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Abstract— This paper addresses the problem of understanding
the shape of the locomotor trajectories for a human being walking
in an empty space to reach a goal defined both in position and
in direction. Among all the possible trajectories reaching a given
goal what are the fundamental reasons to chose one trajectory
instead of another (see Fig. (1))? The underlying idea to attack
this question has been to relate this problem to an optimal control
problem: the trajectory is chosen according to some optimization
principle. This is our basic starting assumption. The subject
being viewed as a controlled system, the question becomes what
criteria is optimized? Is it the time to perform the trajectory?
the length of the path? the minimum jerk along the path?...
In this study we show that the human locomotor trajectories
are well approximated by the geodesics of a differential system
minimizing the L2 norm of the control. Such geodesics are made
of arcs of clothoids. The study is based on an experimental
protocol involving 7 subjects. They had to walk within a motion
capture room from a fixed starting point, and to cross over distant
porches from which both position in the room and orientation
were changing over trials.

I. I NTRODUCTION

Goal-oriented locomotion has mainly been investigated with
respect to how differentsensory inputsare dynamically in-
tegrated, facilitating the elaboration of locomotor commands
that allow reaching a desired body position in space. Visual,
vestibular and proprioceptive inputs were analyzed during both
normal and blindfolded locomotion in order to study how
humans could continuously control their trajectories (see [9]
and for a review, see [12]). The interaction between the relative
motion of the head, the torso and the eyes has also been studied
[10]. However, the principles underlying the generation (or
planning) of locomotor trajectories received little attention.
Recently, it has been observed that for predefined paths an
inverse relationship between path geometry (curvature profile)
and body kinematics (walking speed) exists [13], [25]. This
empirical relation known as“the power law” was previously
observed in [14] for drawing and hand-writing movements.
In particular, the so called one third power law, was consis-
tently reported in different experimental conditions even if no
physical reason relating speed and curvature exists (see [13]
for a review). Moreover, other studies suggest that the power
law seems to be a by-product of a more complex behavior
[19], [21]. Recent approaches based on optimization theory
provide optimality principles such as total energy expended,
smoothness, duration, accuracy, that encode a cost function

Fig. 1. Among four “possible” trajectories reaching the same goal, the
subject has chosen the bold one (the other trajectories have been drawn by
hand). Why?

to be minimized (for a review, see [22]). These methods are
used to predict optimal movements by searching the control
law according to some performance criterion.

Different hypothesis, like the maximization of the smooth-
ness [7], [21], have been used for characterizing the production
of motor behavior. In [24] the authors proposed a modified
minimum jerk model accounting for the two-thirds power law.
The minimum torque-change model [23] is also a smoothness
optimization principle in which dynamics is involved. This
model predicts also straight-line hand trajectories that corre-
spond to the hand trajectories observed experimentally. The
minimum variance model has been proposed for both, eye
and arm movements [11]. This model suggests that the neural
control signal is corrupted by noise. The predicted velocity
profiles of eye and arm trajectories account for the speed-
accuracy compromise stated by the Fitts’ law [8]. Even if these
models capture many aspects of observed hand trajectories and
the minimum variance model also predicts eye trajectories,
they have not been applied, in our knowledge, for locomotor
planning.

The point of view addressed in this paper differs from
the previous ones. We do not consider neither the sensory
inputs nor the complexity of mechanical system modeling



the human body. The point of view is complementary and
more macroscopic than the standard biomechanics approaches.
We rely on the observation of the geometric shape of the
locomotor trajectories in the simple 3-dimensional space of
both the position and the orientation of the body to compute
numerically the accessibility domain of a control system. The
resulting trajectories are the geodesics of the system that we
try to identify according to some optimization principle. This
problem is related to optimal control theory (e.g. [20]) already
successfully applied to mobile robotics (e.g. [15]). In the first
section we present the global methodology we followed. It
consists in two major stages. The first one is to obtain a control
model of the human locomotion validated by an experimental
protocol involving 7 subjects walking in a motion capture
room. This study has been previously published in [1]. The
current paper focuses on the second stage: how to explain the
shape of trajectories via optimal control.

II. M ETHODOLOGY

Our approach has been conducted with the following
methodology:

1) The first problem is how to model the system:what is
the differential controlled system that accounts for the human
locomotion at best? what experimental protocol validates the
model? The first stage of this work has been based on a
simple statement saying that “the best way to walk is to
put a foot in front of the other one and to start again”. “In
front of” means that the direction of the motion is given by
the direction of the body. There is a coupling between the
direction of the body and the tangent to the trajectory to be
realized. This is a differential non integrable coupling known
as being nonholonomic1. The first part of this research has
been to prove this statement and to provide a first control
system that accounts for the locomotor trajectories. We follow
a methodology based on a geometric study of the accessibility
domain of the forward locomotor trajectories:

First of all we stated the problem within the 3-dimensional
space of body position and direction, giving rise to the question
illustrated in Fig. (1). We restrict the study to the “natural”
forward locomotion with nominal speed. The model we study
should be valid for all possible intentional goals reachable by
a forward walk2. We exclude from the study the goals located
behind the starting position and the goals requiring side walk
steps3. Then we defined an experimental protocol accounting
for the intentional trajectories whose goals are defined both,
in position and direction. Because the objective was to cover
at best the 3-dimensional accessibility region, we sampled

1Nonholonomy is a classical concept from mechanics which has been very
fruitful in mobile robotics in the past twenty years.

2In an empty space any goal, even located behind the starting position may
be reachable by a forward walking. However this is not the “natural” way to
do so.

3This is an important assumption: it is related to the accessibility space of
a control system. Here we reasonably assume that the accessibility domain
of the forward locomotion is a kind of a 3-dimensional cone approximated
by the accessibility domain we consider in the protocol. Drawing the “exact”
frontiers of the forward locomotion accessibility domain is typically a topic
for future work open by this study.

Fig. 2. The porch and the room used in the experiments.

the domain with 480 points defined by 40 positions on a
2-dimensional grid (within a 5m by 9m rectangle) and 12
directions each. The starting position was always the same.
One subject performed all the 480 trajectories while other 6
performed only a subset of them chosen at random. Subjects
walked from the same initial configuration to a randomly
selected final configuration. The target consisted in a porch
which could be rotated around a fixed point to indicate the
desired final orientation (see Fig. (2)). They were instructed
to freely cross over this porch without any spatial constraints
relative to the path they might take. They were allowed to
choose their natural walking speed to perform the task. We
used motion capture technology to record more than 1400
real trajectories (see Fig. (3)). Subjects were equipped with
34 light reflective markers located on their bodies. This is the
data basis used for statistical analysis and validation of the
proposed models. Among the markers directly used for the
analysis, the torso position (middle point(xT , yT ) between
the left and the right shoulders) and directionϕT were found
to obey a simple nonholonomic system given by (see Fig. (4)): ẋT

˙yT
ϕ̇T

 =

 cosϕT
sinϕT

0

u1 +

 0
0
1

u2 (1)

where the control inputsu1 andu2 are the linear and angular
velocities respectively. It is known that the following equation

˙yT cosϕT − ẋT sinϕT = 0 (2)

defines a non integrable 2-dimensional distribution in the
3-dimensional manifoldR2 × S1 gathering all the configura-
tions (xT , yT , ϕT ): the coupling between the position and the
direction is said to be a nonholonomic constraint. Both linear
and angular velocities appear as the only two controls that
perfectly define the shape of the paths in the 3-dimensional
manifoldR2 × S1.

We then used the torso trajectories for the second stage of
our analysis.

2) The second part addresses the following question:given
a control system, the reachable space and optimal trajectories,
which is the optimal criterion that optimizes the steering of the
system? Not only the question is the opposite of the classical
optimal control problem (i.e. what are the trajectories which
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Fig. 3. Some examples of real trajectories with the same final orientation.
(a), (b), (c) and (d) show all real trajectories where the final orientation is
330 deg., 120 deg., 90 deg. and 270 deg. respectively.

optimize a given criteria?), but it also pretends to account for
a “global” point of view while most of the theoretical results
hold only locally. Our work takes advantage of both analytical
and numerical approaches to optimal control. First we apply
a numerical optimization algorithm to validate the following
hypothesis: locomotor trajectories are the optimal solutions
of a dynamic extension of a simple unicycle control model.
The validation method consists in comparing the optimal
trajectories of the system with the trajectories of the data basis.
The model being validated we then apply analytical methods
to characterize locally the geometric shape of the geodesics.
As a conclusion of this study, it is proven that:

- the locomotor trajectories minimize the variation of
the curvature, and

- the locomotor trajectories are well approximated by
clothoid arcs.

(a) (b)

Fig. 4. Torso direction profile with respect to the tangential direction
respectively. (a) shows the torso and the tangential directions. (b) shows the
torso direction shifted1

6
s backward and the tangential direction. All of them

correspond to the same motion (see [1]).

Fig. 5. Cornu spiral

A clothoid, also known as a Cornu spiral, is a curve along
which the curvatureκ depends linearly on the arc length and
varies continuously from−∞ to +∞. Their equation isκ =
κcs+κ0 wheres is the arc length,κ0 the initial curvature and
κc a constant characterizing the shape of the clothoid (see Fig.
(5)).

III. U NDERSTANDING THE GEOMETRIC SHAPE OF

LOCOMOTOR TRAJECTORIES VIA OPTIMAL CONTROL

A. Introduction: optimal control tools

The question we address in this part of the study is to
find which should be the criterion to be optimized given the
experimental data and a model [16], [17]. It is the opposite
optimal control problem: given a control system and the
optimal trajectories, which is the performance criterion to be
optimized? Unfortunately, it is not evident to answer this ques-
tion in the context of motor control even if it could be more
useful. Nevertheless, some tools of optimal control theory are
still useful to characterize optimal trajectories minimizing dif-
ferent cost functions to predict locomotor trajectories verifying
the nonholonomic constraints. Here we introduce a dynamic
extension of system (1).



B. Model and algorithm

1) The unicycle system with inertial control law:it is noted
in the previous system (1) that the curvatureκT cannot vary
continuously along a given trajectory. In order to make the
curvature a variable of the system, a dynamic extension is
proposed by controlling the variation of the curvature instead
of the angular velocity.

ẋT
˙yT
ϕ̇T
κ̇T

 =


cosϕT
sinϕT
κT
0

u1 +


0
0
0
1

u2 (3)

The control inputsu1 andu2 are, for this system, the linear
velocity and the variation of the curvature respectively. The
nonholonomic constraint is expressed by the same Eq. (2).

2) Optimal steering of the control model:here we consider
the problem of steering the System (3) from an initial state
q(0) = q0 to a final stateq(1) = qf minimizing theL2 norm
of the control given by

J =
1
2

∫ T

0

< (u(τ), u(τ)) > dτ (4)

which corresponds to the least squares optimal control
problem. To find a set of control inputsu(t) ∈ Rm, t ∈ [0, T ],
which minimizes the costJ and steers the system fromq0 to
qf , we assume that the system is controllable and consequently
that there exists a solutionu∗ ∈ L2([0, T ]) for the problem.
The HamiltonianH is defined by

H =
1
2

(u2
1+u2

2)+ψ1 cosϕTu1+ψ2 sinϕTu1+ψ3κTu1+ψ4u2

∂H
∂u = 0

{
u1 + ψ1 cosϕT + ψ2 sinϕT + ψ3κ = 0
u2 + ψ4 = 0

So we have the adjoint systeṁΨ = −∂H∂q (for every t ∈
[0, T ]):

Ψ̇ =


ψ̇1 = 0
ψ̇2 = 0
ψ̇3 = ψ1 sinϕTu1 − ψ2 cosϕTu1

ψ̇4 = −ψ3u1

By differentiating the optimal controls:

u̇1 = −ψ3u2

u̇2 = ψ3u1

We therefore obtain:

u2
1 + u2

2 = constant (5)

3) Algorithm: in general, it is difficult to find the solution
of the optimal steering of nonholonomic systems, the only
possibility is to rely on numerical methods4. We describe here
the method developed by Fernandes, Gurvits, and Li [6].

Let us consider the dynamical System (3) together with
the cost function given by (4). Denoting by{ek}∞k=1 an
orthonormal basis forL2([0, T ]) and considering a continuous
and piecewiseC1 control lawu defined over[0, T ], we may
write a functionu ∈ L2([0, T ]) in terms of a Fourier basis:

u =
∞∑
k=1

(αke
i 2kπt
T

k + βke
−i 2kπt

T

k )

Thenu can be approximated by truncating its expansion up
to some rankN . The new control lawu and the objective
function J is then expressed as

u =
N∑
k=1

αkek =⇒ J '
N∑
k=1

| αk |2

where α = (α1, α2, ..., αN ) ∈ RN is to be determined.
The configurationq(T ) is the solution at timeT applying the
control lawu. Clearly,q(T ) appears as a functionf(α) from
RN to Rn. In order to steer the system toqf , an additional
term must be added to the cost function:

J(α) =
N∑
k=1

| αk |2 +γ‖f(α)− qf‖2

where q(T ) = f(α) and γ is a tuning parameter during
the optimization. It is proved [6] that the solution of the new
finite-dimensional problem converges to the exact solution as
N andγ go to infinity.

The new optimization problem becomes: given a fixed time
T and q0, qf find α ∈ RN such that the cost functionJ(α)
is minimized. In other words, this approach will give us near-
optimal paths. Becausef(α) most of the cases is not known,
we should use numerical integration to obtainf(α) and its
Jacobian,∂f∂α ∈ R

n×N . To compute a solution of the problem,
it can be used a variation of the Newton’s algorithm to update
α.

C. Experimental results

In this section we will show the results obtained by applying
the numerical optimization approach (see Section (III-B.3))
to the differential System (3) minimizing theL2 norm of
the control. It is important to emphasize that all the real
trajectories have not been filtered.

We first applied the algorithm above to System (1) for all
trajectories performed by the seven subjects. The results were
not satisfactory. This has been the motivation to envisage
the differential system with inertial control law with two
control inputs: the linear velocity and the derivative of the
curvature. The equation describing the system is given by (3).

4Few special cases similar to ours have been solved analytically: they deal
with the computation of the shortest paths for Dubins’s car [5], Reeds and
Shepp’s car [18], and some extensions of them [4], [2], [3].
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Fig. 6. Representative examples of comparisons between real (thin) and
predicted (bold) locomotor trajectories. (a) shows an real trajectory performed
by the first subject (thin) and the predicted optimal control-effort trajectory
linking the same initial and final configurations (bold). (b) shows the real
(thin) trajectories performed by the seven subjects with respect to predicted
(bold) optimal control-effort trajectory. All these trajectories correspond to the
same initial and final configuration. It illustrates the variability pattern and
the predicted average trajectory. (c) and (d) show the comparison between
the control inputs extracted from the real trajectory (filtered) of (a) and
the computed optimal control inputs extracted from optimal control-effort
trajectories.

To validate the model, we compared the predicted trajectories
to the recorded ones performed by the seven subjects. The cost
function considered was the control-effort expended. Fig. (6)
shows a representative real trajectory performed by the first
subject and the optimal control-effort trajectory linking the
same initial and the final configurations. The real trajectory has
been filtered to illustrate the comparison between the control
inputs extracted from the real (filtered) trajectory and the com-
puted optimal control inputs. Fig. (7) shows some examples of
the behavior of the real and predicted trajectories by translating
the final position over both: the vertical and the horizontal axes
with a fixed final orientation. Fig. (8) shows some examples
of real and predicted trajectories for a fixed final position. The
final orientation varies in intervals ofπ6 . To measure how well

(a) (b)

Fig. 7. Representative examples of comparisons between real (thin) and
predicted (bold) locomotor trajectories. (a) shows the behavior of the real
and predicted trajectories by translating the final position in the vertical axis
with a fixed final orientation. (b) shows the behavior of the real and predicted
trajectories by translating the final position in the horizontal axis with a fixed
final orientation.

(a) (b)

Fig. 8. Representative examples of comparisons between real (thin) and pre-
dicted (bold) locomotor trajectories. (a) shows symmetric real and predicted
trajectories for a fixed final position. The final orientation varies in intervals
of π

6
. (b) illustrates the decision processes of the natural question: should I

reach the goal by the left or by the right side?



the model predicts locomotor trajectories, we calculated for
each pair of real and predicted trajectories, that correspond
to the same initial and final configuration, the distance error
point by point between the pair of such trajectories. Then,
we computed the mean distance error dividing the sum of
the errors by the number of points. After that, we compared
all these errors with an arbitrary threshold of 10cm. So, for
each trajectory, if the error associated is< 10cm then the
pair is marked as a good prediction. This procedure has been
executed for 1,430 trajectories performed by seven subjects. It
is interesting to note that the model approximates 90 percent
of trajectories with a precision error<10cm. Consequently,
this study proves that:
• the locomotor trajectories are well approximated by

the optimal solutions of a dynamic extension of a
simple unicycle model, and

• the locomotor trajectories minimize the variation of
the curvature.

The statistical analysis shows thatu1 ≡ constant over the
whole interval of time. According to Eq. (5) we can deduce
that u2 ≡ βi should be a piecewise constant function. Since
κ̇T = u2 and considering thatβi = κcu1, by integration we
obtain thatκT = κcs+κi−1 whereκi−1 is the initial curvature,
s = u1t and κc a constant characterizing the shape of the
clothoid, therefore:
• clothoid arcs are a good approximation of locomotor

trajectories.

IV. CONCLUSION

In the first part of this study, we have shown that the forward
human locomotion, represented by the torso position and direc-
tion, obeys the motion of a nonholonomic system with linear
and angular velocity inputs. In the second part, we were able to
predict more than 90 percent of the 1430 trajectories recorded
in 7 subjects during walking tasks with a<10 cm accuracy.
We have implemented a numerical optimization algorithm to
validate that the locomotor trajectories are well approximated
by the optimal solutions of a dynamic extension of the unicycle
model minimizing the variation of the curvature. We have
locally characterized the geometric shape of the geodesics by
using an analytical optimal control approach. However, the
number of concatenated arcs of clothoids (switching points)
are under study. Based on the data basis we have identified
no more than two arcs of clothoids. As a consequence of this
study, the wave-front of the locomotion may be computed.
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