-
tion, the equation of motion is uniquely determined
solely through knowledge of: (a) the unconstrained
system as contained in the known matrix M and
the known n-vector Q, and, (b) the constraints as
contained in Eqs. (2) and (3) (or alternatively by
Eq. (4)), and described by the m× n matrix A and
the m-vector b. The contribution, Qcni, to the total
constraint force n-vector, Qc, is zero at that instant,
and the explicit equation of motion at that instant
is then given by

M Mq=Q +Qci =Q +M 1=2B+(b− Aa): (32)
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When the constraints satisfy D’Alembert’s Princi-
ple, Eq. (32) is valid for all instants of time. The
equation of motion of the constrained system be-
comes (32). The second member on the right-hand
side in Eq. (32) explicitly gives the unique con-
straint force that the mechanical system is subjected
to under the assumption that all the constraints are
ideal.

We point out that Eq. (32) agrees with the ex-
plicit equation of motion given by Udwadia and
Kalaba [7,8] for constrained systems that satisfy
D’Alembert’s principle. Comparing Eq. (32) with
the general form (23) stated in Result 1, we obtain
the following fundamental result.

Result 3. In any constrained motion of a mechan-
ical system subjected to the constraints (2) and
(3), whether or not the constraints are ideal, the
total force of constraint, Qc = Qci + Qcni, is made
up of two additive components. The component
Qci =M 1=2B+(b−Aa) is always present in general,
and it is the force of constraint that would have been
generated had all the constraints been ideal. The
work done by this component Qci of the constraint
force under virtual displacements is always zero.
The second component Qcni of the total constraint
force is caused by the non-ideal nature of the con-
straints.

The work done by the constraint force, Qc, under
any virtual displacement v at any time t is, therefore,
always given by

vTQc = vTQci + vTQcni = vTQcni; (33)

because, as pointed out in the comment following
Eq. (29), at each instant of time vTQci = 0 for all
virtual displacements, v, at that instant. We then
have the next result.

Result 4. Only the component, Qcni, of the total
constraint force, Qc, can do work under virtual
displacements. The amount of work done by this
component of the total constraint force at any in-
stant of time t under a virtual displacement, v, at
that time, always has the explicit form

vTQc = vTQcni = vTM 1=2(I − B+B)z (34)

and, in general, at each instant of time t, the work
done may be positive, negative or zero. (At instants
of time when this work done is zero, the constraints
satisfy D’Alembert’s prescription, and hence Qcni =
0, at those instants, by our previous result.)
The component Qcni depends on the speci5cation

of the vector z for any given mechanical system.
Using Eq. (34), for a given constrained mechanical
system, the vector z (which, in general, may be a
function of q; q̇ and t) may be viewed as providing
the needed additional speci5cation related to the
constraints in the system (beyond that contained in
the matrix A and the vector b) that informs us of
the extent of work done by the constraint forces at
each instant of time t. During such a speci5cation,
it should be remembered that no work is done under
virtual displacements by the component zr of z that
lies in the range space of the matrix BT.

We now provide further insight into the physical
meaning of the vector z. Consider again the instant
of time t, and a given virtual displacement v of
the constrained system at that instant. Furthermore,
let us say that we could prescribe the work done,
W c(t), by the total constraint force n-vector, Qc,
under any given in5nitesimal virtual displacement
v at the instant t, by the quantity

W c(t) = vT(t)C(q; q̇; t) (35)

which may be positive, negative or zero at that
instant of time. The n-vector C is, in general,
time-dependent.
For any given mechanical system at hand, C

comes from a proper examination of the speci5c
system at hand; it depends on our understanding of
the nature of the constraint forces speci5c to the
given system, as best discernable to the mechani-
cian. In particular, it would be diQerent for a body
undergoing sliding friction (subjected to a set of
impressed forces) on a rough surface as opposed to
a smooth surface (and to the same set of impressed
forces). The n-vector C has the dimensions of force
and can be thought of as a kind of ‘generalized
force’ for describing the non-ideal nature of the con-
straints in any given, speci5c, mechanical system.
In general, as shown below it does not equal Qcni.
Eq. (35), which prescribes, for each instant of

time t, the work done under any in5nitesimal virtual
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displacement v at time t by the forces of constraint
acting at that time, constitutes a natural generaliza-
tion of D’Alembert’s prescription, and reduces to
D’Alembert’s Principle when C ≡ 0 for all instants
of time. We shall refer to Eq. (35) as the General-
ized D’Alembert’s Principle.
We now show that the prescription (at each in-

stant of time) of this vector C, allows us to uniquely
determine the contribution, Qcni, which is caused by
the presence of non-ideal constraints, to the total
constraint force, Qc. In short, such a prescription in
eQect, informs us of the relevant nature of z.
Our generalized D’Alembert’s Principle then

states that vTQc=vTQcni=W c at each instant of time
t, where W c(t) is speci5ed by the n-vector C. We
again set v=M−1=2�=M−1=2(I−B+B)u, as we did
before in Eqs. (28) and (29). This would require
that at each instant of time, for all n-vectors u,

uT(I − B+B)z = uT(I − B+B)M−1=2C; (36)

from which it follows that

Qcni =M 1=2(I − B+B)z =M 1=2(I − B+B)M−1=2C;
(37)

and Qcni is, therefore, uniquely determined. Using
this in Result 1, we obtain our next result.

Result 5. If for a given constrainedmechanical sys-
tem, the work done, W c, by the total force of con-
straint,Qc, under virtual displacements is prescribed
by the mechanician through a speci5cation of the
vector C(q; q̇; t) (see Eq. (35)), then the unique
equation describing the constrained motion of the
system is given by

M Mq=Q +M 1=2B+(b− Aa)

+M 1=2(I − B+B)M−1=2C: (38)

It is indeed satisfying that the generalized
D’Alembert’s principle through a speci5cation of
the ‘generalized’ constraint force, C, yields just
enough information to uniquely determine (the
contribution of the non-ideal nature of the con-
straints to) the constraint force component, Qcni, that
arises in the equation of motion of the constrained
mechanical system. It should be noted that this

n-vector C that describes the non-ideal constraints
does not itself appear directly in the equation of
motion (38). What appears instead is the projection
of M−1=2C on the null space of the matrix B. As
seen from Eq. (38), only when M−1=2C belongs
to the null space of B does Qcni = C. Also, if C
belongs to the range space of BT; Qcni = 0.
The last result and the remarks preparatory to

it have been aimed at understanding how one
might prescribe the vector z that arises in Eq.
(23) for any given practical situation. We have
found that the use of the generalized D’Alembert’s
Principle (which requires a speci5cation of the
vector C at each instant of time) yields a unique
characterization of Qcni, and therefore of Qc. We
have thus obtained, within the framework of La-
grangian dynamics, the explicit equation of motion
for systems with non-ideal constraints.
But were we to simply set z=M−1=2C (and this

we can always do, sinceM is positive de5nite) then
Eqs. (23) and (38) would be identical! This points
to the generality of Eq. (38), and gives us our last
result.

Result 6. The equation

M Mq=Q +M 1=2B+(b− Aa)

+M 1=2(I − B+B)M−1=2C

=Q +Qci +Qcni (39)

is the general equation of motion for any me-
chanical system that is holonomically and=or
non-holonomically constrained. The entities
A; B; Q; b, and C are, in general, functions of q;
q̇, and t.
The n-vector C(q; q̇; t) needs to be speci5ed at

each instant of time t, and it depends on the nature
of the non-ideal constraints in the speci5c mechan-
ical system under consideration. This n-vector can
always be viewed as that vector that speci5es the
work done by the force of constraint, Qc, at time
t under virtual displacements v (at that instant of
time) via the relation W c(t) ≡ vTQc = vTC.

Eq. (39) informs us that to model a given speci5c
mechanical system and obtain its equation of mo-
tion, once the coordinates, qi, are chosen, and the
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constraint equation (4) determined by the mechani-
cian, (s)he needs to further prescribe, in general,
the vector C(t). Furthermore, no matter how (s)he
arrives at (perhaps by inspection, or otherwise) the
requisite vector C(t) (or, equivalently z(t)) that
characterizes the nature of the non-ideal constraints
in the system, this vector can always be viewed in
terms of the virtual work done by the forces of con-
straint. Also, when C ≡ 0, and the constraints are
ideal then Eq. (39) reduces to the equation given in
Ref. [7].

5. Illustrative example

To illustrate the simplicity with which we can
write out the equations of motion for non-holonomic
systems with non-ideal constraints we consider
here a generalization of a well-known problem that
was 5rst introduced by Appell [12].
Consider a particle of unit mass moving in a

Cartesian inertial frame subjected to the known im-
pressed (given) forces Fx(x; y; z; t); Fy(x; y; z; t), and
Fz(x; y; z; t) acting in the X -, Y - and Z-directions.
Let the particle be subjected to the non-holonomic
constraint ẋ2 + ẏ 2− ż2 =2$g(x; y; z; t), where $ is a
given scalar constant and g is a given, known func-
tion of its arguments. (Appell [12] took $=0.) Let
us say that the mechanician (who has supposedly
examined the physical mechanism which is being
modeled here) ascertains that this constraint sub-
jects the particle to a force proportional to the square
of its velocity and opposing its motion, so that the
virtual work done by the force of constraint on the
particle is prescribed (by the mechanician) as

W c(t) =−a0vT(t)




ẋ
ẏ
ż


 u2

|u| ; (39′)

where u(t) is the speed of the particle. Thus the con-
straint is non-holonomic and non-ideal. We point
out that this force is caused solely because of the
presence of the constraint. In the absence of the
non-holonomic constraint, it would disappear.
We shall obtain the equations of motion of this

system.

On diQerentiating the constraint equation with re-
spect to time, we obtain

[ẋ ẏ − ż]




ẋ
ẏ
ż


= $ġ; (40)

where

ġ=
@g
@x

ẋ +
@g
@y

ẏ +
@g
@z

ż +
@g
@t

:

Thus we have A=[ẋ ẏ − ż], and the scalar b=$ġ.
Since M = I3; B=A. Hence B+ =1=u2[ẋ ẏ − ż]T,
and the vector C =−(a0u2=|u|)[ẋ ẏ ż]T.
The equation of motion for this constrained sys-

tem can now be written down directly by using Eq.
(38). It is given by


Mx
My
Mz


=



Fx

Fy

Fz


+ ($ġ− ẋFx − ẏFy + żFz)

u2




ẋ
ẏ
−ż




− a0
|u|



(ẏ 2 + ż2) −ẋẏ ẋż

−ẏẋ (ẋ2 + ż2) ẏż
ẋż ẏż (ẋ2 + ẏ 2)






ẋ
ẏ
ż


 ;

(41)

which simpli5es to


Mx
My
Mz


=



Fx

Fy

Fz


+ ($ġ− ẋFx − ẏFy + żFz)

u2




ẋ
ẏ
−ż




− a0
|u|




2ẋż2

2ẏż2

2ż(ẋ2 + ẏ 2)


 : (42)

The 5rst term on the right-hand side is the impressed
force. The second term on the right-hand side is the
constraint force Qci that would prevail were all the
constraints ideal so that they did no work under vir-
tual displacements. The third term on the right-hand
side of (42) is the contribution, Qcni, to the total con-
straint force generated by virtue of the fact that the
constraint force is not ideal, and its nature in the
given physical situation is speci5ed by the vector C,
which gives the work done by this constraint force
under virtual displacements. Note that Qcni �= C.
We observe that it is because we do not eliminate

any of the q’s or the q̇’s (as is customarily done in



1088 F.E. Udwadia, R.E. Kalaba / International Journal of Non-Linear Mechanics 37 (2002) 1079–1090

the development of the equations of motion for con-
strained systems) that we can explicitly assess the
eQect of the ‘given’ force, and of the components
Qci and Q

c
ni on the motion of the constrained system.

Problems that arise with sliding friction can be
handled in a similar manner [10]. We note that holo-
nomic constraints that do work could at times be
handled by Newtonian mechanics. However, to date
we know of no general formulations of mechan-
ics that provide the explicit equations of motion for
non-holonomically constrained mechanical systems
where the non-holonomic constraints do work.

6. The geometry of constrained motion with
non-ideal constraints

We present here a geometrical description of con-
strainedmotion. Using Eq. (18) in Eq. (1) the scaled
acceleration of the constrained system can be writ-
ten as

Mqs = N (as + cs) + B+b; (43)

where we have denoted here the n-vector z by cs.
Recalling that z can be expressed as z =M−1=2C,
the acceleration cs can be viewed as the ‘scaled’
acceleration [cs = M 1=2(M−1C)] created by the
‘generalized’ force C that speci5es the virtual work
done by the non-ideal constraint forces. As shown
in Fig. 1, Eq. (43) thus informs us that the scaled
acceleration of the constrained system is simply
the sum of two orthogonal vectors, one belonging
to the null space of B—denoted N(B), and the
other belonging to the range space of BT—denoted
R(BT).
Our geometrical understanding is also enhanced

by considering the deviation of the (scaled) acceler-
ation, S Mqs(t), of the constrained system from what
it would have been, had there been no constraints
on it at time t, given by (see Eqs. (11) and (18))

S Mqs = Mqs − as = B+(b− Bas) + (I − B+B)cs: (44)

Recalling Eq. (20), Eq. (44) becomes

S Mqs = Mqs − as = B+b− Tas + Ncs = B+e+ Ncs:
(45)

Fig. 1. The geometry of constrained motion is depicted using
projections on N(B) and R(BT). The projection of Mqs on
N(B) is the same as that of (as+cs) because N Mqs=N (as+cs).
The vector B+b is orthogonal to this projection.

Using the last equality, B+b, the component of the
(scaled) acceleration of the constrained system that
lies in R(BT) is given by (see Fig. 1)

B+b= B+e+ Tas: (46)

Fig. 1 depicts the relations (43)–(46) pictori-
ally, and reveals the geometrical elegance with
which Nature appears to operate. The n-vectors
B+e; Tas B+b are seen to belong to R(BT) which
is orthogonal to N(B) to which the n-vectors Ncs
(or Nz) and Nas belong.
At any time t, the component, B+b, of the

(scaled) acceleration of the constrained system
only depends on the three entities A; M , and b
(at time t) that occur in Eqs. (1) and (4); it is
not aQected by whether or not the constraints are
ideal. The presence of constraint forces that do
not satisfy D’Alembert’s principle (what we have
referred to in this paper as non-ideal constraint
forces) only aQects the component of the (scaled)
acceleration that lies in N(B) (see Fig. 1). Such
forces engender the n-vector cs, which then needs
to be suitably speci8ed in order to obtain the rel-
evant equation of motion for a given constrained
mechanical system. Their only eQect is on the com-
ponent of the acceleration that lies inN(B), and is
seen to be Ncs. At those instants of time at which
D’Alembert’s prescription is satis5ed, cs = 0, and
Fig. 1 reverts to the one that was obtained earlier,
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but only for constrained mechanical systems that
obeyed D’Alembert’s Principle [14].

7. Conclusions

In this paper we present a comprehensive descrip-
tion of constrained motion where the forces of con-
straint need not satisfy D’Alembert’s principle. We
summarize the main results of this paper as follows:

1. We obtain the general form of the explicit
equations of motion for constrained mechani-
cal systems. This general form is applicable to
all holonomically and non-holonomically con-
strained systems irrespective of whether they
satisfy D’Alembert’s Principle or not. It is
obtained without appealing to the principle of
virtual work. The general form shows that the
total force of constraint, Qc, is made up of the
sum of two contributions. The 5rst contribution,
Qci , is what would have been caused were all
the constraints ideal and had the unconstrained
system been required to satisfy the prescribed
constraint equations during its motion. This con-
tribution is uniquely determined once M , and
Q (which describe the unconstrained system),
and A and b (which characterize the kinematics
of the constraints), are known. The second con-
tribution, Qcni, to the total constraint force deals
with the non-ideal nature of the constraints.
It needs to be speci8ed by the mechanician
after an inspection of the given mechanical sys-
tem at hand through speci5cation of the vector
z(q; q̇; t). This speci5cation depends, in general,
on an understanding of the underlying physics
that is involved in generating the forces of con-
straint; one needs to rely here on the judgement
and discernment of the mechanician. Yet, it is
shown that the contribution Qcni takes a speci8c
form in the equation of motion that governs the
constrained system, as shown in Eq. (25).

2. We provide two fundamental principles that gov-
ern the motion of general constrained mechani-
cal systems.

3. In an eQort to understand the nature of
the n-vector z, we are led to generalize
D’Alembert’s Principle to include situations

in which the constraints are not ideal, and the
forces of constraint may do positive, nega-
tive, or zero work under virtual displacements.
This generalized principle reduces to the usual
D’Alembert’s Principle when the constraints are
ideal.

4. The framework of Lagrangian mechanics is used
to show that this generalized D’Alembert’s Prin-
ciple provides a deeper insight into the nature
of the vector z. In addition, this principle is
shown to provide just the right extent of infor-
mation to uniquely yield the accelerations of the
constrained system (subjected to non-ideal con-
straints), as demanded by practical observation.
In the situation that the constraints are ideal,
these accelerations agree with those determined
using formalisms (like those of Gibbs, Appell,
and Gauss) that have been developed earlier [8],
and that are only applicable to the case of ideal
constraints.

5. The general equations that describe constrained
motion (Eqs. (23) and (39)) obtained here ap-
pear to be the simplest and most comprehensive
so far discovered.

6. The paper shows how we can include gen-
eral constraint forces that do work within the
scope of the Lagrangian formulation of an-
alytical dynamics. Speci5cally, we provide
the explicit general equations of motion for
non-holonomically constrained systems where
the constraints do work. So far, this has been
beyond the reach of Lagrangian formulations
of mechanics (see Refs. [5,9]). We thus sur-
mount one of the long-standing diRculties in
mechanics.

7. The geometry of constrained motion described
here reveals the simplicity and elegance with
which Nature seems to operate.
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