
d d d d
ddd ddd ddd dd

d
d d dd

Institut für Informatik
der Technischen Universität München

Tailoring Robot Actions to Novel Task
Contexts using Action Models

Dissertation

Freek Stulp

Institut für Informatik

der Technischen Universität München

Tailoring Robot Actions to Novel Task Contexts using Action Models

Freek Stulp

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Universität

München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: ..

Prüfer der Dissertation:

1. ..

2. ..

3. ..

Die Dissertation wurde am bei der Technischen Universität München eingereicht

und durch die Fakultät für Informatik am angenommen.

Abstract

In motor control, high-level goals must be expressed in terms of low-level motor commands.

An effective method to bridge this gap, widespread in both nature and robotics, is to acquire a

set of temporally extended actions, each designed for specific goals and task contexts. An ac-

tion selection module then selects the appropriate action in a given situation. In this approach,

high-level goals are mapped to actions, and actions produce streams of motor commands. The

first mapping is often ambiguous, as several actions or action parameterizations can achieve

the same goal. Instead of choosing an arbitrary action or parameterization, the robot should se-

lect those that best fulfill some pre-specified requirement, such as minimal execution duration,

successful execution, or coordination of actions with others.

The key to being able to perform this selection lies in prediction. By predicting the perfor-

mance of different actions and action parameterizations, the robot can also predict which of

them best meets the requirement. Action models, which have many similarities with human

forward models, enable robots to make such predictions.

In this dissertation, we will introduce a computational model for the acquisition and appli-

cation of action models. First, action models are learned from observed experience. Three

applications of action models will be presented. 1)Subgoal refinement, which enables robots

to optimize actions in action sequences by predicting which action parameterization leads to

the best performance. 2)Condition refinementandsubgoal assertion, with which robots can

adapt existing actions to novel task contexts and goals by predicting when action execution

will fail. 3) Implicit coordination, that multiple robots can use to coordinate their actions,

by locally making predictions about the performance of other robots. The acquisition and

applications of action models have been evaluated in three robotic domains: the Pioneer I

robots of our RoboCup mid-size league team, a simulated B21 in a kitchen environment, and

a PowerCube robotic arm.

The main principle behind this approach is that in robot controller design, knowledge that

robots learn from observed experience themselves complements well the abstract knowledge

that humans specify.

Zusammenfassung

In der Bewegungssteuerung müssen abstrakte Ziele in konkreten Bewegungsbefehlen ausge-

drückt werden. In der Natur wie in der Robotik kann diese Kluft durch Aktionen überwun-

den werden, die für spezifische Ziele und Aufgabenkontexte bestimmt sind. Ein spezielles

Modul wählt dann die Aktionen aus, welche sich für die jeweilige Situation eignen. Die

Abbildung von Zielen auf Aktionen ist häufig vieldeutig, da mehrere Aktionen oder Aktion-

sparametrisierungen das gleiche Ziel erreichen können. Statt eine beliebige Aktion oder Ak-

tionsparametrisierung zu wählen, sollte der Roboter jene bevorzugen, die eine vordefinierte

Anforderung erfüllen, wie etwa minimale Ausführungsdauer, Ausführungserfolg oder Koor-

dination mit anderen Robotern.

Die Vorhersage der Leistung bestimmter Aktionen erlaubt es dem Roboter zu erkennen,

welche Aktion oder Aktionsparametrisierung die Anforderung am Besten erfüllen werden.

Aktionsmodelle, die Ähnlichkeit mit dem ‘Forward Model’ des Menschen haben, ermöglichen

Robotern, solche Vorhersagen zu machen.

In dieser Dissertation stellen wir ein Berechnungsmodell für den Erwerb und die Anwen-

dung dieser Aktionsmodelle vor. Zuerst werden Aktionsmodelle aus beobachteter Erfahrung

erlernt. Drei Anwendungen der Aktionsmodelle werden dargestellt. 1)Subgoal Refine-

ment, das Aktionen in den Aktionsketten optimiert, indem es voraussagt, welche Aktions-

parametrisierung zur besten Leistung führen wird. 2)Condition Refinementund Subgoal

Assertion, die vorhandene Aktionen neuen Aufgabenkontexten und Zielen anpassen, indem

sie voraussagen, wann die Aktionsdurchführung fehlschlagen wird. 3)Implicit Coordina-

tion, mit deren Hilfe Roboter durch lokale Vorhersagen über die Leistung anderer Roboter

ihre Aktionen koordinieren können. Der Erwerb und die Anwendungen der Aktionsmodelle

sind ausgewertet worden auf Pioneer I Fussballrobotern, auf einem simulierten B21 in einer

Küchenumgebung, und bei der Steuerung eines PowerCube Arms.

Das Hauptprinzip dieses Ansatzes besteht darin, dass beim Entwurf von Robotersteuer-

einheiten das Wissen, das sich Roboter selbst durch Beobachtung aneignen, jenes durch den

Menschen bestimmte abstrakte Wissen gut komplettiert.

Contents

1. Introduction 1

1.1. Key Principles . 2

Principle I. Declarative knowledge: human specified4

Principle II. Procedural knowledge: durative actions4

Principle III. zzz . 6

Principle IV. Predictive knowledge enables effective control7

Principle V. Predictive knowledge can be learned9

1.2. Robotic Domains .10

Robotic soccer .11

Service robotics .12

Arm control . 12

1.3. Contributions .13

1.4. Outline .15

2. Computational Model 17

2.1. Dynamic System Model .17

2.2. Durative Actions and Action Selection .20

2.3. Guide to the Remainder of the Dissertation23

3. Related Work 25

3.1. Action Selection Schemes .25

3.2. Action Models .28

3.3. Cognitive Systems .35

4. Learning Action Models 37

4.1. Acquisition of Training Data .38

4.2. Learning Algorithms .49

9

4.3. Empirical Evaluation .51

4.4. Related Work .52

4.5. Conclusion .54

5. Task Context: Action Sequences 57

5.1. Computational Model .59

5.2. Action Sequence Generation .61

5.3. Subgoal Refinement .66

5.4. Empirical Evaluation .73

5.5. Related Work .82

5.6. Conclusion .89

6. Task Context: Task Variants 91

6.1. Computational Model .93

6.2. Condition Refinement .94

6.3. Subgoal Assertion .96

6.4. Empirical Evaluation .98

6.5. Related Work .99

6.6. Conclusion .102

7. Task Context: Multiple Robots 105

7.1. Computational Model .107

7.2. Applying Implicit Coordination .109

7.3. Implicit Coordination in Heterogeneous Teams111

7.4. Empirical Evaluation .113

7.5. Related Work .121

7.6. Conclusion .123

8. Conclusion 125

Appendices 127

A. Action Libraries .127

B. AGILO RoboCuppers: Hardware and Tools129

C. Tree-based Induction .134

D. Summaries of Publications .141

List of Figures

1.1. Soccer scenario .1

1.2. Two alternative executions of the same action sequence.2

1.3. Novel actions vs. Existing actions .8

1.4. The mid-size league soccer domain. .11

1.5. The simulated kitchen environment and the PowerCube arm.13

2.1. Dynamic system model .18

2.2. Organization of actions and action selection in controllers20

2.3. System overview .24

3.1. Distal Learning .32

4.1. Acquiring action models within the overall system overview.38

4.2. Example of gathered experience .40

4.3. Feature transformation for observable and internal variables.42

4.4. Combining Equation Discovery and Machine Learning to generate features. .43

4.5. Example episode values. .46

4.6. Using intermediate examples lowers the model error.47

4.7. Collecting more examples lowers the model error.49

4.8. An example situation and the corresponding model tree rule.50

5.1. Greedy and optimal execution of an abstract action sequence58

5.2. Subgoal refinement within the overall system overview.59

5.3. Computational model of subgoal refinement.60

5.4. Computational model of subgoal refinement in action sequence generation. .61

5.5. PDDL planning example .62

5.6. Fully instantiated action. .63

5.7. Hand-coded soccer action selection module.65

11

5.8. An action sequence with free parameters set to default ranges.68

5.9. Free parameters set to ranges that depend on the context69

5.10. A free action parameter optimization example.70

5.11. Another free action parameter optimization example.71

5.12. Optimization in subgoal refinement with a genetic algorithm72

5.13. Scenario 1 in the service robotics domain74

5.14. Examples of free action parameter ranges in a kitchen scenario75

5.15. Arm control domain experiment. .76

5.16. The effect of subgoal refinement in the letter drawing scenario77

5.17. Visualization of the horizonh in subgoal refinement.79

5.18. Decision tree that predicts the effect of subgoal refinement81

5.19. Redundant actions in robotic arm control .87

5.20. Elvis the dog solves the ‘beach optimization problem’.88

6.1. Similarities and differences between standard navigation and ball approach. .92

6.2. Condition refinement and subgoal assertion within the system overview. . . .92

6.3. Computational model of condition refinement.94

6.4. Computational model of subgoal assertion95

6.5. Action prediction model for approaching the ball.96

6.6. Subgoal assertion in the approach ball task97

6.7. A multi task learning network .102

7.1. An example of implicit coordination: robot assembly105

7.2. Implicit coordination within the system overview.108

7.3. Explicit coordination with utility communication108

7.4. Implicit coordination without communication108

7.5. Implicit coordination with belief communication110

7.6. Dynamic experiment design .114

7.7. Static experiment design .115

7.8. Simulated experiment design .116

7.9. Influence of simulated state estimation errors on implicit coordination.118

7.10. Predicting coordination success .119

7.11. Implicit coordination with failure prediction119

7.12. Results of the simulation experiment .121

B.1. The hardware components of the AGILO soccer robots.129

B.2. The Qt simulator GUI. .130

B.3. Intermediate steps in ground truth image processing..132

C.4. An example decision tree. .134

C.5. Model trees. .136

C.6. Analytical model tree minimization .137

C.7. Merging model trees .139

C.8. Example of two merged model trees .140

List of Tables

2.1. List of actions used in the application domains21

3.1. Different terminologies for actions and motor commands28

3.2. Different terminologies for action performance and outcome prediction . . .35

4.1. The feature spaces used to learn action models45

4.2. List of actions and their action model statistics.51

5.1. Subgoal refinement results .75

5.2. Influence of subgoal refinement on individual actions in a sequence.78

5.3. Effect of the subgoal refinement horizonh on performance improvement. . . 79

5.4. Positive and negative influence of subgoal refinement on execution duration. .80

5.5. Confusion matrix of the decision tree that predict performance decrease . . .81

5.6. Subgoal refinement results after filtering for predicted performance decrease .82

6.1. Confusion matrix for ball collision prediction.96

6.2. Subgoal assertion results .98

7.1. Accuracy of implicit coordination with belief communication116

15

1. Introduction

“It is the ability to make predictions about the future

that is the crux of intelligence.”

Jeff Hawkins

In motor control, there is a distinction between knowingwhat to do and knowinghowto do

it. This distinction is apparent in the human brain, where declarative and procedural knowl-

edge is acquired, stored and accessed in different ways (Scoville and Milner, 1957; Cavaco

et al., 2004). Let us illustrate the difference between declarative and procedural knowledge

with the soccer scenario in Figure 1.1, in which the goal is to be in possession of the ball in

front of the goal.Whatneeds to be done to achieve this goal can be informally declared as:

“First approach the ball, and then dribble it towards the opponent goal.”

In both nature (Wolpert and Ghahramani,

Figure 1.1.Soccer scenario

2000; Baerends, 1970) and robotics (Arkin,

1998), such abstract plans are often mapped to

actions. Actions are temporally extended control

routines that achieve specific goals, and only ap-

ply to certain task contexts. In the example, the

declarative knowledge could be mapped to the

actionsapproachBall and dribbleBall .

With these actions, the robot now also knowshow

to achieve its goal1.

However, a problem remains. Although the actions specify how to achieve the goal, there

are often several ways to execute them. Figure 1.2 depicts two executions of the same action

sequence. In the first, the robot naively executes the first action, and arrives at the ball with

the goal at its back, as depicted in Figure 1.2(a). This is an unfortunate position from which to

start dribbling towards the goal. An abrupt transition occurs between the actions, as the robot
1Note that we interpret the terms ‘procedural’ and ‘declarative’ as they are used in cognitive science (Cavaco

et al., 2004), not as in the debate on logic knowledge representation in the 60s and 70s (Winograd, 1975).

1

Chapter 1 Introduction

needs to brake to slowly and carefully maneuver itself behind the ball in the direction of the

goal.

(a) An execution with an abrupt transition
at the intermediate goal.

(b) A time-optimal execution that exhibits
smooth motion.

Figure 1.2.Two alternative executions of the same action sequence.

Preferably, the robot should go to the ballin order to dribble it towards the goal afterwards.

The robot should, as depicted in the Figure 1.2(b), perform the first action sub-optimally in

order to achieve a much better position for executing the second action. The behavior shown

in Figure 1.2(b) has a higher performance, achieving the ultimate goal in less time.

This example demonstrates that although the angle of approach might not be relevant on an

abstract level, it does influence execution performance. But what exactly is the best angle of

approach? Unfortunately, neither declarative nor procedural knowledge suffices to answer this

question. This is the remaining problem referred to previously.

In this dissertation, we will demonstrate that the key to solving this problem lies in a third

kind of knowledge: being able to predict the outcome and performance of actions. In the run-

ning example, if the robot could predict the performance of alternative executions beforehand,

it could choose and commit to the fastest execution. To predict the execution duration of ac-

tion sequences, the robot must predict the execution duration of individual actions. The robot

can learn these prediction models through experimentation, observation and generalization. It

does so by simply recording the results of executing the action with different parameteriza-

tions, and training learning algorithms with the data so acquired.

1.1 Key Principles

One of the main motivations behind robotics research is to develop robots that can assist with

or assume tasks that are either too dangerous or too tedious for humans. Prolonging and

2

Section 1.1 Key Principles

increasing the independence of the disabled and the elderly with assisting technologies such

as robots is also predicted to have a large social impact (Cortés et al., 2003). Examples of

such tasks are performing rescue operations, autonomous driving, providing mobility for the

disabled, and doing the dishes.

Although there are several projects and conferences committed to robots that learn more

or less from scratch how to act in the real-world (Metta et al., 2006; Kaplan et al., 2006),

the resulting robots have certainly not yet reached a level where they can perform the tasks

described above. Currently, systems designed to achieve such real-world tasks still require

the designers to encode their knowledge about how to solve real-world problems into the

robot controller. For instance, action selection modules are still often manually encoded as

state-machines (Lötzsch et al., 2004; Obst, 2002; Murray, 2001). Here, the designer directly

encodes knowledge about which functional state the robot is in, and which action should be

executed in this state.

However, through experimentation, observation and generalization, robots can learn com-

plementary knowledge, and use it to improve, adapt and optimize their controllers. Learned

knowledge can often be used to make decisions that are difficult for humans to make. Further-

more, experience-based learning is grounded in real world observations, not human intuition.

Prediction models are a good example of knowledge that can often be learned more accurately

and efficiently than that they can be specified manually.

It is exemplary that the 2006 winners of two well-known robotic benchmarks, the RoboCup

mid-size league (Gabel et al., 2006) and the DARPA challenge (Thrun et al., 2006), empha-

size that their success could only be achieved through the combination of manual coding and

experience-based learning.

The main principle in this dissertation is therefore thathuman-specified knowledge and

robot-learned knowledge complement each other well in robot controllers. The introduction

and example in Figure 1.1 have briefly illustrated the other key principles on which this dis-

sertation is based:

Principle I Declarative knowledge can be explicitly specified by humans.

Principle II Procedural knowledge can be segmented into durative actions.

Principle III Mapping declarative to procedural knowledge is ambiguous, and choosing the

mapping affects performance and behaviour.

Principle IV This ambiguity can be resolved with predictive knowledge, which leads to more

effective and efficient action execution.

Principle V Predictive knowledge can be learned from observed experience

3

Chapter 1 Introduction

These key principles will be discussed in more detail in the sections referred to by the

numbers in the list. We will explain that the first two principles are well established in robotics

and cognitive science. The third principle is essentially the problem statement, and the last

two are the solution ideas.

Principle I Declarative knowledge: human specified

An important aspect of declarative knowledge is that it is consciously accessible, and allows

us to declare our intentions and plans to others. An example was given in Figure 1.1, in which

the task could be informally declared as: “First approach the ball, and then dribble it towards

the goal.” Other examples from soccer are: “Approaching the ball is much like navigating,

except that you should not bump into the ball before the desired pose at the ball is achieved.”

or “To regain ball possession, only one player should approach the ball.”

These statements are at a level of abstraction that makes them valid for both human and

robot soccer players. The validity in both domains enables the transfer of declarative knowl-

edge from humans to robots, and programmers usually have no problem in encoding this

knowledge in the controller. It also enables humans to give advice to robots in a declarative

way (Carpenter et al., 2002).

In planning approaches, this is explicitly done with declarative languages such as

PDDL (Fox and Long, 2003). The knowledge can also be implicitly encoded using the control

flow of the programming language. However, with the latter the robot cannot reason about

or manipulate this knowledge, and the encoding can be such that even other designers cannot

recognize the intentions from the code.

For now, it is not so important how declarative knowledge is represented in the controller,

as long as it is clear that at some point during controller design, a designer will have explicitly

thought about the declarative statements above, and coded them in the controller’s language.

Examples of both explicitly and implicitly representing declarative knowledge in robot con-

trollers will be given in Sections 5.2.1 and 5.2.3 respectively.

Principle II Procedural knowledge: durative actions

The famous patient H.M. provided the first proof for the difference between declarative and

procedural memory storage (Scoville and Milner, 1957). At the age of 27, a bilateral medial

temporal lobe resection was carried out to to correct his increasingly debilitating epilepsy.

During the operation, the amygdala, uncus, hippocampal gyrus, and anterior two-thirds of the

hippocampus were removed. After the operation, H.M. was incapable of storing any novel

4

Section 1.1 Key Principles

declarative facts, although the facts before his operation were retained. On the other hand,

H.M. could learn novel skills, such as mirror-tracing (Gabrieli et al., 2004). Surprisingly,

H.M. improves at mirror-tracing tasks over time with training, but has no recollection of ever

having done this task before.

As H.M. demonstrates, procedural knowledge is not explicitly and consciously accessible

to humans, in contrast to declarative knowledge. This is probably the reason why program-

mers find it more difficult to transfer procedural knowledge to robots. Also, although ab-

stract descriptions of tasks are valid in general, procedural knowledge is often very platform-

dependent. For instance, there might be differences in locomotion (biped vs. wheeled), con-

trollable degrees of freedom (non-holonomic vs. holonomic), and motor commands (action

potentials vs. voltages).

Wolpert and Ghahramani (2000) describe well the difficulty of mapping declarative knowl-

edge to procedural knowledge in the human motor system: “Everyday tasks are generally

specified at a high, often symbolic level, such as taking a drink of water from a glass. How-

ever, the motor system must eventually work at a detailed level, specifying muscle activations

leading to joint rotations and the path of the hand in space. There is clearly a gap between the

high-level task and low-level control.”.

Using durative actions to bridge this gap has proven to be a successful approach in both

nature (Baerends, 1970; Wolpert and Ghahramani, 2000) and robotics (Arkin, 1998). Actions

encapsulate knowledge about how certain goals can be achieved in certain task contexts. For

instance, human and robot soccer players will typically have dribbling, kicking, and passing

actions, that are only relevant in the context of soccer. Also, each of these actions achieve

different goals within different soccer contexts. Because actions only apply to limited task

contexts, they are easier to design or learn than a controller that must be able to deal with all

possible contexts (Haruno et al., 1999; Jacobs and Jordan, 1993). In cognitive science, actions

are known asinverse models, and in robotics asbehaviors, routines, or, confusingly,con-

trollers. In Table 3.1, we will list which specific research field uses which terminology.

In robotics, actions usually take parameters that allow them to be used in a wide range of

situations. Instead of programming an actiondribbleBallToCenter , it is preferable to

program an actiondribbleBall(Pose) that can dribble the ball to any location on the

field, including the center. If each action is designed to cover a large set of tasks, usually

only a small set of actions is needed to achieve most tasks in a given domain. Having only

a few actions has several benefits: 1) The controller is less complex, making it more robust.

2) Fewer interactions between action need to be considered, which facilitates action selection

design and autonomous planning. 3) If the environment changes, only a few actions need to

5

Chapter 1 Introduction

be redesigned or relearned, making the system more adaptive, and easier to maintain.

To achieve more complex tasks, actions can be combined and concatenated, using declar-

ative knowledge. As we saw in the example, “First approach the ball, and then dribble it

towards the goal.” can be mapped to the action sequenceapproachBall , dribbleBall .

So, declarative knowledge maps goals to actions, and procedural knowledge maps actions

to motor commands, which can be directly applied to the motor system. This divide and

conquer approach to control helps to bridge the gap between high-level goals and low-level

motor commands.

Principle III Mapping is Ambiguous

Mapping goals to actions is often ambiguous due to redundancy of actions, so several actions

or several action parameterizations can achieve the same goal. This is a well known princi-

ple in human motor control, where there are often more degrees of freedom available than

are strictly needed to solve a task (Schaal and Schweighofer, 2005). Actions are then said to

be redundant or overexpressive, and the freedom of movement that is not constrained by the

task is called the uncontrolled manifold in cognitive science (Scholz and Schöner, 1999), and

null-space in engineering (Hooper, 1994; Nakanishi et al., 2005). The redundancy of actions

raises an important question. How should the excess degrees of freedom be parameterized?

This problem is known as the degree-of-freedom problem, or problem of redundancy resolu-

tion (Schaal and Schweighofer, 2005).

In the running example in Figure 1.2(a) for instance, we saw that the action sequence that

arises from the declarative knowledge can actually be executed in many ways. This example

illustrates that some questions still remain. “First approach the ball, and then dribble it towards

the goal.” maps to the action sequenceapproachBall , dribbleBall . But what is the

best angle of approach? From an abstract point of view, being at the ball is sufficient for

dribbling it. Although the angle of approach might not be relevant to the task on an abstract

level, the example clearly shows that it does influence execution performance.

The same holds for the other statements: “To regain ball possession, only one player should

approach the ball.” But which player should this be? Probably the fastest. But exactly who is

the fastest? “Approaching the ball is much like navigating, except that you should not bump

into the ball before the desired pose at the ball is achieved.” But exactly when does the robot

bump into the ball?

One of the benefits of actions is that they can be designed or learned independently of other

actions. The questions arise when actions are executed in contexts for which they were not

initially designed. For instance, “Which angle of approach is the best?” arose from execut-

6

Section 1.1 Key Principles

ing the action in the context of action sequences, and “When will the robot bump into the

ball?” arose from navigating in the context of approaching the ball. Finally, “Who will be the

fastest?” arose from the context of playing in a multi-robot team.

One way to answer these questions is to design or learn new actions that are tai-

lored to the novel context in which the question arose. Instead of using the general

approachBall(Pose) in the scenario in Figure 1.2, a new actionapproachBallIn-

OrderToDribbleBall(Position,Pose) is designed or learned. This customized ac-

tion takes into account that the robot should dribble the ball to a certain position afterwards.

It therefore takes the next location as a parameter, and the action internally computes the

optimal angle of approach. Although this customized action might perform better and yield

smoother motion in this context, its long name already clearly implies the loss of generality.

This manual action customization soon becomes a laborious task, as each task context, and

there are usually many, would require their own task-specific action. In the next section, we

present an alternative solution, which reuses existing actions based on predictive knowledge,

and motivate why it is preferable to designing or learning novel actions.

Principle IV Predictive knowledge enables effective control

Although the actions in this dissertation themselves are fixed, this does not mean that

their application is fixed. Much freedom remains in the way actions are parameterized,

and also in which actions are executed in the first place. For instance, the original

approachBall(Pose) can be used very well to achieve the optimal execution in Fig-

ure 1.2(b), if its parameter determining the angle of approach is correctly set.

Here, the benefit of having action parameters becomes clear. TheapproachBallIn-

OrderToDribbleBall action does not have the angle of approach as an action parameter,

but somehow computes an optimal angle ‘inside’ the action itself. However, which angle is

optimal depends on what is being optimized: time, energy consumption, traveled distance,

etc. It also depends on which action will follow: a fast dribble to score, a careful dribble to

prepare for passing the ball, etc. To achieve good performance, each of these contexts would

require its own customized action. Instead, it is better to have the angle of approach in the

parameter list of a more general actionapproachBall , which can achieve all these tasks.

Exactly which angle of approach is best in the current task context can be determined on-line

‘outside’ of the action. With this approach,existing actions can be tailored to novel task

contexts. Adapting or refining already existing actions so that they can solve novel tasks

alleviates the need to design or learn new actions. This leads to fewer actions, with all the

benefits previously discussed.

7

Chapter 1 Introduction

By implementing the novel actionapproachBallInOrderToDribbleBall , the de-

signer is specifyinghow an action can be executed best in the context of action sequences.

Again, this is tedious and error-prone. It would be more convenient if the designer would only

have to declare requirements that action execution should meet, such as “Execute action se-

quences as quickly as possible.”, or “Do not bump into the ball when approaching it.”. Given

the freedom caused by the redundancy of actions, the robot should then attempt to fulfill these

requirements by tailoring actions on-line. In the running example for instance, the robot is

required to minimize the expected execution duration of the overall action sequence. (Schaal

and Schweighofer, 2005) calls these requirements ‘subordinate criteria’, and (Wolpert and

Ghahramani, 2000) refers to them as ‘cost functions’.

Note that these requirements are independent of the ac-

Figure 1.3. Existing actions vs.

Novel actions

tion implementation, and hold for a variety of actions and

task contexts, which makes them generally applicable, and

therefore easy to formulate. On the other hand, the pa-

rameters and actions that fulfill these requirements depend

very strongly on action implementations and task contexts,

and will be different for each of them. Therefore, the

robot should preferably determine these parameters au-

tonomously on-line. This approach enables the designer

to specify requirements, rather than novel actions.

Transforming actions or choosing action parameteriza-

tions to fulfill requirements is only possible if the robot can

predict the outcome of actions and their parameterizations.

Fulfilling the requirement “Execute action sequences as

quickly as possible.” can only be done if the robot knows

which action sequence will the fastest beforehand. The re-

quirement “Do not bump into the ball when approaching

it.” can only be fulfilled if the robot can predict if it will

bump into the ball in some situation. Knowing which robot

is the quickest to the ball is only possible if each robot can predict the approach time to the

ball for each robot. Being able to predict the consequences of actions is essential to answering

the questions that arise from Principle III, androbots can tailor existing actionsthemselves

with predictive knowledge.

This approach has been informally depicted in Figure 1.3. The first step in reusing actions

is to specify a requirement. Then, the predictions relevant to fulfill this requirement are made.

8

Section 1.1 Key Principles

This yields an action selection or action parameters. The execution is then performed with ex-

isting actions. Note that these three steps have been printed in bold in the previous paragraphs.

The questions related to efficient and effective execution of actions are so kept outside of the

action.

On the other hand, when designing novel actions for novel task contexts, the designer con-

templates the requirements, makes predictions her/himself, and implicitly codes them in the

new action, as depicted in Figure 1.3. In our approach, no new actions are created, but exist-

ing actions are reused, refined and tailored to novel task contexts. With predictive knowledge,

robots can tailor actions to novel task contexts themselves. This alleviates the need for design-

ers to adapt or refine actions manually, and makes the robot more autonomous.

Principle V Predictive knowledge can be learned

Action models enable robots to predict the performance or outcome of actions, given a cer-

tain parameterization. Examples are predicting the expected execution duration, or whether a

action is likely to succeed. But how is this predictive knowledge acquired?

It is learned from observed experience. First, each action is executed for a multitude of pa-

rameterizations and the performances and outcomes are recorded. A learning algorithm then

learns a generalized model that maps an action and its parameterization to expected perfor-

mance. In the soccer domain for instance, robots learn to predict the execution duration of

their goToPose action by simply navigating to random locations on the field and recording

the duration. Model trees are then trained with this data, after having transformed it to an

appropriate feature space,

The advantage of this approach over analytical methods is that it is based on real experience,

and therefore takes all factors relevant to performance into account. Also, many hand-coded

actions are difficult to formalize analytically, or analysis is impossible because the inner work-

ings of the action are unknown. In principle, learning models can also be done on-line, so that

action models can adapt to changing environments (Dearden and Demiris, 2005).

Beetz and Belker (2000) summarize well the difficulty of analytically specifying action

models for navigation actions: “Navigation behavior is the result of the subtle interplay of

many complex factors. These factors include the robot’s dynamics, sensing capabilities, sur-

roundings, parameterizations of the control program, etc. It is impossible to provide the robot

with a deep model for diagnosing navigation behavior.”

9

Chapter 1 Introduction

Summary

In the previous, we have deduced the solution idea from what the designer can conveniently

specify, and what the robot can learn from experience. This train of reasoning can be induc-

tively reversed and summarized as follows:

� Although actions are immutable (in this dissertation), there is still freedom in how they

are parameterized and in which contexts they are executed.

� This freedom allows actions to be tailored to novel contexts.

� Predictive knowledge, which the robot can learn from observed experience, enables the

robot to tailor actions itself.

� Off-line, the designer can specify requirements that action execution should meet, which

the robot takes into account when tailoring actions on-line.

� This is preferable to designing novel customized actions, as requirements are more gen-

eral, and fewer actions lead to more adaptive and robust controllers.

At his point, we would like to draw attention to the role of cognitive science in this disser-

tation. There is an increasing interest in exploiting human strategies for dealing with complex

control in robotics (Lopes and Santos-Victor, 2005; Sloman, 2006; Dearden and Demiris,

2005), and there is an increasing exchange between terminologies and formalizations used in

cognitive science and robotics. Action models, which are inspired by forward models found

in humans, are a good example of this exchange. Throughout the dissertation, we will there-

fore also discuss cognitive science research that focuses on the acquisition and application of

predictive models. Although this research is an important source of inspiration, in this disser-

tation the goal is not to explicitly model cognitive processes, or to reproduce empirical results

from cognitive science.

1.2 Robotic Domains

The key principles have been implemented in and applied to three robotic domains: robotic

soccer, service robotics and arm control. Such a variety of robots and domains has been chosen

to emphasize the generality of the system. Also, the different characteristics of the domains

allow different aspects of action model applications to be investigated.

10

Section 1.2 Robotic Domains

1.2.1 Robotic soccer

RoboCup is an international joint project to promote AI, robotics, and related fields. It is an

attempt to foster AI and intelligent robotics research by providing a standard problem where

wide range of technologies can be integrated and examined. The central topic of research is the

soccer game, aiming at innovations that can be applied to socially and industrially significant

problems. The ultimate goal of the RoboCup project is that by mid-21st century, a team of

fully autonomous humanoid robot soccer players shall win the soccer game, comply with the

official rule of the FIFA, against the winner of the most recent World Cup (Kitano et al., 1997).

Within RoboCup, there are several leagues, each with their own technological and re-

search challenges. The team of the Technische Universität München, the “AGILO RoboCup-

pers” (Stulp et al., 2004b), has participated in the mid-size league since 1997. In this league,

robots play on a field of approximately 6x8 meters, four against four. The main characteristics

of this league is that the robots sense and act locally and autonomously. One of the AGILO

robots is depicted in Figure 1.4(a). Experiments have also been conducted in the AGILO sim-

ulator, depicted in Figure 1.4(b). These robots will be referred to as ‘Pioneer I’ and ‘Pioneer

I (S)’ respectively, as these platforms are customized Pioneer I robots from ActivMedia (Ac-

tivMedia Robotics, 1998). The hardware and tools of the AGILO RoboCuppers are presented

more elaborately in Appendix B.

(a) AGILO RoboCuppers robot (b) AGILO simulator (c) Ulm Sparrow robot

Figure 1.4.The mid-size league soccer domain.

In this adversary domain, performance and efficiency are essential to achieving the goals

of the team. Tailoring actions to perform well within the given task context is therefore a

necessity. Since it is a multi-robot domain, it also allows us to investigate how actions can be

tailored to scenarios with multiple robots. Multi-robot experiments have been conducted in a

11

Chapter 1 Introduction

mixed team with the soccer robots from the Ulm Sparrows (Kraetzschmar et al., 2004), one of

which is depicted in Figure 1.4(c).

1.2.2 Service robotics

One of the long-term goals in robotics is to develop robots that can autonomously perform

house-hold tasks. Therefore, action models were acquired and applied to a simulated articu-

lated B21 robot in a kitchen. The arms with six degrees of freedom provide this robot with

more expressive actions than in the robotic soccer domain. Furthermore, house-hold tasks are

less reactive, and require more complex and longer-term planning.

The experiments in this domain were carried out in a simulated kitchen environment (Müller

and Beetz, 2006). The simulator is based on the Gazebo simulator of the Player/Stage

project (Gerkey et al., 2003). This open-source project develops tools for robot and sensor

applications. Gazebo simulates robots, sensors and objects in a three-dimensional environ-

ment. The Open Dynamic Engine provides the physical simulation and realistic sensor feed-

back (Smith, 2004). Player is a network interface and hardware abstraction layer, which the

robot’s controller uses to communicate with the Gazebo environment. Player facilitates the

porting of controllers written in simulation to real robots.

The environment, depicted in Figure 1.5(a) contains a typical kitchen scenario, with furni-

ture and appliances. The positions of the pieces of furniture are static and known. In addition,

the environment contains flatware (such as knives, forks, and spoons), cook-ware (pots and

pans), and dinnerware (including plates, cups, and bowls). These objects can be recognized

and are movable, so the robot can manipulate them. The positions of these objects is known,

if they are within the field of view of the robot.

The rich environment and two arms of the robot make the actions much more expressive,

which allows for action sequence optimization, to be described in Chapter 5. This domain also

allows for more long-term planning than in the extremely dynamic soccer domain.

1.2.3 Arm control

The third domain uses a PowerCube arm from Amtec Robotics (Amtec Robotics, 2005),

shown in Figure 1.5(b). Each joint has a brushless servo motor with a Harmonic gear head,

and an incremental optical encoder to measure the position. The communication with the

computer is done using a high-speed CAN interface. We have mainly included this robot to

demonstrate the wide range of domains in which action models can be learned and applied.

12

Section 1.3 Contributions

(a) The kitchen simulation in Gazebo. (b) The PowerCube arm.

Figure 1.5.The simulated kitchen environment and the PowerCube arm.

1.3 Contributions

Principle I and Principle II on declarative and procedural knowledge are well established in

cognitive science and robotics, as was motivated in Section 1.1. These are the assumptions

fundamental to this dissertation. The questions that arise from the ambiguous mapping of

declarative to procedural knowledge (Principle III), are essentially the problem statement:

How can these questions be answered in a robust and efficient way, without requiring manual

programming? The solution to this problem is predictive knowledge (Principle IV), which can

be acquired by learning from experience (Principle V). This solution contains the following

conceptual contributions:

� Arguing that existing actions can and should be tailored to novel task contexts, rather

than designing new customized actions.

� Demonstrating how robots can tailor actionsthemselves, by using predictive knowledge.

� Demonstrating how robots can learn predictive knowledge from observed experience.

� Introducing a novel computational model for the acquisition and application of action

models.

Implementing these concepts in the context of several robotic domains and task contexts

has led to the following technical contributions:

Action Model Learning Demonstrating how action models can be learned for a variety of

robots and tasks. Especially, we investigate how the most can be made of sparse data by

13

Chapter 1 Introduction

including intermediate data between the start and end of each episode. Accurate action

models have been learned for all the robots presented in Section 1.2, using tree-based

induction.

Subgoal Refinement Free action parameters arise when mapping declarative knowledge

to actions. Current controllers often disregard these parameters, which lead to sub-

optimal performance. Subgoal refinement explicitly contemplates and optimizes these

parameters with respect to the expected performance, predicted by action models.

Subgoal refinement is implemented on three robotic platforms, being the Pioneer I

robots of our mid-size league soccer team, the simulated articulated B21 robot, and the

PowerCube arm. A variety of action sequences has been optimized, such as sequences

of navigation and dribbling actions in the soccer domain, navigation and manipulation

actions in the service robotics domain, and reaching movements in the arm control do-

main. An extensive empirical evaluation demonstrates that subgoal refinement leads to

significantly shorter execution times, with smooth motion as a side-effect.

Condition Refinement For humans, specifying symbolic pre-conditions is straight-

forward, but specifying when they hold in robotic domains is not, due to the complex

interaction of the robot’s dynamics, the environment, and the action parameterizations.

Grounding pre-conditions in real experience is done with condition refinement, which

learns to predict action failure, when actions are executed in a novel context with a dif-

ferent goal. Condition refinement is implemented on the Pioneer I (S) robots, using

decision trees.

Subgoal Assertion When learned pre-conditions predict that actions will fail, plans are

transformed into plans that are predicted to succeed, by introducing a subgoal. The pa-

rameterization of this subgoal is constrained by the learned pre-condition, and optimized

using subgoal refinement. This procedure is called subgoal assertion.

In the soccer domain, we demonstrate how applying condition refinement and subgoal

assertion enables robots to reuse action for novel task contexts. An empirical evaluation

verifies that the adapted action is highly successful at achieving novel goals.

Implicit Coordination By reasoning about the states and action models of other robots lo-

cally, robots can coordinate their actions to achieve better global behavior. Due to its

independence of utility communication, this approach is more robust against communi-

cation problems.

14

Section 1.4 Outline

Implicit coordination has been implemented in a team of three AGILO robots, as well

as in a heterogeneous with both an AGILO and Ulm Sparrow robot. An empirical eval-

uation shows that implicit coordination is more robust against communication and state

estimation failures. Implicit coordination in the heterogeneous team demonstrates that

robots with very different hardware and controllers can coordinate with little change to

the individual robot controllers.

Because subgoal refinement, condition refinement and subgoal assertion enable robots to

autonomously adapt and refine existing actions to novel task contexts, they are a contribu-

tion to the field of life-long learning. These methods also bridge the gap between symbolic

planning and robot plan execution, and are contributions to both fields. Implicit coordination

enables robots to make only local decisions that have effect on the global behavior of several

robots, and as such is a contribution to the field of multi-agent systems.

Together, these conceptual and technical contributions provide a framework in which

knowledge specified in the controller by humans is complemented, refined and improved with

knowledge learned by robots themselves.

1.4 Outline

The following is a synopsis of the individual chapters of this dissertation.

Chapter 2 - Computational Model. This chapter introduces the terminology, concepts

and methodology used throughout this dissertation. It also presents an overview of the

system.

Chapter 3 - Related Work. Work related to action selection schemes, forward models and

action models will be discussed. Both cognitive science and robotics research are

treated. Work related to specific applications of action models will be discussed in

the respective chapters.

Chapter 4 - Learning Action Models. Action models are acquired by learning them

from observed experience. In this chapter, we describe how the necessary experience is

gathered, and how generalized models can be learned from this data.

Chapter 5 - Task Context: Action Sequences. The first application of action models

is to tailor actions to perform well within a given action sequence. The method with

which this is done is calledsubgoal refinement.

15

Chapter 1 Introduction

Chapter 6 - Task Context: Task Variants. In this chapter we presentsubgoal assertion

andaction refinementin which action models used to parameterize available actions so

that they can be reused for a new task variant.

Chapter 7 - Task Context: Multiple Robots. Action prediction models can be used to

coordinate the actions of multiple robots. By predicting the performance of other robots,

a robot can adapt its actions accordingly. This is calledimplicit coordination.

Chapter 8 - Conclusion. The content of this dissertation is summarized in this conclusion.

Note that directions for future research and related work has been discussed in Chap-

ters 4 to 7.

Chapters 4 to 7 describe how action models are acquired and applied on the robots, and

contain the technical contributions. These four chapters have the same structure. After an

introductory section, the computational model is presented. The following sections in these

chapters then explain how the computational model was implemented. After presenting the

empirical evaluation conducted on the robots, work specifically related to this chapter is dis-

cussed and compared with our work. The conclusion contains a summary of the chapter and

directions for future work.

16

2. Computational Model

“Before turning to those mental aspects of the matter which

present the greatest difficulties, let the inquirer begin by mastering

more elementary problems.”

Sherlock Holmes – Arthur Conan Doyle

In this chapter, we will introduce and formalize the basic concepts and terminology used

throughout this dissertation. The relevant concepts are separated intoentities, which are data

structures, andprocesses, which manipulate the entities. Examples from the robotic soccer

domain will be used throughout. The next section introduces thedynamic system model,

which desribes the interaction of an agent with its environement, and the role of the controller

within the agent. In Section 2.2, we demonstrate that the concepts of durative actions and

action selection can elegantly be described using the dynamic system model. At the end this

of this chapter we will give an overview of the system presented in this dissertation.

2.1 Dynamic System Model

The standard model for control theory is the dynamic system model by Dean and Wellmann

(1991). In this model the world changes through the interaction of two processes: theCon-

trolled Process and theControlling Process, as depicted in Figure 2.1. In robotics, the

controlled process is the behavior and perception of the robot in its environment. Given this

model, the two main steps in designing the controlling process on the robot are specifying the

state estimation and controller.

2.1.1 Controlled process

In the controlled process, theEnvironment Process is simply either the physical world the

robot is embodied in, be it real or simulated. The evolution of the environment process is

17

Chapter 2 Computational Model

Figure 2.1.Dynamic system model

represented by a set ofstate variablesthat have changing values. The state of the environment

can be influenced by applyingMotor Commands to it1. Motor commands directly set some

of the state variables in the environment process and indirectly other ones. The affected state

variables are called thecontrollablestate variables. For instance, the robot can set the transla-

tional and rotational velocity directly, causing the robot to move, thereby indirectly influencing

future poses of the robot.

The robots used in this dissertation send motor commands to a hardware component at reg-

ular intervals. For instance, the motor command for the soccer playing robots with differential

drive is [v; _�; kick], which specify the translational and rotational speed. This motor command

is processed by a hardware component and converted to voltage levels for both motors. In the

dynamic system model, the hardware component and its processing is part of the controlled

process, not the controlling process. The only interface the controller has to influencing the

world’s state is the motor command.

TheSensing Process represents the sensor of the robot, which are embedded in the envi-

ronment process. The unprocessed data structures these sensors generate are calledPercepts.

For the robot, often only a subset of the state variables isobservableto its perceptive sys-

tem, and only these variables are encoded in the percept. The percepts of our soccer robots

for instance, are camera images, odometry, and messages received from other robots. Note

that these percepts do not arrive as one single data structure, but arrive and are processed

asynchronously.

1In the dynamic system model, motor commands are actually called control signals. We prefer the term ‘motor
command’, as it emphasizes that all the control signals in this dissertation are sent to the motor system of the
robot.

18

Section 2.1 Dynamic System Model

2.1.2 Controlling process

The controlling process’ task is to produce a sequence of control motor commands that affect

the environment, for instance to achieve a certain goal. To generate motor commands that

direct the environment to a desired future state, the controlled process must often first know

the current state of the environment. This state is estimated from the percepts withState

Estimation. For instance, the soccer robots use a cooperative probabilistic state estimation

with opponent tracking, which uses the available percepts, being camera images, odometry,

and communication with teammate robots (Beetz et al., 2004).

The output of the state estimation is aBelief State. The belief state represents the robot’s

beliefs about the current values of the state variables in the environment (Schmitt et al., 2002;

Utz et al., 2004). Due to limitations of sensors and state estimation, the true state of the

world cannot be determined with full certainty and accuracy. The controlling system does

not know the state of the world, but rather has beliefs about it, hence the term ‘belief’ state.

The termworld stateshould rather be used for the actual state of the world, and theworld

model is the description of all possible belief states. The belief state of the soccer robots

contains observable state variables related to their own pose on the field, as well as those of

its teammates and opponents. The position of the ball is stored, as well as any unidentified

obstacles on the field.

TheController takes a belief state as an input, and returns a motor command. This disserta-

tion focusses on the designing and learning effective controllers. If the controller is not purely

reactive, it also has a internal state, which is described in terms ofinternal state variables.

Examples are the current goal, or the sequence of actions it is committed to executing, as well

as their parameterizations. Furthermore, there is a distinction betweendirectandderivedstate

variables. Direct state variables are directly provided by state estimation (e.g. position of

ball and myself), whereas derived state variables are computed by composing direct variables

(e.g. distance to ball). No extra information is contained in derived variables, but if chosen

well, derived variables are better correlated to the control task. This will be explained more

elaborately in Section 4.1.1.

Summarizing, percepts are acquired through sensors embedded in the environment. State

estimation estimates the observable state variables from the percepts, and stores them in the

belief state. The controller takes the belief states, and determines a motor command that

will direct the environment into a desired goal state. These motor commands are sent to the

controlled process. For example, a soccer robot uses its camera (sensing process) to capture

images (percepts), converts them into ball and robot positions on the field (belief state), and

gives velocity commands (motor commands) to the motors, for instance to dribble the ball

19

Chapter 2 Computational Model

(goal).

2.2 Durative Actions and Action Selection

One way to design controllers is through direct programming. The designer contemplates the

domain and the task to be executed, and fully specifies which action should be executed in

which state. For the game of tic-tac-toe, it is feasible, though tedious, to specify for each of

the 765 legal states, which move to play next. A more realistic example is designing a PID

controller to control the temperature in a room. The percept (current temperature) and ‘motor

command’ (power for the heater) are continuous, so enumerating all states and commands

would be impossible. Nevertheless, a relatively simple function suffices to map each input to

an output.

When controllers perform tasks in complex dynamic domains this monolithic approach can

become very tedious and error-prone. Imagine enumerating all possible situations in robotic

soccer, and specifying the desired velocity command for each of them. Designing a single

PID controller that can play soccer is just as infeasible.

The predominant approach in robotics to solve this problem is to first design or learn a set

of actions (Principle II), and then design or learn an action selection module, that chooses

the appropriate action given the current context (Principle I). A schematic overview of the

organization of actions and action selection is depicted in Figure 2.2.

Figure 2.2. System overview of actions and action selection in the dynamic system model
controller

An Action is a control programs that produce streams of motor commands, based on the pa-

rameters with which it is called. The parameters are a subset of the direct observable variables

20

Section 2.2 Durative Actions and Action Selection

in the belief states and internal variables, or variables derived from them. Note that in Fig-

ure 2.2, actions are depicted both as entities (boxes) and processes (ovals). On the one hand,

actions are processes, as they transform belief states into motor commands. On the other hand,

the action selection considers actions to be resources or entities it can manipulate and reason

about.

Actions can be executed in the real continuous world, because the motor commands they

generate can directly be dispatched to a hardware component. The parameters of an action

are either observed variables, describing part of the current belief state, or internal variables,

describing the current subgoal. In this dissertation, actions themselves have no internal state;

they are purely reactive. Any persistent information must be stored outside of the action. As

an example, the signature of thegoToPose action isgoToPose(x; y; �; v; xg; yg; �g; vg)
It navigates the robot from the current dynamic pose [x; y; �; v], stored in the belief state, to

a future goal pose [xg; yg; �g; vg], stored in the internal state. It does so by returning motor

commands [v; _�], representing the translational and rotational velocity of the robot.

The main resource of an action based controller is theAction Library. Action libraries

contain a set of actions that are frequently used within a given domain. If actions are specified

general, and apply to a large set of the state space, only a few actions are needed to execute all

possible tasks in a certain domain.

Table 2.1 lists the actions used in this dissertation. The actions have been implemented in

C++ or Python (PowerCube). The action parameters in the signatures have been partitioned,

based on whether they hold in the current state of the world or if they specify the target

the robot wants to achieve. Note that the first are observable variables, and the second are

internal variables. Although learning and applying action models is independent of actual

action implementations, we list their implementations for completeness in Appendix A

Robot Action Action Parameters Motor
Observed Internal Comm.

AGILO goToPose x; y; �; v xg; yg; �g; vg v; _�
Ulm Sparrow goToPosition x; y; �; v xg; yg; vg v; _�
B21 goToPose x; y; �; v xg; yg; �g; vg v; _�

reach x; y; z; ax; ay; az xg; yg; zg; axg; ayg; azg ?
PowerCube reach �a; _�a; �b; _�b �ag ; _�ag ; �bg; _�bg I1; I2

Table 2.1.List of actions used in the application domains

This list might be shorter than expected. For instance, it is doubtful that robots could play

soccer if they can only navigate to a certain pose. It is exactly the goal of this dissertation

21

Chapter 2 Computational Model

to show how only a few actions can be reused and customized to perform well in varying

task contexts. In Chapters 5 to 7, we will demonstrate how the robots parameterize this ac-

tion to approach the ball, dribble it, navigate efficiently through way-points, and regain ball

possession in a team of robots.

The Action Selection module selects the appropriate action in a given context. In Sec-

tion 3.1, various approaches to designing and learning action selection modules will be pre-

sented.

2.2.1 Advantages of durative actions

When introducing Principle II in Section 1.1, some of the advantages of durative actions were

discussed. We will repeat them here more elaborately, using the conceptualization introduced

in this chapter.

Actions themselves are controllers, as their input is also a belief states, or a subset of vari-

ables from the belief state, and return motor commands2. However, since actions only apply

to certain limited task contexts, they are easier to design or learn than a controller that must be

able to deal with all possible contexts (Haruno et al., 1999; Jacobs and Jordan, 1993). For in-

stance, a soccer robot might have the actiondribbleBall , that only applies in states where

the robot is in possession of the ball. Designing or learning one monolithic controller that can

play soccer might be infeasible, but designing or learning an action that can dribble is not.

Another advantage of durative actions is that they provide an intermediate temporal ab-

straction between high-level goals and low-level motor commands. Instead of having to di-

rectly select motor commands every few milliseconds, the action selection module selects

actions every few seconds. Furthermore, actions provide a conceptual abstraction. Because

actions are designed with a certain task and goal in mind, they can be selected based onwhat

they do, thereby abstracting away fromhow they do it. For instance, the name of the action

dribbleBall alone already gives a clear indication of what it is intended to do, although

it is unknown, and for action selection purposes irrelevant, how it actually achieves what its

name indicates. These two abstractions enable the action selection module to be specified on

a high level of abstraction.

Action based systems are also more adaptive. Single or several actions can be adapted to

new environments without having to change the action selection module. Of course, this only

holds if the abstract functionality of the actions remains the same, and the implementation

2The terms controller and action can in principle be used interchangeably. In this dissertation, only the top-level
controller in the dynamic system model is referred to as the controller, and the controllers at lower levels are
always referred to as actions.

22

Section 2.3 Guide to the Remainder of the Dissertation

of the action is hidden from the action selection module. These benefits are well-known in

Software Engineering, where this design approach is known as the Bridge Pattern (Bruegge

and Dutoit, 2003).

Let us now summarize the benefits of using actions and action selection in controller design:

1. Actions apply to only a subset of tasks, which facilitates learning and designing them.

2. Actions provide a temporal abstraction between high-level goals and low-level motor

commands.

3. Actions provide a conceptual abstraction.

4. This temporal and conceptual abstraction enables action selection at a more abstract

level, which facilitates controller design.

5. Actions can be adapted, without affecting the action selection module.

For animals with complex motor capabilities, especially the first reason has lead to the use

of inverse models, which is nature’s equivalent of an action (Haruno et al., 1999).

2.3 Guide to the Remainder of the Dissertation

In Section 1.1, some of the questions that remain when mapping declarative to procedural

knowledge (Principle III) were discussed. For efficient control in multi-robot environments,

any controller will have to answer these questions. Figure 2.3 depicts an overview of the sys-

tem with an action-based controller from the dynamic system model, along with the questions

it must answer. These questions only arise in certain task contexts, along with which they are

listed.

The key to answering these questions is using predictive knowledge (Principle IV), which

is compiled intoAction Models. Action models allow agents to reason about what their

actions can do, and how well. They are called with the same parameters as the corresponding

action, and therefore have the same signature. Instead of returning a motor command, action

models return the expected performance of executing this action, given these parameters. In

this dissertation, the most frequently used performance measure is execution duration. The

action models used in the different application domains will be listed in Section 4.1.3. Some

examples of action models will be presented in Sections 4.2 and 6.2.

The first step in the system is to acquire action models for each action in the action library.

Action models are learned from observed experience (Principle V). Gathering training exam-

ples can be done in idle time, when the agent is not required to perform other tasks. Learning

these models compiles a wealth of experience into a concise model, which generalizes over

23

Chapter 2 Computational Model

Figure 2.3. System overview for the acquisition and application of action models. Numbers
correspond to Chapter numbering.

situations not yet experienced. Action models are also stored in the action library, alongside

their corresponding action. At operation time, these models predict the expected outcome and

performance of actions, at negligible computational cost.

Then, these action models are used to answer the questions that remain when mapping

declarative knowledge to procedural knowledge in different task contexts, as can be seen in

Figure 2.3.

24

3. Related Work

This chapter will present related work on action selection schemes, as well as the the acquisi-

tion of action models in nature and robotics. The difference between forward models, action

models and reinforcement learning values will be explained. Comparisons between this related

work and the system presented in this dissertation will be made in the individual chapters on

the acquisition (Chapter 4) and applications (Chapters 5 through 7) of action models, after the

relevant system modules have been presented.

3.1 Action Selection Schemes

In Section 2.2 the general computational model for controllers with durative actions and an

action selection module were presented. We will now briefly present four well-known ap-

proaches to designing action selection modules. They are introduced here for future reference;

a more elaborate explanation of their advantages, disadvantages and relation to this research

will be given throughout the dissertation, for instance in Sections 4.4.1, 5.2.3, and 5.5.1.

3.1.1 Direct programming

Actions provide a level of abstraction that we can reason about, similarly to the conscious de-

liberation of our own actions. This makes direct programming of the action selection module

feasible. The most straight-forward method is to code the action selection directly into the

programming language used for the robot’s controller. Alternatively, abehavior languagethat

is tailored to developing controllers can be used. For instance, several languages exist that al-

low controllers to be designed in terms of state charts. Examples of this approach are (Lötzsch

et al., 2004), in which state charts are coded in XML, or (Murray, 2001; Arai and Stolzen-

burg, 2002; Obst, 2002) in which the same is done with UML. The benefit of this approach is

that since the designer has hand-coded everything, the displayed behavior can be explained in

terms of the designer’s knowledge and intentions. This can facilitate behavior debugging.

25

Chapter 3 Related Work

Of course, the disadvantage is that the designer has to hand-code the action selection mod-

ule, which is tedious. It is also error-prone, as the designer cannot be expected to foresee each

possible situation and specify an appropriate response, although these situations might occur

in the real world. Also, this approach does not scale well. The more complex the environment,

the more actions and interactions between actions must be taken into account when designing

action selection.

3.1.2 Motion blending

In motion blending approaches, there is no exclusive action selection, as all actions constantly

compute a motor command. The final motor command the controller returns is computed by

interpolating between the various motor commands, with a certain weighting scheme. The

benefit of this approach is that there are no discrete transitions between movements, which is

important if fluency of motion is required. Examples of controllers that use motion blending

are (Jaeger and Christaller, 1998; Utz et al., 2005; Saffiotti et al., 1993). Most behavior-based

approaches use motion blending as well (Arkin, 1998; Brooks, 1986).

3.1.3 Hierarchical Reinforcement Learning

Another possibility is to learn the action selection module with Reinforcement Learning (RL).

In this approach, controllers are learned by optimizing a reward function. At each discrete

time step, the controller returns the motor command that maximizes the future discounted

reward, also calledvalue. The problem of learning to choose commands is thus converted to

learning to predict the value of each state and action. Temporal difference learning has proven

to be an efficient method to learn these values. However, monolithic RL, which learns one

value mapping for the entire domain, does not scale to complex tasks (Barto and Mahadevan,

2003).

Hierarchical Reinforcement Learning solves part of the problem by defining a set of ac-

tions that can achieve subsets of the entire task. The value for each primitive action in these

actions is then learned, as well as the value for executing an entire action in a certain state.

Because these high-level and low-level values depend on each other, even better results can be

achieved when both values are learned simultaneously (Dietterich, 2000; Kleiner et al., 2002).

Section 4.4.1 will discuss the advantages and disadvantages of Hierarchical Reinforcement

Learning.

26

Section 3.1 Action Selection Schemes

3.1.4 Planning

In plan-based control, the robot explicitly reasons about the applicability and effects of ac-

tions to select a sequence of actions to achieve a goal. An important aspect of plan-based

robot control is that robots contemplate and commit to a sequence of actionprior to execu-

tion. This allows the controller to consider interactions between future actions, and resolve

conflicting goals in advance, before they are encountered on-line. In recent years, a number

of autonomous robots, including Minerva (Beetz, 2001), WITAS (Doherty et al., 2000), and

Chip (Firby et al., 1996), have shown impressive performance in long term demonstrations.

The use of planning enables these robots to flexibly interleave complex and interacting tasks,

exploit opportunities, and optimize their intended course of action.

To reason about action sequences, the controller must be able to project them into the future

internally, without actually executing them in the real world. Planning approaches therefore

define the pre- and post-conditions of each actions. These declarative components specify

when the action is applicable, and what its effects are when executed. Planning systems take a

set of actions and a goal that has the same format as a pre-condition, and generate a sequence

of actions that achieve the goal. In this sequence, the post-condition of each action satisfies

the pre-condition of the subsequent action. Furthermore, the pre-condition of the first action is

satisfied by the current situation, and the post-condition of the last action must satisfy the goal.

This represents a valid plan to achieve the goal. As we shall see in Section 5.2.1 the declarative

knowledge contained in the pre- and post-conditions can be easily human-specified.

3.1.5 Different terminologies for actions

Structuring controllers in terms of actions and action selection modules is so effective in re-

ducing action search spaces, that it has co-evolved in many of the approaches to designing

controllers, as we saw in Section 2.2. Table 3.1 lists some examples of these approaches, and

the terminology for motor command and action they use. Note that Cognitive Science has

also been included. Although the main objective of this field is not to design controllers, it

certainly does analyze the control systems of humans.

In this dissertation, a durative action is simply referred to as an “action” for reasons of

brevity. The term “motor command” refers to smallest unit of action as a reminder that they

are very close to the execution on a motorized hardware system.

27

Chapter 3 Related Work

Domain
Reference Motor Command Action

Control Theory
(Dean and Wellmann, 1991) Control Signal Controller
(Jacobs and Jordan, 1993) Control Signal Controller
(Qin and Badgwell, 1998) Controllable Variables Controller

Direct Programming
(Murray, 2001) Command Skill
(Lötzsch et al., 2004) Action Option

Behavior based / Motion Blending
(Brooks, 1986) Motion Command Module/Behavior
(Jaeger and Christaller, 1998) Motor Command Behavior

Reinforcement Learning
(Sutton et al., 1999) Primitive Action Option
(Andre and Russell, 2001) Action HAM, PHAM
(Dietterich, 2000) Action Subtask
(Ryan, 2004) Primitive Action Behavior

Planning
(Fikes and Nilsson, 1971) Low-level action Routine
(Nilsson, 1994) Primitive Action T-R Program
(Ryan, 2004) Primitive Action Behavior
(Belker, 2004) Motor Commands Action
(Bouguerra and Karlsson, 2005)Action Executable Action
(Cambon et al., 2004) Motion Action

Forward Models
(Wolpert and Flanagan, 2001) Motor Command Inverse Model
(Dearden and Demiris, 2005) Motor Command Inverse Model
(Jordan and Rumelhart, 1992) Action Inverse Model

Table 3.1. Differing terminologies for different approaches to designing action-based con-
trollers.

3.2 Action Models

In this section, we will first discuss related work on forward models in nature and robotics.

The difference between forward models and action models will be explained, and some uses

of action models in robotics presented.

3.2.1 Natural forward models

In cognitive science there is a distinction between inverse models, which map desired con-

sequences to motor commands, and forward models, which map motor commands to their

effects. Forward models make predictions, because current motor commands are mapped to

future outcomes.

28

Section 3.2 Action Models

Helmholtz (1896) provided the first proof for the existence of forward models in humans,

in the context of object localization. Due to eye movements, the projections of objects in the

world on the retina are constantly moving. To acquire a stable image of the world the brain

takes the position of the eye in its socket into account. Instead of sensing the eye’s position,

its position is predicted by using information from the eye muscles. Helmholtz’s simple and

ingenious experiment demonstrates this. If one eye is closed, and the position of the other

eye in the socket is moved artificially by pressing it with your finger, the world seems to be

moving, because the compensating prediction based on the motor command sent to the eye’s

muscles is lacking.

In a more recent experiment, subjects were asked to follow the voluntarily reaching move-

ments of their arm with their eyes (Ariff et al., 2002). If the arm is hidden from the subject’s

view, the subjects make saccadic movements movements to a location that predicted the posi-

tion of their hand 196 ms in the future.

Especially in the last decade, many new discoveries about how forward models are learned

and used have been made (Wolpert and Flanagan, 2001; Wolpert and Ghahramani, 2000). This

section will present an overview of these results.

Forward models are learned

Forward models are not entities that are fixed at birth, but that must rather be learned and

updated through experience. This allows forward models to be learned for new action contexts,

or for newly acquired actions. Supervised learning can be applied, because prediction errors

can easily be acquired by comparing the predicted and actual outcome of a motor command.

The neural mechanisms behind such predictive learning are partially understood in electric

fish (Bell et al., 1997). It is hypothesized that “body babbling” is a strategy to actively acquire

training data to learn such models (Rao et al., 2005).

Humans actually learn the forward model of an actionbefore the final inverse model is

learned (Flanagan et al., 2003). So, the brain learns to predict the effects of an action before

perfecting the execution of the action itself. In the approach presented in this dissertation a

similar procedure is described. First action models are learned from observed experience for

the actions in an action library. These action models can then be used to tailor actions to task

contexts, such as action sequences or multiple robots.

29

Chapter 3 Related Work

Widespread use of forward models in motor control

Humans use forward models in many task contexts. Some examples will be presented in this

section. Optimal control and social interaction, the items marked with a* , are applications of

forward models that have been implemented in this dissertation as well. They will be discussed

in more detail in Chapter 5 and Chapter 7 respectively.

State estimation Accurate control of the body requires on knowing the body’s state, such

as the joint angles, and the positions and velocities of body parts. Due to neural trans-

mission and processing, sensory signals that provide information about the body’s state

have considerable delay. Especially for fast movements, a more timely estimation of

the body’s state is essential. Alternatively, predictions based on motor commands can

be used to update the state, even before the movement is executed (Wolpert and Flana-

gan, 2001). In control, the Kalman filter (Kalman, 1960) is an example where state

estimation is also performed with both motor and sensor updates.

Sensory cancellation Prediction also allows sensory information to be filtered, for in-

stance to cancel out the sensory effects caused by self motion. For example, it is im-

possible to tickle oneself, because the expected sensory consequences of this motion,

predicted with forward models, are subtracted from the actual sensory feedback. In an

recent experiment, subjects tickled themselves through a robot interface (Wolpert and

Flanagan, 2001). An arbitrary delay between the tickle command and actual tickling

could be introduced through the robot interface. It was shown that the larger the delay,

the more ‘ticklish’ the percept, presumably to a reduction in the ability to cancel the

sensory feedback based on the motor command.

Context estimation Different contexts require different behaviors. Humans are very good

at selecting the appropriate behavior, even under uncertain conditions. One explanation

is that several inverse models are tested for their appropriateness in parallel. For exam-

ple, when initially lifting an object of unknown weight (is the box empty or full?), the

forward models of the inverse models for lifting both light and heavy objects are active.

Once lifting commences, the error between the prediction and the actual movement is

measured for each forward model. The inverse model corresponding to the forward

model that generates the lowest error is then chosen as the appropriate controller. Sev-

eral of these paired forward-inverse models are integrated in the MOdular Selection and

Identification for Control (MOSAIC) framework (Haruno et al., 2001).

Optimal control * Although there are infinitely many ways to perform most tasks, tasks are

30

Section 3.2 Action Models

usually solved with highly stereotyped movement patterns (Wolpert and Ghahramani,

2000). The optimal control framework assumes that these typical patterns are those

that minimize a certain cost function. In cognitive science, the challenge is to reverse-

engineer this cost function, given the motion patterns found in empirical studies. For

instance, for reaching movements there exist optimal control models that optimize the

smoothness of the trajectory (Flash and Hogan, 1985), smoothness of the torque com-

mands (Uno et al., 1989) and variability of movement (Harris and Wolpert, 1998).

Social interaction * Wolpert et al. (2003) hypothesize that forward models form the basis

of social interaction and imitation. There are many similarities between the motor loop

and the social interaction loop. In the motor loop, a motor command changes my body’s

state, whereas a communicative command (e.g. speech, gesture) changes the mental

state of another. Possibly, forward models are used in predicting the change in mental

state due to my commands too. It may be that the same computational mechanisms

which developed for sensorimotor prediction have adapted for other cognitive functions.

Imitation Once the responsible forward models for executing an action have been recog-

nized, imitating the action is relatively straightforward: activate the inverse models be-

longing to these forward models in the same order as the forward models were recog-

nized. Wolpert et al. (2003) describe a hierarchical version of the MOSAIC system that

models this process.

3.2.2 Robotic forward models

The widespread use of forward models in human motor control has drawn the attention of

control and robotics community. Jordan and Rumelhart (1992) introduced Distal Learning, the

first method to explicitly use forward models in a controller. The distal supervised learning

problem is defined byintentions, that specify what the controller wants to achieve,motor

commands, with which the controller can influence the environment, andoutcomes, the result

of executing motor commands in the real world. The problem is that the inverse model has to

map intentions to motor commands, but has no target values for these motor commands. There

are target values for the outcomes, but these cannot be influenced directly by the inverse model,

which is why they are calleddistal. Because the target values are distal, learning the inverse

model cannot be done with supervised learning. The key to solving this problem is learning an

internal forward model, which maps motor commands to outcomes. Forward modelscanbe

learned using supervised learning, because they are a mapping from actions to proximal target

outcomes. This section has demonstrated how data can be gathered to learn this mapping.

31

Chapter 3 Related Work

The resulting composite learning system with inverse and forward models can be treated as a

supervised learning problem, which can be learned with any supervised learning algorithm.

Figure 3.1. The distal learning problem, with distal target values (above). Forward models
are the key to solving the problem (below).

Recently, robotic forward models have also been learned using Bayesian networks, as de-

scribed by Dearden and Demiris (2005). The benefit of Bayesian networks is that they allow

the causal nature of a robot’s control system to be modelled using a probabilistic framework.

Infantes et al. (2006) describes recent work at another group that also includes the use of

dynamic Bayesian networks.

In the networks used, nodes represent motor commands, robot states or observations, and

edges represent causal associations between these nodes. Motor commands cause changes in

the robot’s state, which is hidden, and this in turn causes changes in the observations, which

are accessible through the vision system. The structure and parameters of the network can

be learned by data acquired through motor babbling, similarly to the approach described in

Section 4.1.

A nice side effect of Bayesian networks is that the delay with which a motor command actu-

ally changes the robot’s state and observations is not fixed. By determining the log-likelihood

for varying delays, Dearden and Demiris could determine that issuing a velocity command

lead to an observed velocity 550ms later. Such delays must be taken into account when other

mappings from motor command to observation are learned, for instance when learning an

inverse model from human examples, as in (Buck, 2003), where the dead time is 300ms.

32

Section 3.2 Action Models

3.2.3 Robotic action models

Forward models predict the outcome of executing a motor command, whereas action models

predict the cost of continually executing a durative action. Forward models make prediction

on a time-scale of several 100ms, whereas action models predict the performance or outcome

of an action on completion, possibly several seconds or more in the future. Just as it is hypoth-

esized that forward models form the basis of social interaction and imitation (Wolpert et al.,

2003), we hypothesize that forward models could be reused to yield action models in the brain.

In principle, forward models can be called recursively to emulate an action model. Instead

of making a prediction only one time step ahead, a sequence of motor commands could be used

to update a simulated staten time steps in the future. If this sequence of motor commands

is generated by an inverse model, given the simulated state, we are effectively simulating the

temporally extended effects of the inverse model on the current state. This could be used

to determine how long the inverse model must be executed to achieve a certain state, or if

this state can be achieved at all. A drawback of this approach is that the uncertainty of the

prediction grows with each recursive call. Dearden (2006) has demonstrated empirically that

this accumulated uncertainty prevents this approach from being used in practice. Furthermore,

the abstract effects of

Balac (2002) proposes the ERA (Exploration and Regression tree induction to produce Ac-

tion models) system, which learns action models from observed data by training regression

trees. In this work, a robot learns the velocity with which it can travel over terrains with

different roughness properties. This knowledge is used to improve navigation plans. The in-

teresting aspect of this work is that for one action, different models are learned for different

contexts.

Haigh (1998) uses regression trees as well to learn cost models for indoor navigation actions.

These models take features such as the time of day into account as well. This is useful to

predict the crowdedness of hallways, and thus the duration of navigation. These models are

used to compute the best route in the office environment. In another application, search control

rules for the planning rules are derived from the regression tree rules.

Belker (2004) describes how action models are learned for navigation actions using model

trees and neural networks, and also stresses the importance of defining an appropriate feature

space. Since the emphasis in this work is on indoor navigation and obstacle avoidance, features

regarding the number of passages and their width (narrow vs. wide) are also included in the

feature space. The use of these models will be discussed more elaborately in Section 5.5.3.

Buck et al. (2002b) has a similar approach with neural networks.

33

Chapter 3 Related Work

3.2.4 Reinforcement Learning

In Supervised Learning, a teacher provides the target value vector for each input value vector,

for instance the appropriate action given a set of observations. For many problems in control,

the target action is not available, as this is exactly what we want to learn. As we saw, distal

learning is one solution to this problem. Reinforcement Learning (RL) solves the problem

by requiring the teacher to provide far less information: instead of providing a target action

at each time step, the teacher must only provide rewards at desirable state. The problem in

Reinforcement Learning is to find the sequence of actions that optimizes the accumulated

reward over time.

Most RL algorithm simplify this problem by not looking for the best sequence of actions

(policy) directly, but attributing a valueV to each state, or a valueQ to each state-action

pair (Sutton and Barto, 1998). Here, we will focus onQ-learning. At each time step, ex-

ploration strategies aside, the controller simply chooses the action with the highestQ-value.

Although this simplifies action selection greatly, the problem of attributing values state-action

pairs such that the accumulated reward over time is optimized remains. The main idea behind

RL algorithms is that these values can be learned, that is updated incrementally by backtrack-

ing the chosen action sequence each time a reward is found. Many improvements on this

initial idea have been made, such as intelligent updating, intelligent exploration, updating val-

ues off-line, allowing continuous state and action spaces, etc. We will not elaborate on them

here.

Even with these improvement, RL algorithms only solve problems with small discrete ac-

tion and state spaces, because values must be saved for each state-action tuple. This number

increases exponentially with the number of dimensions in the state and action space. Re-

cent attempts to combat this curse of dimensionality in RL have turned to principled ways of

exploiting temporal abstraction (Barto and Mahadevan, 2003). Several of theseHierarchical

Reinforcement Learningmethods, e.g. (Programmable) Hierarchical Abstract Machines (Parr,

1998; Andre and Russell, 2001), MAXQ (Dietterich, 2000), and Options (Sutton et al., 1999).

All these approaches use the concept of actions (called ‘machines’, ‘subtasks’, or ‘options’

respectively).

The important aspect of Reinforcement Learning for this dissertation is thatV- andQ-values

can be thought of as compiled action models. In RL, the policy is the action, and the value

is the predicted reward at some future time. A comparison between values and action models

will be made in Section 4.4.1.

34

Section 3.3 Cognitive Systems

3.2.5 Terminology

For completeness, Table 3.2 lists the different terminologies for action effects (what) and

performance prediction (how well)in different approaches. It is a repetition of Table 3.1, where

approaches that have no concept of action prediction have been excluded.

Domain
Prediction

Reference Action Effects Action Model

Control Theory
(Qin and Badgwell, 1998) Controller Process Model —

Reinforcement Learning
(Sutton et al., 1999) Option — Q-Value
(Andre and Russell, 2001) HAM, PHAM — Q-Value
(Dietterich, 2000) Subtask — Q-Value
(Ryan, 2004) Behavior Effects Q-Value

Planning
(Fikes and Nilsson, 1971) Routine Effects —
(Nilsson, 1994) T-R Program Effects —
(Ryan, 2004) Behavior Effects Q-Value
(Belker, 2004) Action Effects Action Model
(Bouguerra and Karlsson, 2005)Executable Action Effects —
(Cambon et al., 2004) Action Effects —

Forward Models
(Wolpert and Flanagan, 2001) Inverse Model Forward Model —
(Dearden and Demiris, 2005) Inverse Model Forward Model —
(Jordan and Rumelhart, 1992) Inverse Model Forward Model —

Table 3.2. Differing terminologies for different approaches to designing skill-based con-
trollers.

3.3 Cognitive Systems

Action models enable robots to reason about the outcome and performance of their actions.

Such reflective capabilities is essential for any cognitive system. In this section, we will

present work related to the overall approach of designing and implementing cognitive sys-

tems.

The overview paper “Systems That Know What They’re Doing” (Brachman, 2002), ex-

plains the DARPA Information Processing Technology Office’s goal to transform systems

which simply react to inputs to systems which are cognitive. In the proposed architecture,

a differentiation between reactive, deliberative, reflective and a self-awareness processes is

35

Chapter 3 Related Work

made. Reactive processes are simple reflexes and automated behavior routines whose execu-

tion does not need conscious effort. The bulk of decision making is performed by deliberative

processing, whereas reflective processes contemplate this decision making process to reflect

on alternative approaches. Self-awareness, the ability to realize that we are individuals with

different experiences, capabilities and goals, is an additional capability that enables even more

powerful reflection. These processes will allow systems to perform more robustly and inde-

pendently in application domains such as information extraction, networking and communica-

tions, or computational envisioning. Action models enable systems to deliberate the outcome

of there actions, and reflect on alternative actions or action parameterizations on-line.

Cognitive Systems for Cognitive Assistants (CoSy)(Cosy, 2004) is a project whose goal it

is to study cognitive submodules in the context of an integrated system. The methodology

in this project is to iteratively determine and implement intermediate steps, without losing

track of the ultimate goal of human-like performance. Another key principle is to understand

which approach is best in which context: nature or nurture, reactive or deliberative, explicit

or implicit representation. The projects also stresses the importance of finding representations

that allow powerful interactions between submodules. In this sense, action models can be

thought of as very powerful representations, as they facilitate control, state estimation and

many other aspects of cognitive systems.

The Modular Selection And Identification for Control (MOSAIC) architecture (Haruno

et al., 2001) integrates forward models into a computational model for motor control. This

framework is intended to model two problems that humans must solve: how to learn inverse

models for tasks, and how to select the appropriate inverse model, given a certain task. MO-

SAIC uses multiple pairs of forward and inverse models to do so. The inverse models are

learned during the task, and the forward models are used to select the appropriate inverse

model in a certain context. However, this architecture has not been designed for robot con-

trol. We are not aware of (robotic) controllers in which prediction models are an integral and

central part of the computational model, and which are acquired automatically, represented

explicitly, and used as modular resources for different kinds of control problems.

36

4. Learning Action Models

“Skilled motor behavior relies on the brain learning both to con-

trol the body and predict the consequences of this control”

(Flanagan et al., 2003)

As this quote implies, the key to answering the questions related to effectively and effi-

ciently executing actions in different, possibly novel, task contexts is prediction. As we saw in

Section 3.2.1, humans do exactly this, by learning forward models, and extensively using them

in various motor control tasks. For instance, forward models are used to improve state estima-

tion, estimate contexts, optimize control (Helmholtz, 1896; Wolpert and Ghahramani, 2000;

Wolpert and Flanagan, 2001; Ariff et al., 2002), and are possibly the basis of social interaction

and imitation (Haruno et al., 2001). In some holistic architectures of cognition and motor con-

trol, predictive knowledge plays a more important role than declarative knowledge (Hawkins

and Blakeslee, 2004; Grossberg, 1987; Haruno et al., 2001).

The key to tailoring these actions to different task contexts is acquiring the robotic equiva-

lent of forward models: action models. These models predict for instance the performance of

an action, or its expected success. Whereas forward models make their predictions on a motor

control level, action models do so at the level of durative action. They perform their predic-

tions on different time-scales. For example, thegoToPose action takes the robot’s current

and goal pose, and when called continually, returns motor commands that will navigate the

robot to the the goal pose. The action model that predicts the execution duration has the same

signature, and predicts how long this navigation action will take till completion.

Because it is difficult and error-prone to manually specify action models, robots learn them

from experience, gathered by executing the action and observing the result. This is Principle V

from Section 1.1. These action models can be used to optimize action sequences, coordinate

multiple robots, or adapt actions to new tasks. In this dissertation, actions are not merely

fixed resources, they rather provide an initial innate ‘action substrate’. Based on these innate

actions, the robot learns more sophisticated actions and action parameterizations itself, by

37

Chapter 4 Learning Action Models

observing its actions, learning models of them, and using these models to tailor actions to new

task contexts. With this approach, robots become more autonomous and adaptive.

The role of learning action models within the system has been highlighted in the system

overview, depicted in Figure 4.1. For each action in the action library, one or more action

models are learned. This is a two-step procedure, in which training data is first gathered by

executing an action for random states from the post-condition, and transforming this data to

an appropriate feature space. A generalized model is then learned from these examples by

tree-based induction. This action model is than incorporated in the action for which it was

learned, as shown in Figure 4.1.

Figure 4.1.Acquiring action models within the overall system overview.

The next section presents how experience is gathered, and how this data is transformed

to appropriate feature spaces. Section 4.2 presents an example of a learned action model.

In Section 4.3, we evalute the learned models empirically. After discussing related work in

Section 4.4, this chapter concludes with Section 4.5.

4.1 Acquisition of Training Data

Gathering training examples is done by executing an action, and observing the results. To

ensure that an action can be executed, the initial and goal states are chosen from its pre- and

post-conditions respectively. At the moment this is performed semi-automatically. The user

defines ranges for the action parameters that ensure that the pre- and post-conditions are met,

38

Section 4.1 Acquisition of Training Data

and the actual action parameters are sampled from these ranges randomly. The execution of

an action from an initial to a goal state is called an episode. The procedure is as follows:

1. Choose a random initial and goal state from the valid range of action parameters. This

ensure that the pre- and post-conditions are met, which guarantees that the action can be

executed.

2. Select and execute another action that can achieve the initial state. For instance, if a

model of thedribbleBall action is to be learned, the robot needs to be at the ball.

If it is not, theapproachBall action is executed beforehand. Using this preparatory

action in experience gathering alleviates the need for human intervention with the robot,

for instance, to make sure that the pre-conditions of an action are met. This substantially

speeds up experience gathering in practice.

Sometimes, this step can be bypassed. When the post-conditions of a action always

satisfy its pre-conditions, e.g. when the pre-conditions are empty, the goal state of one

action can be chosen to be the initial state of the next action, and there is no need

for a preparatory action. Furthermore, in simulation, Step 2. can be eliminated by

simply setting the state of the world to the initial state. Here, this instant environment

modification can be seen as the preparatory action.

3. Execute the action for which a model will be learned, and record the observable state

variables. Basically, all the variables in the robot’s belief state are recorded. Which of

them are relevant to learning the model is determined at a later stage. Realizing that an

unrecorded variable might be relevant to learning the action model requires re-gathering

the data, whereas recording all variables but not using all only costs memory. Most

robots in this dissertation record their state at 10Hz, so an episode ofs seconds duration

contains10s examples.

4. If enough examples have been gathered then quit, else repeat from Step 1. How much

is “enough” is discussed in Section 4.1.3.

The running example in this section will be learning to predict execution time for the

goToPose action for the simulated B21 in the kitchen environment. Figure 4.2 displays

a concrete example of gathered training data with this robot. Here, 30 of 2948 executions of

goToPose with random initial and goal states are shown.

2948 executions ofgoToPose takes approximately 7.5 hours to acquire. The total number

of executions or episodes is calledne. We split the data into a training and test set. The number

39

Chapter 4 Learning Action Models

Figure 4.2.Experience for a thegoToPose action (see Section A.1), in which the action was
performed thirty times.

of examples in the training set is denotedN . If we include three fourth of the episodes in the

training set, this yieldsN=34ne=2200 examples. The question we now face is whether these

2200 examples are enough to train a good model? Will a learning algorithm trained with this

amount of data likely make erroneous predictions on previously unseen cases? In general, any

hypothesis that is consistent with a sufficiently large training set is deemedprobably approxi-

mately correctPAC. A learning algorithm that has an error of at most� with probability1� �
(i.e. is PAC) must be trained with at leastN training examples, which can be computed with

Equation 4.1.

N � 1
� (ln

1
� + lnjHj) (4.1)

Here, jHj is the number of possible hypotheses, which in our case are the model trees.

DeterminingjHj for the model trees we use is beyond the scope of this research, but we can

nevertheless use Equation 4.1 to determine how we can make the most of our data to learn

accurate models. We use three approaches:

Reduce jHj. By exploiting invariances, we can map the data from the original direct state

space to a lower-dimensional derived feature space. This limits the number of possible

hypothesesjHj. This will be discussed in Section 4.1.1.

Increase N . Instead of using only the first initial example of each episode, we will also use

intermediate data gathered on the way to the goal, as will be explained in Section 4.1.2.

Here, we must be careful not to violate the stationarity assumption, which poses that the

training and test set are taken from the same probability distribution.

40

Section 4.1 Acquisition of Training Data

Track � empirically. By tracking� over time as more data is gathered, we can determine

when it stabilizes. At this point, we assume thatN � has been reached, and stop

gathering data. We will demonstrate this in Section 4.1.3.

4.1.1 Appropriate feature spaces

Whilst gathering experience, the robot records all the observable and internal state variables.

These might include the robot’s pose, the ball’s position, a teammate’s position, and the target

pose. Not all of these variables are relevant to learning an action model. For instance, if we

are gathering experience for a navigation action, the position of the ball is irrelevant, whether

it is seen or not. For learning, only relevant, also called informative (Haigh, 1998), features

should be used.

Furthermore, the originally recorded state variables do not necessarily correlate well with

the performance measure. Haigh (1998) calls such featuresprojective. Finding feature spaces

that correlate better facilitate learning, and less training examples are needed to learn an accu-

rate model. The state variables recorded in the navigation task, shown to the left in Figure 4.3

are a good example. The original seven dimensional state space contains the initial and desti-

nation dynamic pose. The first column in Figure 4.3 shows these variables, along with a graph

that plots the performance measure, time, as a function of one of these seven variables,x. The

example points in these plots are the same as in Figure 4.2.x clearly does not correlate well

with time, and neither do the other six features.

Fortunately, this state space contains several invariances, which can be exploited to derive

feature spaces that correlate better with the performance measure. For instance, in the seven-

dimensional state space, the learning algorithm has to learn to predict the execution duration

for every initial and destination position separately. Of course, it is the relative position of the

destination position to the initial one that matters, not their absolute positions. By exploiting

this translational invariance, the state space can be reduced to the five-dimensional feature

space depicted in the second column of Figure 4.3. Here, the robot is always at the location

(0; 0), anddx anddy are the difference between thex andy coordinates of the initial and

destination position. A further reduction due to rotational invariance is possible, yielding the

four-dimensional feature space depicted in the third column of 4.3.

By exploiting the invariances, we are reducing the dimensionality of the feature space.

This again reduces the number of possible model trees which can be learned, which leads

to a decrease ofjHj in Equation 4.1. This equation also specifies that with lowerjHj, fewer

training examples are needed to learn a PAC model. By the same reasoning, more accurate

models (i.e. lower�) can be learned on lower dimensional feature spaces, given the same

41

Chapter 4 Learning Action Models

Figure 4.3. The original state space, and two derived feature spaces. The top figures depict
the features used, and the graphs plot time against one of these features.

amount of data.

We have experimentally verified this, by training the model tree learning algorithm to be

presented in Section 4.2 with data mapped to each of the three different feature spaces in

Figure 4.3. For each feature space, the model was trained with 2200 (N) of the 2948 executed

episodes. The Mean Absolute Error (MAE) of the each of these models was determined on the

separate test containing the remaining13N episodes. As can be seen in Figure 4.3, the MAE

is lower dimensional feature spaces are used. We prefer the MAE over the Root Mean Square

Error (RMSE), as it is more intuitive to understand, and the cost of a temporal prediction error

is roughly proportional to the size of the error. There is no need to weight larger errors more.

Automatic feature space generation

For many applications, it is common to design feature spaces manually. State variables are

composed into higher level features using domain-specific knowledge. Different learning

problems often require different feature spaces. For instance, different actions might have

different parameters and control different variables. Their action models will therefore need

different features spaces to reducejHj, without abstracting away from relevant information.

42

Section 4.1 Acquisition of Training Data

Unfortunately, manually designing such feature languages is tedious, because each new learn-

ing problem usually needs its own customized feature space. It is also error-prone, as relevant

information in the original state space might be lost in the transformation.

To overcome these problems, we propose an algorithm that automatically generates com-

pact feature spaces, based on Equation Discovery (Stulp et al., 2006b). This is also known

as Constructive Induction (Liu and Motoda, 1998; Bloedorn and Michalski, 1998). Equation

Discovery systems introduce new variables from a set of arithmetical operators and func-

tions. The algorithm explores the hypothesis space of all equations, restricted by heuristics

and constraints. A classical representative is BACON (Langley et al., 1987), which rediscov-

ered Kepler’s law (T 2 = kR3). A graphic example can be seen to the left in Figure 4.4, in

which five input variables are mapped to the target by the equationt = ji1j + (i2=i3) +pi5.

The advantage of Equation Discovery is that it yields a compact representation and human

readable output. For instance, would the simplicity and elegance of Kepler’s law be obvious

from the learned weights in a neural network? However, the equations are restricted by the

operators provided, and the hypothesis space that arises might not contain the true function.

In these cases, the learning problem is said to beunrealizable(Russell and Norvig, 2003).

Figure 4.4.Combining Equation Discovery and Machine Learning to generate features.

Our novel approach combines the strengths of Equation Discovery, being the compactness

and interpretability of the resulting function, and Machine Learning, being its ability to ap-

proximate complex non-linear relationships. We do this by allowing Equation Discovery to

discover many equations, which, when applied to the input data, yield data that has a higher

43

Chapter 4 Learning Action Models

correlation with the target data. Equation Discovery is halted at a certain depth, and from

the multitude of generated equations (features), those most appropriate for learning are se-

lected. The algorithm essentially searches for relationships between several input variables

and the target variable that can be described well with operators, and leaves more complex

relationships to machine learning.

The algorithm combines alll initial features with thek given operators, yielding new equa-

tions. These new features are added to the original set. This is repeated recursivelyd times,

yielding equations with at most2(d�1) operators. Since the complexity of this algorithm is

�(k2d�1l2d), we should avoid generating irrelevant features. Mathematical constraints elimi-

nate equations that generate neutral elements (e.g. x/x, x-x). Term reduction removes terms

with the same semantics but different syntax (e.g.x � 1=y = x=y). Units are respected to

avoid for example subtracting meters from millimeters, or meters from seconds. Furthermore,

domain dependent operators can further control search. For example, in a geometrical domain

it makes sense to add trigonometric operators and constraints how to use them, such as “apply

atan only to two distances”.

We further direct search by choosing only features that predict the target value well. This

is done by computing the linear correlation coefficientr of the feature with the target value.

This approach is fast, but suffers the same problems as other filter methods (John et al., 1994).

At each depth, only thep% of features with highest correlation are added to the set for further

processing.

Feature spaces for all action models

The feature spaces used to learn each of the models have been listed in Table 4.1. The formulae

used to compute them from the action parameters listed in Table 2.1 are also given. The

algorithm presented in the previous section was not used in all domains, but a preliminary

version did find the appropriate features for thegoToPose actions.

4.1.2 Including intermediate examples

To gather data, the initial and goal states for an action are chosen randomly from the range of

valid action parameters. During execution, the observable and internal variables are recorded

at 10Hz. These variables are then transformed into features. One such execution is called an

episode. Part of an episode is depicted in Figure 4.5. For the running example, the B21 robot

performed 2948 navigation actions, so this yieldsne=2948 episodes.

To train the learning algorithm, ideally only the first example of each episode should be

44

Section 4.1 Acquisition of Training Data

Robot Action Features

Pioneer I goToPose dist =p(x� xg)2 + (y � yg)2,angle_to = jangle_tosignedj,angle_at = sgn(angle_tosigned)�norm(�g � atan2(yg � y; xg � x))
Ulm Sparrow goToPosition v; dist; angle_to
B21 goToPose vg; dist; angle_to; angle_at;�angle = jnorm(�g � �)j

reach distxyz =p(x� xg)2 + (y � yg)2 + (z � zg)2distxy =p(x� xg)2 + (y � yg)2; distxz; distyz;anglexy = atan2(yg � y; xg � x); anglexz; angleyz
PowerCube reach dist =q(�a � �ag)2 + (�b � �bg)2,

angle1 = norm(atan2(yg � y; xg � x)� atan2(_�b; _�a)),
angle2 = norm(�atan2(yg � y; xg � x) + atan2(_�bg; _�ag))
v =
q _�a2 + _�b2

vg =
q _�ag 2 + _�bg2norm(a): adds or subtracts2� to a until is in range[��; �]angle_tosigned = norm(atan2(yg � y; xg � x)� �)

Table 4.1.The feature spaces used to learn action models

used. This is because only the first entries are from the same distribution as the distribution

from which the initial and goal states were chosen. So if the original distribution from which

these states are selected is uniform, the first entries will be uniformly distributed as well. This

is necessary to fullfil the stationarity assumption, which demands that training and test set

are taken from the same probability distribution (Russell and Norvig, 2003). This has been

visualized in Figure 4.6, in the upper left graph. Here the initial states of thirty episodes

are depicted, as in Figure 4.3. The distribution of the distance and time are shown in the

histograms above and to the right of this graph. The histogram shows that initial distances to

the goal are uniformly distributed. The model trained on these examples has a Mean Absolute

Error of 0.59s.

From Equation 4.1, it can be derived that more training data (higherN) leads to more

accurate models (�) with higher probability (�). For each episode, more data is easily acquired

by using the execution duration not only from the initial state, but also from all the intermediate

states to the goal. These extra examples are depicted in blue in Figure 4.5 and Figure 4.6, in

the center upper graph. Instead of 2200 examples, we now have almost all 173336 examples,

which is all the training data collected in almost 5 hours of action execution. Superficially, this

45

Chapter 4 Learning Action Models

time v vg dist angle_to angle_at� 6.8 0.00 0.60 1.46 1.10 -1.63� 6.7 0.00 0.60 1.46 1.10 -1.63� 6.6 0.00 0.60 1.46 1.10 -1.63
: : : : : : :� 3.5 0.53 0.60 0.65 0.98 1.23� 3.4 0.51 0.60 0.62 1.02 1.16� 3.3 0.48 0.60 0.60 1.05 1.08
: : : : : : :� 0.2 0.40 0.60 0.08 0.03 -0.07� 0.1 0.41 0.60 0.04 0.03 -0.06� 0.0 0.43 0.60 0.00 0.00 -0.07

Figure 4.5.An example episode. The first entry is determined by the randomly chosen initial
and goal state. The projective features in the final entry always pass through (0,0).

might seem the optimal choice: the maximum amount of data, and a lower error. However,

a closer look shows another problem. Performance measures correlate with how far you are

from the goal state.How far should be interpreted abstractly here; it could be a distance, an

angle, some energy measure, time. Features that express wellhow far the robot is from the

goal state, are usually good features for learning the model. Haigh (1998) calls such features

projective. For instance, distance expresses very well how far we are from the goal, in a

geometric sense.

Such measures are always defined relative to the goal position. The equation for computing

distance (
p(x� xg)2 + (y � yg)2) clearly shows that the first step is to subtract the goal coor-

dinates from the current coordinates. Most features for learning action models compute their

values relative to the goal state. This approach entails that when the goal is almost achieved,

the distance measures will approach zero. The final row in the example episode in Figure 4.5

clearly demonstrates this. In the center graph of Figure 4.6 all episodes end in the origin at

(0,0), even though the initial states are spread throughout the feature space.

The histograms around the center graph in Figure 4.6 show that both distance and time

accumulate around zero. The distributions in the histograms are strongly skewed to zero.

Similar patterns arise for other features and actions. The stationarity assumption is clearly

violated. Most learning algorithms trained with this abundance of data around the origin will

be biased towards states that are close to the goal, and will tend to predict these states very

accurately, at the cost of inaccurate prediction of states further from the goal. Since it is more

likely that the model will be inquired for states further from the goal, this is unacceptable.

One way to fullfill the stationarity assumption is to simply put all the intermediate examples

from the episodes in the test set in the test set as well. Although both training and test set

would then both be sampled from the same probability distribution, this distributiondoes not

correspond to the distribution from which the goals were originally sampled. During real

46

Section 4.1 Acquisition of Training Data

Figure 4.6. The lower graph depicts how the Mean Absolute Error and number of examples
depend on the number of examples per episode used. The three upper graphs
depict forty episodes, and the distribution of the examples for three values of ex-
amples/episode on the x-axis of the lower graph.

operation time the distances from the initial state to the goal will certainly not be as skewed

towards 0 as in the center graph of Figure 4.6. However, it is exactly during operation time

that we need the models to be accurate. Therefore, it is essential that our test set is sampled

from the same distribution as during operatin time, which means we should only use the first

example of each episode in the test setand fullfil the stationarity assumption when training

the model.

A good compromise between the approaches of using only the first example or all examples

of an episode is to use only the first few examples. The number of intermediate examples per

episode included in the training data is denotedni. This means that the number of training

examples is roughlyne � ni instead of justne, but still represents the original distribution of

initial states. Since the best value ofni is not clear analytically, we determine it experimentally.

47

Chapter 4 Learning Action Models

The lower graph in Figure 4.6 depicts how the Mean Absolute Error (MAE) of the learned

model on a separate test set depends onni, the number of examples used per episode. In

this case, the minimum value for MAE is 0.52s, whenni is 30. This means the first 30

examples, equivalent to the first 3 seconds, of each episode are used. This yields a total of

65318 examples, as can be read from the right y-axis. Note that the number of examples grows

linear withni at first, but settles at 173336 after a while. This is because none of the episodes

has more than 139 examples (i.e. no episode took longer than 13.9s), so increasing the number

of examples per episode has no effect. The upper left graph in Figure 4.6 shows these truncated

episodes withni examples each, and the distribution of examples in the histograms. The

distributions are close to the distributions from which the initial and goal states were sampled,

shown in the right graph in Figure 4.6.

Summarizing, not all intermediate examples should be used to train an action model, as it

the projective characteristics of good features will biases the model towards examples around

the origin, thereby violating the stationarity assumption. On the other hand, using more data

from each episode yields a accurate model. A compromise is to use the firstni examples of

each episode. The value ofni that minimizes the MAE can be determined experimentally.

Care must be taken not to evaluate the final model with the same test set that was used to

determineni.

4.1.3 Number of training examples needed

To learn an accurate action model, sufficient data must be available for the learning algorithm

to build a model that generalizes well over unseen examples. On the other hand, the robot

should not take days to collect its data. To analyze how many examples are needed to acquire

an accurate prediction model, the model is frequently relearned as more and more examples

become available. Once the mean absolute error between a separate test set and the prediction

for these examples stabilizes, data acquisition is stopped.

Figure 4.7(a) demonstrates how the Mean Absolute Error (MAE) decreases as more

episodes become available for training the model. Although the error has not stabilized com-

pletely, no more data is gathered. This is because the final model used on the robots is actually

trained on all examples. Since there are no unbiased test examples left, its MAE cannot be

determine, but this model can be expected to be more accurate than the model trained on the

training set alone.

Finally, Figure 4.7(b) combines Figure 4.7(a) and 4.6 by showing the MAE for all combi-

nations ofni and the number of episodes available. There are two clear trends. First, more

episodes means a more accurate model can be learned, which we had already concluded from

48

Section 4.2 Learning Algorithms

(a) The error of the learned model decreases as
the number of episodesne increases.

(b) The error dependent on bothne and
ni. The best value ofni (30) is indepen-
dent ofne.

Figure 4.7.Collecting more examples lowers the model error.

Equation 4.1, and visualized in Figure 4.7(a). Furthermore, the optimal value forni is largely

independent of the number of episodes. It is actually also approximately the same across

actions and domains. This means we do not need to redetermineni each time new data is

gathered.

4.2 Learning Algorithms

Previous research on learning robot action models from observed experience has used neural

networks (Buck et al., 2002b), as well as model trees (Balac, 2002; Belker, 2004) as learning

algorithms. In (Stulp et al., 2006a), it was shown that there is no significant difference in the

accuracy of action models learned with neural networks or model trees. However, decision

and model trees have the benefit that they can be converted into sets of rules, which can be

visually inspected. As we shall see in Section 5.3.2, model trees can be optimized analytically.

Therefore, we will focus only on decision and model trees in this dissertation. Sections C.1

and C.2 in Appendix C describes these algorithms in more detail. Here we will present an

example of a learned forward model.

In the soccer domain, the robots learn to predict the execution time of thegoToPose

action, described in Section A.1. The model was learned from 386 episodes. The first 20

examples per episode were used. The features used weredist, angle_to, angle_at andv, see

4.3.

To demonstrate what the action models learned through model trees look like, an example of

49

Chapter 4 Learning Action Models

execution duration prediction for a specific situation is depicted in Figure 4.8. In this situation,

the variablesdist, angle_to andv (see Figure 4.3) are set to 2.0m, 0� and 0m/s respectively.

The model is much more general, and predicts accurate values for anydist, angle_to andv.

These variables are fixed for visualization purposes only. For these fixed values, Figure 4.8

shows how the predicted time depends onangle_at, once in a Cartesian, once in a polar

coordinate system.

Figure 4.8.An example situation, two graphs of time prediction for this situation with varyingangle_at, and the model tree rule for one of the line segments.

In the linear plot we can clearly see five line segments. This means that the model tree has

partitioned the feature space fordist=2.0mangle_to=0� andv=0m/s into five areas, each with

its own linear model. Below the two plots, one of the learned model tree rules that applies to

this situation is displayed. An arrow indicates its linear model in the plots. The polar plot

clearly shows the dependency of predicted execution time on the angle of approach for the

example situation. Approaching the goal at 0 degrees is fastest, and would take a predicted

2.1s. Approaching the goal at 180 degrees means the robot would have to navigate around the

goal point, taking much longer (6.7s).

50

Section 4.3 Empirical Evaluation

In Section 6.2, we will give a different example of an action model, which predicts if an

action will succeed or fail. We have postponed this example, as it enables a clearer structuring

of Chapter 6.

4.3 Empirical Evaluation

Table 4.2 lists the number of episodesN executed to gather data for the training set, the mean

execution duration per episodet, the total duration of data gathering for the training sett �N ,

as well as the model’s error (MAE) on a separate test set.

Robot Action 34ne t t � 34ne MAE
(s) (h:mm) (s)

Roboteq R goToPose 290 6.4 0:31 0.32
dribbleBall 202 7.7 0:26 0.43

Pioneer I R goToPose 223 6.5 0:24 0.36
Pioneer I S goToPose 750 6.2 1:18 0.22

dribbleBall 750 7.4 1:32 0.29
Ulm Sparrow R goToPosition 517 4.6 0:40 0.33
B21 S goToPose 2200 9.0 5:45 0.52

reach 2200 2.6 1:38 0.10
PowerCube R reach 1100 2.9 0:53 0.21

Table 4.2.This table lists the action models used in this dissertation.

For an unbiased evaluation of learned models, it is of course essential that the error measure

is determined over a separate test, not the training set itself. The point of evaluation is to

test how well the model generalizes over unseen examples. Sometimes, the test set is used to

determine the parameterization of a learning algorithm. For instance, the learning algorithm

is trained on the training set with different learning rates, and the learning rate which causes

the lowest error on the test set is used for learning. We used this approach to determineni in

Section 4.1.2. It is important to note that although the test set is not used to train the algorithm

itself, it wasused to train the learning parameter of the algorithm, and information from the

test set has leaked into the resulting model. Therefore, we may not reuse this set for the final

evaluation. This would be what Russell and Norvig (2003) considerpeeking. The results in

Table 4.2 have therefore been acquired as follows:

1. First, map thene episodes to the appropriate feature space

2. Then, the model tree is trained with12ne episodes for varying values ofni. The best

value ofni is chosen based on the lowest error on a separate test set with14ne examples.

51

Chapter 4 Learning Action Models

3. After determiningni, the first test set is no longer need for testing, and it is added

to the training set, which now contains34ne episodes, and approximatelyN = 34neni
examples.

4. A model is trained withni intermediate examples per episode, and tested on the second

test set, which contains the remaining14ne examples. The acquired error is reported in

Table 4.2.

5. The final model stored in the action library was therefore trained with allne episodes,

but could not be evaluated, as not test data is left. However, using more data should

theoretically lead to a better model, according to Equation 4.1.

This might seem a bit cumbersome, but is essential to ensure that we do not peek, or use

any training data to evaluate the learned model.

In the simulated domains and the PowerCube arm, data was gathered until the error stabi-

lized. For the other first five actions, this was not yet the case. One reason is that gathering

data on mobile robots is more cumbersome than in simulation or on fixed arms. The amount

of data gathered for these actions has also consciously been kept low to demonstrate that good

models can be learned in little time (e.g. <30 minutes). Even with limited data, and resulting

sub-optimal accuracy of the action models, using these models for optimization and coordina-

tion still yields very good results, as we shall see in the next three chapters. In the conclusion in

Section 4.5 we explain how more accurate models can be learned using data gathered on-line

during robot deployment.

4.4 Related Work

Related work on learning forward models and actions models on robot has already been pre-

sented in Section 3.2.2 and 3.2.3. This sections will provide a comparison with the methods

described in this chapter.

Most similar to our work is that of Belker (2004). Here, model trees are trained with data

gathered from navigating through hallway environments. It was actually a discussion in ex-

actly this hallway environment prompted us to use model trees, and extended their use to novel

domains and actions.

Balac (2002) has developed the ERA (Exploration and Regression tree induction to pro-

duce Action models) system, in which robots learn the speed with which they can travel over

terrains with different roughness properties, using regression trees. However, the speed with

which a robot can navigate over different terrains could simply be acquired by navigating over

the terrain and computing the mean speed, without using regression trees. A closer inspection

52

Section 4.4 Related Work

of the visualized regression trees (see Balac et al., 2000, Figure 1) show that this is exactly

what is happening.

Buck et al. (2002b) uses neural networks to learn execution duration prediction of a navi-

gation action. These models are learned from data gathered during simulation, and have not

been tested for accuracy on real robots. In this work, the number of examples needed, or the

use of intermediate data is not investigated. We have found that neural networks and model

trees do not have significant accuracy differences when trained on the same data to learn an

action model (Stulp et al., 2006a).

Fox et al. (2006a) propose the use of Hidden Markov Models to learn action models. As this

work has more relevance to Chapter 6, it will be explained more elaborately in Section 6.5.2.

4.4.1 Reinforcement Learning

The important aspect of Reinforcement Learning for this dissertation is thatV- andQ-values

can be thought of as action models. In this case the action is the optimal policy, and the value

is the predicted reward at some future time. The main difference betweenV- andQ-values, is

that action models are:

Reusable V- andQ-values are learned specifically for a certain environment, with a spe-

cific reward function representing a specific goal. The values are then learned for all

states, but for a single goal. Action models are more general, as they describe the ac-

tion independent of the environment, or the context in which they are called. Therefore,

action models can be transfered to other task contexts. Haigh (1998) draws the same

conclusion when comparing action models with RL.

Meaningful The performance measures we can learn, such as execution duration, are infor-

mative values, with a meaning in the physical world. Rewards have no unit, and are

chosen arbitrarily.

Composable Because action models return meaningful values, these values can be com-

posed into more complex values. For instance, a composed performance measure could

take both execution duration and energy consumption into account. Since the Value

compiles all performance information in a single non-decomposable numeric value, it

cannot be reasoned about in this fashion.

Modular In Hierarchical Reinforcement Learning,Q-values are learned in the calling context

of the action. Policy optimization can therefore only be done in the context of the pre-

specified hierarchy/program. Action prediction models are independent of the calling

53

Chapter 4 Learning Action Models

context, so can be combined in any order. Also, the scale of rewards are determined

arbitrarily. They can be 1000 or 1. Therefore, it is not possible to add the rewards

or values of two actions in a meaningful way, for instance if a sequence of actions is

considered. Maybe one has received a reward of 1000 for successful execution, and

the other only 1. These two aspects prevent Reinforcement Learning systems from

being able to optimize action sequences that have been generated on-line, such as in

planning. Ryan and Pendrith (1998) proposes RL-TOPS (Reinforcement Learning -

Teleo Operators), the only approach we know of that explicitly combines planning and

Reinforcement Learning is. This work will be described in more detail in Section 5.5

Scalable The methods we proposedscalebetter to continuous and complex state spaces. We

are not aware of the application of Hierarchical Reinforcement Learning to (accurately

simulated) continuous robotic domains.

The benefit of Reinforcement Learning algorithms is the rigorous mathematical framework

they provide, along with extensive experimental research on improving the algorithms.

4.5 Conclusion

In cognitive science, motor prediction is the key solution to many of the problems encountered

in motor control. Predicting the outcome of actions is learned from observed experience. In

this chapter, we have described a similar process for robots. The first step is to acquire experi-

ence by simply executing the action. This state space of this data is mapped to a feature space

with lower dimensionality, so less data is needed to learn an accurate model. Intermediate data

between the start and end of an episode is be included, whilst taking care that the stationarity

assumption is not violated, which is bound to happen due to the projective nature of good

features. Data acquisition is stopped when the error of the learned model stabilizes. It was

demonstrated that accurate action models could be learned for the actions of several simulated

and real robots.

A benefit of using model trees is that they tend to only use variables that are relevant to

predicting the target value. Initial learned models with relatively few relevant features could

be learnt quite accurately, but we expect that more complex actions with many degrees of

freedom, and therefore a large number of parameters, can not be learned as accurately with

the amount of data gathered on-line. We propose three solutions for this problem:

� Evaluate other function approximators that deal well with high dimensional search

spaces.

54

Section 4.5 Conclusion

� Further investigate the use feature space discovery systems, such as the one described

in Section 4.1.1, that can find useful abstractions for learning.

� Train the models that is gathered with data on-line during operation time.

Especially this last measure will likely have a very positive impact on the accuracy of the

learned models. First of all, since data gathering is then not done off-line, but parallel to actual

robot deployment, more training data can be acquired. More importantly though, the training

data contains action parameterizations that are not generated randomly, but rather arise during

actual operation. In general, it is to be expected that future experiences will be similar to past

experiences. Therefore, the training set (experiences from past actions) will be from the same

probability distribution as the ‘test set’ (future experience from yet to be executed actions).

In a sense, we could therefore say that the stationarity assumption is fullfilled with respect to

future unseen actions. The stationarity assumption is necessary to guarantee that the learned

model is probably approximately correct with respect to unseen examples (Russell and Norvig,

2003). ?) has demonstrated empirically in the service robotics domain that training models

with data gathered on-line improves the action model accuracy during operation.

We could image that robots operating in a variety of real world environments could first

be provided with default general action models learned from uniformly distributed examples.

When the robot is put into operation, it starts gathering data itself, and retrains the action

models with this data. It is to be expected that the models so obtained will be tailored to the

context the robot is acting in, and therefore more accurate in than the general default action

model.

We have also done some preliminary work on learning the effects of an action on a pa-

rameter level. For instance, it might be able to parameterize an action with a target location

xg; yg, but this location will not be perfectly reached. By comparing the true final location

with the target parameters, a robot can learn the accuracy and robustness of an action. This

could enable the robot to make well-informed decisions on how to parameterize an action. For

instance, the learned models showed that a high target translational velocity causes the robot

to reach the target less precisely. If a target needs to be reached with high precision, the robot

could choose to select a lower translational velocity.

The results reported in this chapter have been published in: (Stulp and Beetz, 2005b,c,a,

2006; Stulp et al., 2006a; Isik et al., 2006; Stulp et al., 2006b, 2007). Summaries of these

publications are given in Appendix D.

55

5. Task Context: Action Sequences

“It seemed to Quinn that Stillman’s body had not been used for

a long time and that all its functions had been relearned, so that

motion had become a conscious process, each movement broken

down into its submovements, with the result that all flow and spon-

taneity had been lost.”

Paul Auster – The New York Trilogy

When it comes to elegant motion, robots do not have a good reputation. Jagged movements

are actually so typical of robots that people trying to imitate robots will do so by executing

movements with abrupt transitions between them. For instance, there is a dance called “The

Robot” which, according to Wikipedia is characterized by“...all movements are started and

finished with a small jerk...”. Auster (1987) gives an accurate description of this type of motion

when introducing the character Stillman, a seriously ill person, in the quote above.

In contrast, one of the impressive capabilities of animals and humans is their capability to

perform sequences of actions efficiently, and with seamless transitions between subsequent

actions. As was mentioned in Section 3.2.1, there are often infinitely many ways to per-

form any task, but most tasks are solved with highly stereotyped and smooth movement pat-

terns (Wolpert and Ghahramani, 2000). It is assumed that that these typical patterns are those

that minimize a certain cost function. So, in nature, fluency of motion is not a goal in itself, but

rather an emergent property of time, energy and accuracy optimization. In cognitive science,

one challenge is to reverse-engineer this cost function, given the motion patterns found in em-

pirical studies. In this section, we invert the process, and demonstrate that requiring optimal

execution of action sequences with respect to time also automatically leads to smooth natural

motion in robots.

Figure 1.2, repeated in Figure 5.1, demonstrates an abrupt transition when approaching the

ball to dribble it to a certain location. As discussed in Section 1.1, Principle III, these abrupt

transitions often arise because action abstractions abstract away from aspects that influence

57

Chapter 5 Task Context: Action Sequences

the performance. In this case, the angle of approach is abstracted away from when selecting

the actions, although it obviously influences the execution duration.

(a) An execution with an abrupt transition
at the intermediate goal.

(b) An time-optimal execution that ex-
hibits smooth motion.

Figure 5.1.A greedy and an optimal execution of the same abstract action sequence.

Such jagged motion is not just inefficient and aesthetically displeasing, but also reveals a

fundamental problem that inevitably arises from the way robot controllers and actions are

designed and reasoned about. Because the angle of approach is not fixed, many intermediate

subgoals are possible. Automatically determining the optimal intermediate subgoal is called

subgoal refinement. It is based on extracting and optimizingfree action parameters. The

optimal values of free action parameters are determined by requiring the expected cost of the

execution of the entire sequence of actions to be as small as possible. In the example above,

the free action parameter was the angle of approach, and the expected cost is time, which can

be predicted with action models described in Chapter 4.

The behavior shown after applying subgoal refinement in Figure 1.2(b) has a higher per-

formance, achieving the ultimate goal in less time. A pleasing side-effect is that it exhibits

seamless transitions between actions. The plots of the navigation trajectories in the fields

demonstrate this. The lines on the trajectories represent the robot’s pose and translational ve-

locity, recorded at 10Hz. The center of each line is the robot’s position. The lines are drawn

perpendicular to the robot’s orientation, and their width represents the translational velocity at

that point.

The main motivation for subgoal refinement from a controller design point of view is that

human designers or planning systems should reason only about abstractions of actions (Prin-

ciple I), and have the robot automatically optimize aspects of the action that are relevant for

its execution with subgoal refinement (Principle IV).

In Figure 5.2, subgoal refinement has been highlighted within the system overview. The

58

Section 5.1 Computational Model

subgoal refinement module takes an action sequence as its input, possibly with free action

parameters, and returns the same action sequence, with refined subgoals.

Figure 5.2.Subgoal refinement within the overall system overview.

The rest of this chapter is organized as follows. In the next section, the computational model

for subgoal refinement is introduced. The process of generating abstract action sequences

through planning is presented in Section 5.2. The implementation of subgoal refinement, the

procedure of extracting and optimizing free action parameters, is introduced in Section 5.3.

An empirical evaluation of the effects of subgoal refinement in the three robotic domains is

presented in Section 5.4. Related work is discussed in Section 5.4, after which we concluded

with Section 5.6.

5.1 Computational Model

Subgoal refinement can best be explained in the context of abstract action chains. In an abstract

action chain, the postconditions of each action satisfy the preconditions of the next action.

Preconditions of an action constrain the possible states in which the action can be executed,

and the postconditions the states that might arise when executing the action until completion.

Figure 5.3(a) depicts an abstract action chain, with pre- and postconditions represented as

subsets of the entire state space.

Note that there are many possible intermediate states, as the intersection of pre- and post-

conditions yields a whole set of possible states, not just one. In the ball approach example,

59

Chapter 5 Task Context: Action Sequences

(a) Abstract action chain before subgoal refine-
ment.

(b) Abstract action chain optimized with subgoal
refinement.

Figure 5.3.Computational model of subgoal refinement.

this set of intermediate states contains all possible states in which the robot is at the ball, eight

of which are also depicted in Figure 5.3(a). In this set, all variables are equal, except the angle

with which the ball is approached. This action parameter is therefore calledfree. The first step

in subgoal refinement is automatically determining the free action parameters in a sequence

of abstract actions, by examining their pre- and postconditions.

Since all the states in the intermediate set lead to successful execution of the action se-

quence, we are free to choose whichever state we want. Execution will succeed for any value

for the free angle of approach. As we saw in Figure 5.1 some values are better than others,

with respect to the expected performance. Therefore, the second step in subgoal refinement is

to choose values for the free action parameters that minimize the expected cost of executing

the entire sequence of actions. The expected cost is predicted using action models.

To optimize action sequences, the robot must first generate action sequences. In this dis-

sertation, this is performed using a symbolic planner. The general computational model of

symbolic plan-based robot control is depicted in Figure 5.4, and is similar to the models pro-

posed by Bouguerra and Karlsson (2005) and Cambon et al. (2004), which will be discussed

more detail in Section 5.5.3.

The first step is to convert the continuous state variables in the belief state to an abstract

state, through a process called anchoring. Given this abstract state, a goal, and the action

library, the planning system then generates a chain of abstract actions that can achieve the

goal. The abstract actions in this plan are then instantiated, given the corresponding executable

actions in the action library, and the state variables in the belief state. Subgoal refinement takes

the (partially) instantiated action sequence, and optimizes it. Note that subgoal refinement

module does not interact at all with the planning or execution processes, but only modifies

60

Section 5.2 Action Sequence Generation

Figure 5.4.Computational model of subgoal refinement in action sequence generation.

existing action sequences.

5.2 Action Sequence Generation

The next sections will present the implementation of the anchoring, planning system and ac-

tion instantiation from Figure 5.4. We also describe how abstract states, goals and plans are

represented. In Section 5.3, the implementation of subgoal refinement is introduced.

5.2.1 Abstract actions: PDDL

Whereas the executable action specifieshow the action performs it task, the abstract action

specifieswhatthe action can perform. To be more precise the preconditions of an action define

in which states the action can be applied successfully, and the effects (or postconditions) define

what the effect of continually executing the action till completion will be.

In the system implementation, the Planning Domain Description Language (PDDL2.1 (Fox

and Long, 2003)) is used to describe abstract actions, abstract states and goals. The benefit

of using this language is that it is used as the input and output format of the International

Planning Competition, held biannually in conjunction with International Conference on Au-

tomated Planning and Scheduling, making it a standard in the planning community. For this

61

Chapter 5 Task Context: Action Sequences

reason, there are many tutorials and examples available for PDDL, as well as a multitude of

planning system implementations that efficiently generate PDDL plans.

The actions in the action library, along with their

Figure 5.5.PDDL planning example

preconditions and effects are specified in PDDL, as

depicted in the example from the service robotics do-

main in Figure 5.5. The effects contains an add-list

and a delete-list, that specify which new facts should

be added and removed to the abstract state. As can be

seen, actions and their conditions are represented by

easy to interpret symbols.

Figure 5.5 depicts examples of an initial state and a

goal in the service robotics domain. Due to the sym-

bolic nature of PDDL, these specifications are on a

level of abstraction that can be understood by humans

who have no experience with PDDL, or planning in

general. In this dissertation, goals are specified man-

ually, depending on the scenario, as is done in the In-

ternational Planning Competition. In the context of a

full robotic controller, rules that determine goals on-

line could be written.

The output of a PDDL planner is a list of abstract

action with symbolic parameters, also depicted in Fig-

ure 5.5. In a chain of abstract actions the precondition

of the first action is satisfied by the current situation, and the preconditions of all other actions

are satisfied by the postconditions of preceding actions. The postcondition of the last action

must satisfy the goal. A chain of abstract actions represent a valid plan to achieve the goal.

Each action essentially enables the next action to be executed, until the goal is reached. Note

that an action sequence is a list of executable actions with (partially) instantiated usually con-

tinuous parameters. They are called sequences rather than chains, to emphasize that the strong

causal link between subsequent abstract actions in a chain is not explicit in action sequences.

Converting the continuous variables from the belief state into named symbols (e.g. PDDL

symbols) is called anchoring (Coradeschi and Saffiotti, 2001). As we currently do not consider

replanning, anchoring need only take place at the beginning of the planning process. As

anchoring is not the focus of this research, we manually specify the initial abstract state, which

is constant for each scenario presented in Section 5.4. These limitations will be discussed in

62

Section 5.2 Action Sequence Generation

more detail in Section 5.2.3. The actual planning process used to generate PDDL plans from

PDDL action and state specifications is performed by the Versatile Heuristic Partial Order

Planner (Younes and Simmons, 2003)1.

5.2.2 Action instantiation

The PDDL plans that VHPOP generates are very abstract, with clear semantics ofwhatactions

do, even without knowing how the actions are executed. This makes human inspection of the

plan feasible. However, it does not specifyhowthis plan can or should be executed in the real

world. Therefore, once the plan is acquired, the abstract action sequences must be instantiated

with the corresponding executable actions. For instance, the abstract action(goto start

ball) is converted to an action by determining the locations ofstart andball by de-

termining the coordinates of these objects in the belief state, and instantiating the appropriate

action with them.

Let use suppose the soccer robot has a simple actiongoToPosition , that takes it from

a certain position(x,y) to a goal position(xg,yg) . Given the symbolic plan(goto

start ball) , thegoToPosition action can be instantiated by determining the(x,y)

positions of the ball, and passing these as parameters togoToPosition , as in Figure 5.6.

Since all the parameters of the action are bound to values, this action is fully instantiated. This

process is calledoperator instantiation(Schmill et al., 2000).

01 Action instantiateAction(abstract_action, params[], belief_state) {
02 if (abstract_action == "goto") {
03 x = belief_state.getX(params[0]) // params[0] => "start"
04 y = belief_state.getY(params[0])
05 xg = belief_state.getX(params[1]) // params[1] => "ball"
06 yg = belief_state.getY(params[1])
07 return GoToPositionAction(x,y,xg,yg)
08 } else if ... (other actions)

instantiateAction("goto", ["start", "ball"], belief_state) =>
goToPosition(x=2.68, y=2.12, xg=4.17, yg=3.40)

Figure 5.6.Fully instantiated action.

5.2.3 Discussion

Using symbolic planners to generate action sequences for robots has a long tradition. Shakey,

one of the first autonomous mobile robots used PDDL-style representations to determine ac-

1This planner can be downloaded free of cost athttp://www.tempastic.org/vhpop/

63

http://www.tempastic.org/vhpop/

Chapter 5 Task Context: Action Sequences

tion sequences that would achieve its goal (Nilsson, 1984; Fikes and Nilsson, 1971). More

recent examples include the work of Coradeschi and Saffiotti (2001), Cambon et al. (2004)

and Bouguerra and Karlsson (2005). The approach explained in this chapter contributes to

this research area. Some reasons why symbolic planning is of interest to robotics are:

Abstraction Symbolic planners abstract away from many aspects of the belief state, so plan-

ning and replanning is faster and more complex problems can be dealt with.

Adaptation Action sequences or action hierarchies must not be specified in advance, but

are generated on-line, depending on the situation at hand. This makes the system more

adaptive. The designer need only specify the pre- and postconditions of an action, inde-

pendent of the other actions in the library.

Predictive plan repair Robot can reason about plans off-line before execution, to recog-

nize and repair failures (Beetz, 2000) in advance. Of course, this is preferable to en-

countering them during task execution.

Constraints Constraints on actions can be specified symbolically. Cambon et al. (2004)

uses symbolic constraints to intuitively specify that larger objects cannot be placed upon

smaller ones.

VHPOP is, as most PDDL planners, a general purpose planner, not specifically tailored to

robot planning. It does not address some of the problems inherent in robotics. The system

presented in this section abstracts away from these problem to focus on the main contribution:

the optimization of already generated plans. Other research has focussed on other problems

that need to be resolved to enable symbolic planning on robotics, such as uncertainty, fail-

ure recovery and action monitoring ((Bouguerra and Karlsson, 2005)), geometric constraints

((Cambon et al., 2004)), and anchoring ((Coradeschi and Saffiotti, 2001)).

Uncertainty The symbols used in the symbolic state are either true or not. In robotics appli-

cations, this certainty cannot be achieved. The system would be more robust if it took

uncertainty into account. Bouguerra and Karlsson (2005) present a system in which

probabilistic representation of states and a probabilistic planner are used.

Geometric constraints In robotics, the robot and objects physically take up space in the

world. This places geometric constraints on the movements the robot can make, and the

interactions that are possible with objects. The aSyMov (Cambon et al., 2004) system

takes these constraints into account, and maps them to preconditions for actions.

64

Section 5.2 Action Sequence Generation

Failure recovery The current version of our system does consider failure recovery or re-

planning. In robotics, action can or are not always executed, and their desired effects not

achieved. This requires that the plan is repaired or replanned from scratch. Bouguerra

and Karlsson (2005) propose a method for monitoring action execution, and recognizing

action failure.

Anchoring Anchoring usually involves complex tracking mechanisms to maintain the cor-

respondence between symbols in the symbolic state, and objects locations in the belief

state. Coradeschi and Saffiotti (2001) provide an overview of anchoring in robotic plan-

ning.

Implicit abstract representations

In Section 3.1.1, direct programming as a method to manually design controllers was intro-

duced. In this approach, the abstract planning domain in Figure 5.4 is not explicitly repre-

sented in the controller. However, it is implicitly representedin the designer’s mind. Consider

the following, trivial hand-coded soccer playing controller in Figure 5.7.
...

if (hasBall(beliefState)) {
if (facingGoal(beliefState)) {

shoot(beliefState)
} else {

dribbleToGoal(beliefState)
}

} else {
approachBall(beliefState)

}
...

Figure 5.7.Hand-coded soccer action selection module.

This code has no merit in itself, except demonstrating how following abstract concepts are

represented implicitly:

Sequentiality the control flow of the program will ensure that the action sequence

approachBall - dribbleToGoal - shoot is executed. This sequence of actions

are not known in advance, but rather arise implicitly by traversing through state space,

thereby also traversing the corresponding action space.

Abstract State and Action the functionhasBall abstracts away from many aspects of

the state, and compresses it into one boolean value.hasBall also implicitly encodes

the precondition of bothdribbleToGoal andshoot .

65

Chapter 5 Task Context: Action Sequences

Abstract Goal From this code alone it is clear to us that the robot’s purpose is to score a

goal.

In principle, subgoal refinement can also be implemented without a planning system or ex-

plicitly encoding conditions. If there is only a fixed number of action sequences, the designer

can still enable subgoal refinement by explicitly specifying the free action parameters and the

models with which respect they should be optimized for each action transition. This is actually

how the subgoal refinement system was initially implemented, before the planner was added.

Purely reactive systems cannot use subgoal refinement, as it depends on the commitment to

a future sequence of actions. If it is not clear that the ball will be dribbled after having ap-

proached it, the robot cannot anticipate the best angle to approach the ball at. Both direct pro-

gramming (Section 3.1.1) and motion blending (Section 3.1.2) methods often use hysteris to

avoid too frequent switching between behaviors, and the unfluent motion that arises (Lötzsch

et al., 2004; Kobialka and Jaeger, 2003). Note that hysteris is essentially committing to an

action for a certain amount of time. Apparently, even reactive systems cannot dispense of

commitment completely to avoid jagged motion.

We believe that explicitly encoding action abstractions is preferable, as having knowledge

about your own actions enables the robot to reason about and manipulate them itself. This is

essential for autonomy, adaptivity, and intelligent behavior in general (Dearden and Demiris,

2005). For instance, it allows subgoal refinement to be automated, and applied to previously

unknown action sequences.

5.3 Subgoal Refinement

Now that the action sequences have been generated, they can be optimized with subgoal refine-

ment. Subgoal refinement is based on the concept of free action parameters. This section will

first describe what free action parameters are, and then how they are automatically extracted

and optimized.

5.3.1 Free action parameters

Contrary to classical AI planning, actions are often redundant and over-expressive, both in

nature and robotics applications. In robotic arm control for instance, one gripper position can

often be achieved by many joint configurations (Hooper, 1994). In nature, there are many

ways that a predator can stalk its prey, and some will work better than others (Blumberg,

2003). For instance, when stalking their prey, wild cats press themselves to the ground to

66

Section 5.3 Subgoal Refinement

avoid being seen. Apparently, this is much better than walking up-right. Domesticated cats

instinctively crouch too, but, in over-enthusiastic anticipation of a prey never to be caught,

tend to vigorously wave their tail in the air at the same time. Their survival does not depend

on actually catching prey, and thus their stalking skills have never been perfected. Although at

an abstract level, the same action is being executed, it is just a small variation that determines

success or failure, to the frustration of domesticated cats world-wide.

The free action parameters in robotic actions are simultaneously a blessing and a curse. Al-

though modern robot planners do not make the assumptions that classical planners do, planners

still view actions at a level of abstraction that ignores the subtle differences between actions.

Note that this is a blessing, because such details should not be considered at the abstract plan-

ning level, to keep planning tractable and preserve its declarative nature.

However, because the planning system considers actions as black boxes with performance

independent of the prior and subsequent steps, the planning system cannot tailor the actions

to the contexts of their execution. This curse often yields suboptimal behavior with abrupt

transitions between actions, as we saw in the example in Figure 5.1(a). In this example, the

problem is that in the abstract view of the planner, being at the ball is considered sufficient

for dribbling the ball and the dynamical state of the robot arriving at the ball is considered

to be irrelevant for the dribbling action. Whereas these variables are indeed irrelevant to the

validity of the plan, they are relevant to the performance of plan execution. Our system allows

planners to reason about high-level abstractions of actions, but also optimizes the way in which

the action is performed at a lower level. The curse becomes a additional blessing.

We will now explain how free action parameters are determined in the action instantiation

process in the planning system. In Figure 5.6, we saw how thegoToPosition action was

fully instantiated by the abstract plan(goto start ball) . Now, instead of instantiating

the goToPosition action, we will instantiate thegoToPose action with the same plan.

ThegoToPose action also contains the current and goal orientation and velocity. Since the

symbolball does not have an orientation in the belief state, this leads to free parameters.

These free unspecified parameters are usually set to default values, such as�g to 0:0 in the

example in Figure 5.1. However, since this value isunspecified, it is more sensible to set it to

the range of all possible values it can take. Figure 5.8 shows how unspecified parameters are

set to default ranges in the program.

This program clearly demonstrates the parameters which the abstract plan has abstracted

away from. Note that the unspecified values do not influence the validity of the plan, as they

are not related to the symbolic parameters of the abstract plan.

67

Chapter 5 Task Context: Action Sequences

01 Action instantiateAction(abstract_action, params[], belief_state) {
02 if (abstract_action == "goto") {
03 x = belief_state.getX(params[0])
04 y = belief_state.getY(params[0])
05 phi = belief_state.getPhi(params[0])
06 v = belief_state.getV(params[0])
07 xg = belief_state.getX(params[1])
08 yg = belief_state.getY(params[1])
09 phig = [-PI,PI] // phig not specified, set to default
10 vg = [VMIN,VMAX] // vg not specified, set to default
11 return GoToPoseAction(x,y,phi,v, xg,yg,phig,vg)
12 } else if ... (other actions)

instantiateAction("goto", ["start", "ball"], belief_state) =>
goToPose(x=2.68, y=2.12, phi=0.21, v=0.4,

xg=4.17, yg=3.40, phig=[-PI,PI], vg=[VMIN,VMAX])

Figure 5.8.An action sequence with free parameters set to default ranges.

In real scenarios, the default ranges of parameters are often constrained further by the

context the action is being executed in. For instance, the maximum velocity of the soccer

robots is 2m/s, but the precondition ofdribbleBall specifies that it should be in the range

[0m/s,0.3m/s] because the robot will not be able to control the ball otherwise. So the goal ve-

locity of adribbleBall action will always be in this range, and the starting velocity should

be in this range too. Figure 5.9 demonstrates this approach as an extension of the previous two

programs. Instead of setting the free action parameters to default ranges, they are set to ranges

that depend upon the context, which is passed as an extra parameter.

In partial order planning, a causal link is a pair of actions and a proposition, which is a

postcondition of the first action, and the precondition of the next. In Figure 5.9, the designer

of the program is essentially reasoning about such causal links between actions. Will the

ball be approachedin order to dribble or shoot it? These different causes or contexts yield

different constraints on the free action parameters, such as the more restricted velocity for ball

dribbling.

Although the program in Figure 5.9 enables subgoal refinement to be performed on-line, it is

not as general and generic as it could be. To enable completely automatic free action parameter

extraction, the planning system should provide the causal links as an output. Unfortunately,

causal links are not part of the PDDL output of VHPOP. The complete automation of free

parameter extraction has therefore not been implemented yet.

68

Section 5.3 Subgoal Refinement

01 Action instantiateAction(abstract_action, params[], context, belief_state) {
02 if (abstract_action == "goto") {

...
07 xg = belief_state.getX(params[1])
08 yg = belief_state.getY(params[1])
09 if (context == "dribble") {
10 phig = [-PI,PI]
11 vg = [0.0, 0.3]
12 } else if (context == "shoot") {
13 phig = [-PI,PI]
14 vg = [0.0, 0.6]
15 } else {
16 phig = [-PI,PI] // Default value
17 vg = [VMIN,VMAX] // Default value
18 }
19 return GoToPoseAction(x,y,phi,v,xg,yg,phig,vg)
20 } else if ... (other actions)

instantiateAction("goto", ["start", "ball"], "dribble", belief_state) =>
goToPose(x=2.68, y=2.12, phi=0.21, v=0.4,

xg=4.17, yg=3.40, phig=[-PI, PI], vg=[0.0, 0.3])

Figure 5.9.An action sequence with free parameters set to ranges that depend on the context.

5.3.2 Optimizing free action parameters

To optimize the action sequence, the system will have to find those values for the free action

parameters for which the overall performance of the sequence is the highest. The overall

performance is estimated by simply summing over the performance models of all actions that

constitute the sequence. We will first demonstrate this process with an example, and then give

the general optimization approach.

Examples

In Figure 5.10, Figures 4.8 and 5.1 have been combined. The first two polar plots represent

the predicted execution duration of the two individual actions for different values of the angle

of approach, a free action parameter. The overall duration is computed by simply adding those

two, as is depicted in the third polar plot.

The fastest time to execute the firstapproachBall can be read in the first polar plot. It is

2.1s, for an angle of approach of 0.0 degrees, as indicated in the first plot. However, the total

time for executing bothapproachBall anddribbleBall for this angle is 7.5s, because

the second action takes 5.4s. The third plot clearly shows that this is not the optimum overall

performance. The minimum is actually 6.1s, for an angle of 59�. Below the polar plots, the

situation of Figure 5.1 is repeated, this time with the predicted performance for each action.

69

Chapter 5 Task Context: Action Sequences

Figure 5.10.Selecting the optimal subgoal by finding the optimum of the summation of all
action models in the chain.

Another similar example from the service robotics domain is depicted in Figure 5.11. In

principle it is the same scenario as in Figure 5.10, but this time, the target translational velocity

has also been added. Of course, the different dynamics of the simulated B21 lead to different

execution times for this scenario. The angle of approach qualitatively has the same effect as

in the soccer scenario. Note that with higher target translational velocities, the first action can

be executed faster, as no braking is required before arriving at the goal. Again, the fastest

execution of the first action is at 0�, and the overall fastest execution at 64�, with a maximal

target velocity of 0.7m/s.

For reasons of clarity, only one or two parameters were optimized in these examples, and

we simply ‘read’ the minima from the plot. Of course, the robots must be able determine

this minimum automatically and on-line, possibly with several free action parameters and

resulting high-dimensional search spaces. The next sections will present two optimization

methods. The first approach is analytical, and only possible with model trees. The second is a

genetic algorithm, which is independent of the algorithm with which prediction models have

been learned.

70

Section 5.3 Subgoal Refinement

0

0.2

0.4

0.6−150 −100 −50 0 50 100 150

4

6

8

10

12

14

E
xe

cu
tio

n
du

ra
tio

n

Angle of approach

Tran
sl.

ve
l.

Figure 5.11.Another free action parameter optimization example.

Analytical optimization of Model Trees

In Figure 5.11 the three functions clearly consist of a bounded set of 2-dimensional planes in

the 2-dimensional feature space. In general, model trees partition then-dimensional feature

space, and represent the data in each partition with an-dimensional hyperplane.

This representation allows an analytical minimization of model trees. The solution idea

is that the minimum of a hyperplane can be found quickly by determining the values at its

corners, and taking the corner with the minimum value. This procedure should be repeated

for all m hyperplanes, which leads tom corner minima. The global minimum can then be

determined by choosing the minimum of all ‘minimal corners’. The computational complex-

ity of this approach is far lower than that of sampling, or other search techniques such as

genetic algorithms. The implementation and the complexities are presented in Section C.3 in

Appendix C.

Determining the minimum of two or more model trees is done by first merging the model

trees into one, and then determining the minimum of this one model tree. The implementation

is also presented in Section C.3.

71

Chapter 5 Task Context: Action Sequences

Optimization with a Genetic Algorithm

When model tree optimization is not possible, we optimize the free action parameters with a

genetic algorithm (GA) (Goldberg, 1989). Our implementation of the GA uses elitarianism

(2% best individuals passes to the next generation unmodified), mutation (on the remaining

98%), two-point crossover (on 65% of individuals), and fitness proportionate selection (the

chance of being selected for crossover is proportionate to an individual’s fitness).

To test and evaluate our GA implementation, we first applied it to several optimization

benchmarks, such as the De Jong’s function, Schwefel’s function and Ackley’s Path function.

The results and optimization times are reported in (Koska, 2006). In the subgoal refinement

scenarios to be presented in Section 5.4, the optimization time is usually small in comparison

to the gain in performance. For the extreme scenario, where several actions with many free

action parameters are optimized, our implementation of the GA still takes less than 0.5s to get

a good result.

Figure 5.12.Optimization in subgoal refinement with a genetic algorithm

72

Section 5.4 Empirical Evaluation

Figure 5.12 depicts how the optimization with the GA has been integrated in the over-

all system. At the top, an instantiated action sequence with bound and free action parame-

ters is requested to be optimized. Note that the parameters are labeled with an identification

number (ID). These are used to represent that certain parameters in different actions always

have the same value, as they are identical. For instance, the goal orientation (�g) of the

approachBall is equivalent to the initial orientation (�) of dribbleBall . Therefore

they share the ID ‘13’.

The next step is to partition the action parameters in the action sequence into two sets: one

set contains action parameters that were bound to certain value during instantiation, and the

other set contains the free action parameters, along with the range of values they can take.

Note that action parameters with the same ID are only stored once in these sets, as they should

have the same value.

Each free action parameter is then represented as a floating point gene on a chromosome.

The number of chromosomes in the population is the number of free parameters multiplied by

25. The chromosomes in the initial population are initialized with random values from their

respective ranges. The standard GA loop is then started. The loop halts if the best fitness has

not changed over the last 50 generations, or if 500 generations have been evaluated.

For a chromosome, the predicted execution duration is determined by calling the action

models with the fixed values from the set of bound parameters, and the values of the free

parameters represented in the chromosome. Then, for each chromosomec the fitnessf is

computed withfc = tmax + tmin � tc, wheretmax andtmin are the maximum and minimum

execution duration over all chromosomes respectively. This formula has been chosen to guar-

antee that the fitness is a non-negative number, which is necessary for fitness proportionate

selection.

5.4 Empirical Evaluation

In this section, we will introduce the scenarios and action sequences to which subgoal refine-

ment is applied. Then, the results of applying subgoal refinement will be presented.

In the robotic soccer domain, the action sequence to be optimized is theapproachBall

action, followed by adribbleBall action, as in Figure 5.1. The free action parameters at

the intermediate state are the angle of approach and the translational velocity.

To evaluate the effect of subgoal refinement in the service robotics domain, two scenarios

were tested. In the first scenario, the goal is to put a cup from one table to the other, which can

be achieved by the action sequence depicted in Figure 5.13. In each episode in the evaluation,

73

Chapter 5 Task Context: Action Sequences

the topology of the environment in each scenario stays the same, but the initial robot position,

the tables and the cups are randomly displaced along the arrows in Figure 5.13. Scenario 2

was a variation of Scenario 1, in which two cups had to be delivered.

Figure 5.13.Scenario 1. In each episode, the objects and the initial robot position are differ-
ent. Possible positions are indicated by arrows.

The kitchen scenarios have many free action parameters. Because preconditions usually

fix either navigation ór manipulation motions but never both (they are independent), one of

these action parameter sets is always free. Furthermore, the distance the robot must have to

the table in order to grab a cup must be between 40 and 80cm (as fixed in the precondition

of grip). This range is another free parameter. As in the soccer domain, the velocity and

orientation at way-points are also not fixed, so free for optimization as well. In Figure 5.14, an

example of free action parameters that arise from instantiating a plan in the kitchen scenario

are given. The green areas represent these ranges, where square areas represent a range of

possible positions, and the circular areas possible angles.

In the arm control domain, sequences of reaching movement were performed. Because this

particular task does not require abstract planning, we did not use VHPOP. For demonstration

purposes, we had the arm draw the first letter of the first name of each author of (Stulp et al.,

2007), and chose the way-points accordingly. Figure 5.15(a) shows the PowerCube arm, which

is attached to a B21 robot, drawing an ‘F’. To draw these letters, only two of the six degrees

of freedom of the arm were used, as depicted in Figure 5.15(b). The free action parameters

are the angular velocities at these way-points.

74

Section 5.4 Empirical Evaluation

Figure 5.14.Examples of free action parameter ranges in a kitchen scenario

5.4.1 Results

Table 5.1 lists the results of applying subgoal refinement to the different domains and scenar-

ios, wherea is the number of action in the sequence, ande is the number of episodes tested.

Scenario a e th=1 th=2 th=2=th=1 p
Soccer (Simu.) 2 1000 9.8s 9.1s 6.6% 0.00
Soccer (Real) 2 100 10.6s 9.9s 6.1% 0.00
Kitchen (Sc. 1) 4 100 46.5s 41.5s 10.0% 0.00
Kitchen (Sc. 2) 13 100 91.7s 85.4s 6.6% 0.00
Arm control 4-5 4 10.6s 10.0s 5.7% 0.08

Table 5.1.Subgoal refinement results

The baseline with which subgoal refinement is compared is a greedy approach, in which the

next subgoal is optimized with respect to the execution duration ofonly the current action. In

this case, we say the horizonh of optimization is 1. The downside of the greedy baseline is

that it also depends on the accuracy of the action model. However, we have chosen this as a

baseline, because setting all free action parameters to zero certainly leads to worse execution

times, and optimizing them manually introduces a human bias. The execution time of a single

75

Chapter 5 Task Context: Action Sequences

(a) The B21 robot drawing an ‘F’ with its Pow-
erCube arm.

(b) The two degrees of freedom used for
drawing.

Figure 5.15.Arm control domain experiment.

action is denotedt, which has three indexes referring to the horizon, the episode, and the

action in the sequence. For instancet1;64;2 refers to the second action in the 64th episode, that

was performed with a horizon of 1, which is greedy. The mean overall execution duration over

all episodes is denotedth=1, and computed using Equation 5.1.

Since subgoal refinement optimizes the execution duration of the current ánd next action, it

has a horizon of 2. The fourth columns lists the mean overall execution duration with subgoal

refinementth=2, which is computed with an equation equivalent to Equation 5.1 withh = 2.

The improvement achieved with subgoal refinement in episodee is computed using Equa-

tion 5.2, and the mean over all episodes is computed using Equation 5.32.

th=1 = 1
n

nX
p=1

mX
a=1 t1;p;a (5.1)

th=2;p=j=th=1;p=j = (1�
Pma=1 t2;j;aPma=1 t1;j;a) (5.2)

th=2=th=1 = 1
n

nX
p=1(1�

Pma=1 t2;p;aPma=1 t1;p;a) (5.3)

The fifth column in Table 5.1 lists the mean improvement achieved with subgoal refinement

th=2=th=1. Thep-value of the improvement was computed using a dependentt-test with re-

2In (Stulp and Beetz, 2005b), improvements were computed with1� th=1=th=2.

76

Section 5.4 Empirical Evaluation

peated measures, as each episode has been tested twice, once with, and once without subgoal

refinement. A significant and substantial improvement occurs in all but one domain.

To visualize the qualitative effect of applying subgoal refinement, the results from the arm

control domain are depicted in Figure 5.16. The angular velocities were set to zero (upper

row) or optimized with subgoal refinement (lower row). The axes represent the angles of

the two joints. This figure demonstrates well that the trajectories ares smoother with subgoal

refinement: the arms draws one long stroke, rather than discernible line segments. Since

the arm control domain was mainly included for visualization purposes, there are only a few

episodes. For this reason the overall improvement is not significant (>0.05).

Figure 5.16.Drawing letters without (upper row) and with (lower row) subgoal refinement.
With refinement, letters are drawn faster and smoother.

Although optimizing speed also leads to smoother motion in this domain, for humans it has

been shown that variability minimization is a more likely cause for smooth arm motion (Sim-

mons and Demiris, 2004). In this chapter, the main goal is not to explain or model human

motion, but rather to demonstrate the effects of optimizing sequences of actions. Interest-

ingly enough, Simmons and Demiris (2004) have also used their methods to draw letters with

smooth writing motions (Dearden, 2006).

5.4.2 Influence on individual actions

Table 5.2(a) and Table 5.2(b) demonstrate the effect of subgoal refinement on individual ac-

tions in the action sequence. The mean execution duration of each action over all episodes

77

Chapter 5 Task Context: Action Sequences

was computed using Equation 5.4.

th=2;a=k = 1
n

nX
p=1 t2;p;k (5.4)

The table to the left lists the execution of the individual action of Scenario 1 from the service

robotics domain3. The right table lists the same from a scenario from the soccer domain. In

this scenario, the simulated soccer robot navigates to four way-points on the field with the

goToPose action, as depicted in Figure 5.17. At each way-point the angle of approach and

translational velocity are optimized. This scenario was also executed in 100 episodes with

different randomly placed way-points in each episode.

Action h = 1 h = 2
a = 1 (gotoPose) 4.4s 5.7sa = 2 (grip) 20.8s 18.5sa = 3 (gotoPose) 5.9s 5.1sa = 4 (put) 15.4s 12.2sa = 1::4 (total) 46.5 41.5

(a) Service robotics domain.

Action h = 1 h = 2
a = 1 (gotoPose) 4.2s 4.8sa = 2 (gotoPose) 6.0s 4.9sa = 3 (gotoPose) 5.8s 5.6sa = 4 (gotoPose) 6.7s 5.0sa = 1::4 (total) 22.7s 20.3s

(b) Soccer domain.

Table 5.2. Influence of subgoal refinement on the execution duration of individual actions in
a sequence.

A clear effect on the individual actions is that the execution duration of the first action

is slower with subgoal refinement, allowing the faster execution of the other actions. The

difference is most striking in the last action in the table on the left. In the greedy approach,

the trouble the robot has caused itself by optimizing three actions greedily often culminates in

a very awkward position to execute the last action.

5.4.3 Sequences with more actions

In Figure 5.17, an example episode from the soccer scenario from Section 5.4.2 is depicted.

Here the robot has to traverse four way-points with thegoToPose action. So far, we have

seen optimization with horizons ofh = 1 (greedy) andh = 2. The standard approach with

h = 2 can easily be extended, so that subgoal refinement optimizes the execution duration of

3The grip and put actions take more time than in Table 4.2, because the actual closing and opening of the gripper
at the end of each reach action has been incorporated into the action. This additional time was constant, and
not taken into consideration during optimization.

78

Section 5.4 Empirical Evaluation

the nexth > 2 actions, as indicated by the colors in Figure 5.17. The higher the horizonh the

more subgoal refinement is preparing for actions further in the future.

Figure 5.17.Visualization of the horizonh in subgoal refinement.

To evaluate the effect of optimizing more than two actions quantitively, sequences of four

actions were optimized using subgoal refinement with different horizons. The two scenarios

from Section 5.4.2 were used: the soccer scenario depicted in Figure 5.17 and the kitchen

scenario depicted in Figure 5.13. The results are summarized in Table 5.3. The first row

represents the baseline greedy approach withh = 1, and the second row represents the results

reported so far withh = 2. The next two rows list the results of optimizing 3 and 4 action

execution durations. Again, the reported times represent the execution duration of the entire

action sequence, averaged over 100 episodes.

horizon Soccer Kitchen (Scen.1) Kitchen (Scen.2)P
Imp. p-value

P
Imp. p-value

P
Imp. p-valueh = 1 22.7 46.5 91.7h = 2 20.3 10.6% 0.000 41.5 10.0% 0.000 85.4 6.6% 0.041h = 3 20.2 0.7% 0.001 40.6 1.5% 0.041 85.3 0.1% 0.498h = 4 20.2 0.2% 0.053 - - - - - -

Table 5.3.Effect of the subgoal refinement horizonh on performance improvement.

Intuitively, the effect of future actions on the current action should decrease, the further

the future action lies in the future. For instance, your position at the table will influence the

time it will take to grab the cup on this table, as well as the time it will take to navigate to

the next room. However, it will not likely influence the time needed to put down the cup

in the next room. It is interesting to see that the substantial improvement in both scenarios

indeed diminishes quickly afterh = 2. Whereas a significant but only marginal improvement

is sometimes still to be had fromh = 2 to h = 3, the improvement toh = 4 is not significant

anymore.

79

Chapter 5 Task Context: Action Sequences

5.4.4 Predicting performance decrease

There are many cases in which subgoal refinement does not have an effect. For instance, if

the robot, the ball and the final destination are perfectly aligned, there is not much to be had

from subgoal refinement, as the greedy approach already delivers the optimal angle of ap-

proach: straight toward the ball. On the contrary, refining subgoals in these cases might put

unnecessary constraints on the execution. Due to inaccuracies in the action models and the

optimization techniques, it is sometimes even the case that the greedy approach does better

than subgoal refinement. To evaluate these effects, 1000 episodes where executed in simula-

tion with bothh = 1 andh = 2. Then, the overall improvement (6.6%) was separated into

episodes in which subgoal refinement improved (+), kept equal (0), or made worse (-) the

execution duration, as listed in Table 5.4

Before filtering Total + 0 -
#episode 1000 573 267 160
improv 6.6% 16.2% 0.0% -17.1%

Table 5.4.Positive and negative influence of subgoal refinement on execution duration.

This result shows that the performance improved in 573 cases, and in these cases causes

a 16.2% improvement. In 267 cases, there was no improvement. This is to be expected, as

there are many situations in which the three positions are already optimally aligned (e.g. in a

straight line), and subgoal refinement will have no effect. Unfortunately, applying our method

also causes a decrease of performance in 160 out of 1000 episodes.

To analyze in which cases subgoal refinement decreases performance, we labeled each of

the above episodes+, 0 or - . We then trained a decision tree to predict this nominal value.

This tree yields four simple rules which predict the performance difference correctly in 87%

of given cases, as can be seen in the confusion matrix of the learned decision tree in Table 5.5.

The learned decision tree is essentially an action model too. Rather than predicting the out-

come of an individual action, it predicts the outcome of applying action models to actions. We

will see another example of such ameta action modelin Section 7.4.2.

The rules and a graphical representation are depicted in Figure 5.18. In this graph, the

robot always approaches the centered ball from the left at different distances. The different

regions indicate whether the performance increases, decreases, or stays equal. Three instances

with different classification and therefore different colors circles have been inserted. The

trajectories are a qualitative indication of the robot motion.

The rules declare that performance will stay equal if the three points are more or less

80

Section 5.4 Empirical Evaluation

Predicted
+ 0 - Totals

+ 48.6% 1.4% 1.5% ! 51.5%
Actual 0 8.1% 28.0% 0.8% ! 36.9%

- 1.4% 0.2% 10.2% ! 11.8%# # # &
Totals 58.1% 29.6% 12.5% 86.7%

Table 5.5.Confusion matrix of the decision tree that predict performance decrease

Figure 5.18.The decision tree that predicts whether subgoal refinement will make the perfor-
mance better, worse or have no influence at all.

aligned, and will only decrease if the final goal position is in the same area as which the

robot is, but only if the robot’s distance to the intermediate goal is smaller than 1.4m. Essen-

tially, this last rule states that the robot using thegoToPose action has difficulty approaching

the ball at awkward angles if it is close to it. In these cases, small variations in the initial

position lead to large variations in execution time, and learning an accurate, general model

of the action fails. The resulting inaccuracy in temporal prediction causes suboptimal opti-

mization. Note that this is a shortcoming of the action itself, not of subgoal refinement. The

meta action model of applying subgoal refinement is essentially telling us that subgoal refine-

ment is working fine, but that theapproachBall is rather non-deterministic under certain

conditions, and needs improvement.

We then performed another 1000 test episodes, as described above, but only applied subgoal

refinement if the decision tree predicted applying it would yield a higher performance. The

results are summarized in Table 5.6. The performance improvement due to subgoal refinement

was 6.6%, and is now 8.6% (p-value is 0.000). More importantly, the number of cases in which

81

Chapter 5 Task Context: Action Sequences

performance is worsened by applying subgoal refinement has decreased from 160 (16.0%) to

54 (5.4%). Apparently, the decision tree correctly filters out cases in which applying subgoal

refinement would decrease performance. Note that when performance is decreased, it is not

so dramatic anymore (-17.1%)-10.1%): the decision tree is filtering out the worst cases.

After filtering Total + 0 -
#episode 1000 557 389 54
improv 8.6% 16.4% 0.0% -10.1%

Table 5.6.Positive and negative influence of subgoal refinement on execution duration,after
filtering for cases where a decreased performance is predicted.

5.5 Related Work

5.5.1 Smooth motion as an explicit goal

Many behavior based approaches also achieve smooth motion by a weighted mixing of the

motor commands of several actions (Jaeger and Christaller, 1998; Saffiotti et al., 1993). In

these approaches, there are no discrete transitions between actions, so they are also not visible

in the execution. In computer graphics, the analogous approach is calledmotion blending, and

is also a wide-spread method to generate natural and fluent transitions between actions, which

is essential for lifelike animation of characters. Perlin (1995) presents visually impressive

results. More recent results are described by Shapiro et al. (2003) and Kovar and Gleicher

(2003). Since there are no discrete transitions between actions, they are also not visible in

the execution. In all these blending approaches, achieving optimal behavior is not an explicit

goal; it is left to chance, not objective performance measures.

Hoffmann and Düffert (2004) have developed a very different technique for generating

smooth transitions between skills for the AIBO quadruped robots. The periodic nature of

robot gaits allows their meaningful representation in the frequency domain. Interpolating in

this domain yields smooth transitions between walking skills. Since the actions we use are not

periodic, these methods do unfortunately not apply.

5.5.2 Classical planning

Problems involving choice of actions and action chains are often regarded as planning prob-

lems. However, most planning systems do not aim at optimizing resources, such as time.

82

Section 5.5 Related Work

While scheduling systems would have an easier time representing time constraints and re-

sources, most could not deal with the action choices in this problem. Systems that integrate

planning and scheduling, such as (Smith et al., 2000), are able to optimize resources, but ig-

nore interactions between actions and intermediate dynamical states, so do not apply well to

continuous domain problems.

Least commitment planning also depends on the concept of unbound variables (Weld,

1994). The idea is to keep variables unbound as long as possible, and bind them only when

is necessary. This makes plans more flexible, and plan execution more robust. However, vari-

ables that are never bound, are still unbound in the final plan. It exactly these that we use for

optimization.

Refinement planning is a method whose name bears similarities with subgoal refinement,

but which describes another process (Kambhampati et al., 1995). Refinement planning

searches for an action sequence that will achieve the goal by pruning away action actions

sequences that will not. Initially, all action sequences are considered solutions. Subsequent

refinement operations then narrow the set of possible action sequences by adding constraints

to it. Our system does not refine the plans themselves to find action sequences, but rather the

execution of the plans, given a certain action sequence. Although resources are sometimes

represented during planning, planning in general is only interested in finding a plan that is

valid. Our system takes a valid plan, and finds a plan execution that isoptimal, with respect

to the predicted performance. In principle, a refinement planning system could be used in the

“planning system” module in Figure 5.4.

In PDDL (Fox and Long, 2003), resource consumption of actions can be represented at

an abstract level. Planners can take these resources into account when generating plans. In

contrast to such planners, our system generates action sequences that have been optimized

with respect to very realistic, non-linear, continuous performance models, which are grounded

in the real world as they are learned from observed experience. We are not aware of other

planning systems that generate abstract plans and simultaneously optimize the actual physical

behavior of robots.

5.5.3 Symbolic planning with action execution

Bouguerra and Karlsson (2005) describe a computational model that is quite similar to ours.

In their model, the abstract plan domain is called “Deliberation”, and the action execution

and sensing process is provided by the “ThinkingCap” robot-control architecture. The inter-

face between the two is called the “Anchoring” modules. There are two important differences

between their models and ours. First of all, probabilistic planners are used in the abstract

83

Chapter 5 Task Context: Action Sequences

planning domain, being BURIDAN (Kushmerick et al., 1994) and PTLPlan (Karlsson and

Schiavinotto, 2002). Therefore, their system can deal with uncertain worlds. The other en-

hancement is plan failure recognition and plan repair. Because the focus of this dissertation

is acquiring and applying action models to tailor actions to task contexts, we deliberately ab-

stract away from these enhancements. Note that our methods are in no way incompatible to

the ones described in (Bouguerra and Karlsson, 2005), and merging both approaches would

combine the benefits of both, as discussed in Section 5.2.3.

aSyMov (Cambon et al., 2004) is another approach that bridges the gap between symbolic

planning and plan execution, in complex simulated 3-D environments. The main goal is to

reason about geometric preconditions and consequences of actions. This is done by defining

a Configuration Space, in which constraints on mobile robots and objects can be expressed.

Then, symbols representing locations in the world are related to constraints in Configuration

Space. This allows the specification of not only at a symbolic level but also with regard to

the geometry of an environment. The input of the planner is 1) a symbolic data file, specified

in PDDL 2) the geometric data 3) and a semantic file that relates symbols to geometric data.

Symbolic planning is done with the Metric-FF (Hoffmann, 2003) system, and geometric plan-

ning is done with the Move3D library (Siméon et al., 2001). The aSyMov library merges the

result of both using the semantic file.

Here again, we see great potential for merging aSyMov and subgoal refinement, as they are

complementary, rather mutually exclusive, as discussed in Section 5.2.3. Cambon et al. (2004)

actually mentions that the resulting plan is improved and optimized in some way, but does not

describe how. Subgoal refinements might very well be integrated in this optimization step.

Hierarchical Reinforcement Learning (Barto and Mahadevan, 2003), which was introduced

in Section 3.1.3 also optimizes actions and action sequences, by maximizing the expected re-

ward. In most of these approaches, the action sequences or action hierarchies are fixed (Parr,

1998; Andre and Russell, 2001; Dietterich, 2000; Sutton et al., 1999). The only approach

we know of that explicitly combines planning and Reinforcement Learning is RL-TOPS (Re-

inforcement Learning - Teleo Operators) (Ryan and Pendrith, 1998). In this approach, se-

quences of actions are first generated based on their pre- and postconditions, using Prolog.

Reinforcement Learning within this action sequence is done with HSMQ (Dietterich, 2000).

Between actions, abrupt transitions arise too, and the author recognizes that “cutting corners”

would improve performance, but does not present a solution. RL-TOPS has been tested in

grid worlds and also more complex domains (Ryan and Reid, 2000), but not in the context of

mobile robotics. A more recent RL-planning hybrid is presented in (Grounds and Kudenko,

2005), though it is not clear how this work extends the work of Ryan et al. In general, the

84

Section 5.5 Related Work

benefit of action models over Reinforcement Learning were discussed in Section 4.4.1.

Model trees have learned as performance models, and used to optimize Hierarchical Tran-

sition Network (HTN) plans (Belker et al., 2003; Belker, 2004). This work was already intro-

duced in Section 3.2.3. HTN plans are structured hierarchically from high level goals to the

most low level commands. To optimize performance, the order of the actions, or the actions

themselves are changed at varying levels of the hierarchy. Rather than refining plans, The

system modifies the HTN plans themselves, and therefore applies to HTN plans only. On the

other hand, we refine an existing action chain, so the planner can be selected independently of

the optimization process

XFRMLearn is an approach that also elegantly combines declarative and learned knowledge

to improve the performance of robot navigation execution (Beetz and Belker, 2000). The

XFRMLearn system optimizes plans through plan transformation, which is closely related to

subgoal assertion, which will be presented in the next chapter. Therefore, we postpone the

discussion of this work to Section 6.5.1.

5.5.4 Motion planning and execution

Generating collision-free paths from an initial to a final robot configuration is also known as

robot motion generation. A common distinction between algorithms that generate such paths

is:

Global approaches These approaches determine a path to the goal off-line before execu-

tion, based on a global snap-shot of the world. Because a global view of the world is

known, global constraints such as obstacles can be taken into account, and ending up in

a local minimum can be avoided. The problem such global algorithms solve is called the

basic motion planning problem. On-line, the predetermined path is the executed to actu-

ally achieve the goal configuration. Therefore, the environment may not change during

execution, as this could invalidate the predetermined path. Examples of this approach

are roadmaps and cell decomposition.

Local approaches To adapt to local changes, local approaches use sensory information to

direct there motion on-line during execution. This enables the avoidance of obstacles.

Due to their local perspective, such approaches can get stuck into local minima, such as

a dead-end in a corridor. An example of this method is the potential fields approach.

Hybrid approaches By combining both local and global approaches, hybrid methods hope

to get the best of both worlds. Examples are the Elastic Strips framework (Brock and

85

Chapter 5 Task Context: Action Sequences

Khatib, 1999), and the planning system and execution system of GOFER (Choi and

Latombe, 1991). Both will be discussed more elaborately in the next section.

Brock and Khatib (1999) give an overview and examples of all three approaches. The

methods presented in this chapter are a global approach, as the planning is performed off-

line, before plan execution. This means that failures in action execution, for instance due to

unforeseen or dynamic obstacles require replanning. The same holds for all global approaches,

of which (Bouguerra and Karlsson, 2005; Cambon et al., 2004) are examples discussed in the

previous section. Whereas motion planning and execution algorithms focus on collision-free

paths in configuration space, our methods deal with the more general problem of mapping

symbolic plans to executable action sequence. Declarative plans allow for higher levels of

abstraction than standard motion planning techniques, which facilitates the design of abstract

actions and common-sense constraints.

In the Elastic Strip Framework (ESF) (Brock and Khatib, 1999) approach, a set of spheres,

determined heuristically, defines the local free space around a configuration of a robot. Along

a trajectory determined with a global motion planning algorithm, a sequence of configurations

is chosen, which together are called the elastic strip. The unification of the local free spaces

around these configurations is called theelastic tunnel. Obstacles exert external repulsive

forces represented by potential fields on the elastic strip, causing it to stretch. As this stretching

does not affect the topology of the strip, the global constraints of the motion plan are satisfied,

and local minima are avoided. Choi and Latombe (1991) describe the planning and execution

system of the mobile robot GOFER, which could be considered a predecessor of the Elastic

Strip framework. Here,channelsare rectangular areas which the robot should traverse in

order to reach the goal. Within these rectangles, the robot is free to move, for instance to

avoid obstacles.

The quote“The elastic tunnel can be imagined as a tunnel of free space within which the

trajectory can be modified without colliding with obstacles.”shows the conceptual similarity

of the elastic tunnel with free action parameters. The main difference is that ESF exploits

freedom in the parameterization of the path to the goal, to adapt on-line to unforseen events

during action execution, whereas we exploit freedom in the parameterization of the goal itself,

to optimize the expected performance off-line. The path is not considered explicitely, but

rather emerges on-line when the action is executed.

86

Section 5.5 Related Work

5.5.5 Redundancy resolution

In human motor control, there is a distinction between the external space, which can be

expressed in terms of task coordinates, and the internal space, which refers to the internal

coordinates of the muscle system. In most motor tasks, the number of degrees of freedom in

the internal space far exceeds that in the external space. The internal space therefore has a

high level of redundancy with respect to the external space. Put simply: there are many ways

you can bring a glass of water to your lips of which, in the words of Wolpert and Ghahramani

(2000), some are sensible and some are silly.

The reason why we typically witness stereo-

Figure 5.19. In robotic arm control, actions

are often redundant. Picture

taken from (Hooper, 1994).

typical ‘sensible’ movement is because the re-

dundancy can be exploited to optimize ‘sub-

ordinate criteria’ (Schaal and Schweighofer,

2005), or ‘cost functions’ (Wolpert and

Ghahramani, 2000), such as energy efficiency

or variance minimization. This process is

called redundancy resolution. In cognitive sci-

ence, the goal is often to determine the cost

function that is being optimized, given the em-

pirical motion data (Wolpert and Ghahramani,

2000).

Redundancy resolution has been well stud-

ied in the context of robot arm control. Arm poses are said to be redundant if there are many

arm configurations that can achieve the same task, as depicted in Figure 5.19. All these config-

urations are called motion or null space, and finding the best configuration is called null-space

optimization, which is equivalent to redundancy resolution. Hooper (1994) proposes to use

direct search methods to find the configuration with the best fault tolerance in motion space.

This approach is analytical, and the implementation specific to arm domains. Since we learn

our models from observed experience, they can basically be applied to any robotic task, from

mobile robot navigation to arm control. Nakanishi et al. (2005) gives an overview and experi-

mental evaluation of various other null-space optimization techniques.

5.5.6 Subgoal Refinement

Most similar to our work, from the point of view of smoothness as an emergent property of

optimality requirements, is the approach of Kollar and Roy (2006). Here a simulated robot

87

Chapter 5 Task Context: Action Sequences

maps its environment with range measurements by traversing a set of way-points. Reinforce-

ment learns a policy that minimizes the error in the resulting map. As a side-effect, smooth

transitions at way-points arise. This approach has not been tested on real robots.

On a more light-hearted note, we are happy to report that some evidence (if interpreted cor-

rectly) shows that dogs are capable of performing subgoal refinement. Figure 5.20(a) depict

Elvis the Dog. Elvis is owned by Hope College (Michigan, USA) professor Tim Pennings.

Prof. Pennings often takes Elvis to the beach to fetch tennis balls from the water, as in Fig-

ure 5.20(a). Elvis achieves this by first running along the beach (action 1), and the swimming

to the ball (action 2). Because running is much faster than swimming, the optimal policy is

not to go to the ball in a straight line, but rather run parallel to the beach for a certain distance,

and then swim to the ball, as in Figure 5.20(b). Which distance this should be is a standard

optimization problem, often found in college tests. Interestingly enough, Elvis seems to be

solving this problem as he chooses the mathematical optimal distance in varying scenarios.

By measuring Elvis’ running and swimming speed, Prof. Pennings could plot the optimal

distance as in Figure 5.20(c), taken from (Pennings, 2003). The distance that Elvis actually

chooses (the dots in the graph represent individual fetch trials) matches this optimal line quite

closely.

(a) Elvis the dog. (b) The optimization problem. (c) Empirical data.

Figure 5.20.Elvis the dog solves the ‘beach optimization problem’.

Why is this subgoal refinement? Because Elvis is choosing the intermediate goal (i.e. the

point where he enters the water) such that the overall execution of the action sequence is

optimized. The scenario is very similar to the example in Figure 5.1, where performing the

first action suboptimally leads to a better overall performance.

(Gallego and Perruchet, 2006) have challenged the notion that Elvis is performing global

optimization, and give a much simpler local optimization strategy that solves the optimization

problem with the same result: go into the water as soon as the relative speed of the ball to my

88

Section 5.6 Conclusion

own position is lower than my swimming speed. However, further experiments have shown

that this can also not be the whole story (Pennings, 2007), and the debate continues.

5.6 Conclusion

Durative actions provide an conceptual abstraction that is reasoned about either by the de-

signer during action selection design, or, if the abstraction has been explicitly coded into the

controller, by the action selection system itself. Action abstractions partially achieve their

abstraction by not taking into account all action parameters. Although these free action pa-

rameters are not relevant to the action on an abstract level, they often are relevant to the

performance of executing the plan. Subgoal refinement was implemented using the Planning

Domain Description Language, and the standard partial order causal link planner VHPOP. We

have shown how these free action parameters can be extracted, and optimized analytically or

with genetic algorithms, with respect to expected performance computed by action models.

Without subgoal refinement, the transitions between actions were very abrupt. In general,

these motion patterns are so characteristic for robots that people trying to imitate robotic be-

havior will do so by making abrupt movements between actions. It is interesting to see that

requiring optimal performance can implicitly yield smooth transitions in robotic and natural

domains, even though smoothness in itself is not an explicit goal in either domain.

We believe this is an important contribution towards bridging the gap between robot action

execution on the one hand, and planning systems and deliberative components in general on

the other. Subgoal refinement combines abstract human-specified knowledge with learned pre-

dictive knowledge. As robots are becoming more dextrous, and their actions more expressive,

abstraction will become more important for keeping action selection and planning tractable.

This also means the gap between an action’s abstraction and its execution will widen, and more

free action parameters will arise. Suboptimal performance and jagged motion is an unavoid-

able consequence of leaving these free action parameters unconsidered. Subgoal refinement

not only contemplates free action parameters, but exploits them by optimizing them with re-

spect to the expected overall performance, thereby turning the curse of free action parameters

into a blessing.

Future work includes learning several models for different performance measures, and op-

timizing several performance measures simultaneously. For instance, energy consumption

is another important performance measure in autonomous mobile robots. By specifying ob-

jective functions that consist of the combinations of both energy consumption and execution

duration, they can both be optimized. By weighting individual performance functions differ-

89

Chapter 5 Task Context: Action Sequences

ently, the function to be optimized can be customized to specific scenarios. For instance, in

mid-size league robotic soccer, with its short constant operation time 15 minute, speed is far

more important then energy consumption. In service robotics it is the other way around.

The results reported in this chapter have been published in: (Stulp et al., 2007; Stulp and

Beetz, 2006; Stulp et al., 2006b; Stulp and Beetz, 2005b,c,a). Summaries of these publications

are given in Appendix D.

90

6. Task Context: Task Variants

“Before we learn how to run, we must first learn how to walk.”

English proverb

In order to adapt to new environments and acquire new skills autonomously, robots must be

able to learn. Learning generates new knowledge from experience through experimentation,

observation and generalization. In practice, learning hardly starts from scratch, and knowledge

about previously learned skills can be transfered to novel skills, as Vilalta and Drissi (2002)

describe: “Learning is not an isolated task that starts from scratch every time a new problem

domain appears.”. Thrun and Mitchell (1993) call thislife-long learning. Principle IV from

Section 1.1 also adheres to this view, as it poses that existing action can be tailored to novel

task contexts.

Let us again take an example from soccer. For both humans and robots, approaching a ball

is very similar to navigating without considering the ball. Both involve going from some pose

to another pose on the field as in Figure 6.1, and both should be implemented to execute as

efficiently and fast as possible. However, there are also slight differences between the objective

functions for these two tasks. When approaching the ball it is important to not bump into it

before achieving the desired pose, as depicted in Figure 6.1(b).

This scenario can be described well in terms of the actionsapproachBall and

goToPose . The required action for this task isapproachBall , which is very similar to

thegoToPose action. However, sincegoToPose is not aware of the ball, it often collides

with the ball before achieving the desired pose. In fact, we shall see that this action causes a

collision more than half the time. To solve this problem, one could write a new action, e.g.

approachBall . It would probably be very similar togoToPose , but take the ball into

account. Instead of designingapproachBall from scratch, it would be better if the robot

reused the similargoToPose , and adapt it to the current context. For instance, although

goToPose fails at ball approach more than half the time, it alsosucceedsat doing so quite

often. In these cases, it could be reused without change.

91

Chapter 6 Task Context: Task Variants

(a) Both robots achieve the desired state
with goToPose .

(b) When approaching the ball, one of the
robots bumps into the ball before achiev-
ing the desired state withgoToPose .

Figure 6.1.Similarities and differences between standard navigation and ball approach.

The key to reuse is therefore being able to predict when the action will fail, and when it

will succeed. When it is predicted to succeed, the action is executed as is. If the action will

fail, another action should be executed beforehand, such that the robot ends up in a state from

which the actionwill succeed. This intermediate state between the actions is a new subgoal.

This approach is therefore called subgoal assertion.

In Figure 6.2, the action variant context has been highlighted within the system overview.

Figure 6.2.Condition refinement and subgoal assertion within the system overview.

In the next section, we will introduce the computational model of subgoal assertion. Then,

we will demonstrate how the required failure prediction model can be learned in Section 6.2.

92

Section 6.1 Computational Model

The actual process subgoal assertion will be presented in in Section 6.3. As we shall see, there

is an interesting relation between subgoal assertion and subgoal refinement. An empirical

evaluation of subgoal assertion is provided in Section 6.4.

6.1 Computational Model

Adapting actions to to refined goals takes place in a two-step procedure: condition refinement

and subgoal assertion. These will now be explained.

Figure 6.3(a) depicts two possible initial states of a robot in blue, and a goal state in white.

In both cases, a singlegoToPose action suffices to bring the robot from the initial state to

the goal state. Below the scenario, the general case has been depicted as a transition from the

pre-condition to the post-condition of an action. Since the post-conditions satisfies the goal,

the action can achieve the goal. The two point in the pre-condition represent two unique states

in the state space, for instance those depicted in the field.

Figure 6.3(b) is basically a repetition of the same scenario, but this time the goal is that the

robot is at the same position, in possession of the ball. In general, this means that the new

goal of approaching the ball is a subset of the former goal of simply navigating there. When

executinggoToPose , the robot to the left achieves at approaching the ball, but the robot to

the right does not, as it bumps into the ball beforehand. In general, this is the case because

the post-condition ofgoToPose no longer satisfies the refined goal, as can be seen below the

field.

The post-condition ofgoToPose can now be partitioned into a subset which does satisfy

the new refined goal, and a subset which does not. These have been represented with blue and

red respectively. Analogously, the pre-conditions can be partitioned into a subsetSuccess

which leads to a final state which is in the subset of the post-conditions that satisfy the refined

goal, and a subsetFail for which this is not the case. Because the post-, and consequently,

pre-conditions of an action are refined for a new task, this is known ascondition refinement.

As we shall see, the refined pre-condition (theSuccess subset) can be learned. Once the

refined pre-condition of a novel goal is known, it is easy to determine if a particular initial

state will lead to a successful execution or not. If it does, the action can be executed as is. For

instance, the robot to the left can simply execute thegoToPose action, as it is in the refined

pre-condition.

The robot to the right however is not. This robot now needs a novel action, e.g.

approachBall , that enables it to go from any of the states in theFail to the refined

goal. Or does it? Instead, thegoToPose action can be used again, to take the robot from

93

Chapter 6 Task Context: Task Variants

(a) Both initial states satisfy satisfy the
pre-condition, so executinggoToPose
will lead to successful completion in both
cases.

(b) Since the goal has changed, not all
states in the post-condition satisfy the
goal. Therefore, executinggoToPose
does not lead to the goal for all states in
the pre-condition.

Figure 6.3.Computational model of condition refinement.

the Fail subset to theSuccess subset. Once this is done, agoToPose action thatwill

succeed at approaching the ball can be executed.

Summarizing: if an action is predicted to succeed in a novel context, execute it as is. if it

is predicted to fail, assert a subgoal from which the actionwill succeed, and execute an extra

action to achieve this subgoal.

One issue remains open. In the running example there are infinitely many subgoals from

which approaching the ball will succeed. Any state from theSuccess subset could be cho-

sen, but which one is the best? Fortunately, this problem was already posed and solved in

Chapter 5. Choosing the best subgoal from many is done using subgoal refinement, as will be

explained in Section 6.3.

6.2 Condition Refinement

The key to subgoal assertion is being able to determine if an initial state is in theSuccess or

Fail subset, which essentially means being able to predict if an action will succeed or not.

Determining these subsets manually is a difficult task, as the dynamics and shape of the robot

as well specific characteristics of the action come into play. The complex interaction of these

features over an extended time makes manual specification near impossible.

Therefore, the robots again learn an action model from experience. To acquire experience,

94

Section 6.2 Condition Refinement

Figure 6.4.Computational model of subgoal assertion

the robot executedgoToPose a thousand times, with random initial and goal poses. The

ball is always positioned at the destination pose. The initial and goal pose were stored, along

with a flag that was set toFail if the robot collided with the ball before reaching its desired

position and orientation, and toSuccess otherwise. The feature space was the same as for

learning the temporal prediction model ofgoToPose , as listed in Table 4.1.

The learned tree, as well as a graphical representation of it, are depicted in Figure 6.5. The

goal pose is represented by the robot, and different areas indicate if the robot can reach this

position withgoToPose without bumping into the ball first. Remember thatgoToPose

has no awareness of the ball at all. The model simply predicts when its execution leads to a

collision or not. Intuitively, the rules seem correct. When coming from the right, for instance,

it can be seen that the robot always clumsily stumbles into the ball, long before reaching the

desired orientation. Behind the ball, the robot may not be too close to the ball (checkered

area), unless it is facing it. This last rule is indicated by the arrows pointing in the direction of

the ball. Approaching the ball is fine from any pose in the green area.

6.2.1 Action model accuracy

To evaluate the accuracy of this model, the robot executed another thousand runs, and com-

pared predicted collision with observed collisions. The decision tree predicts collisions cor-

rectly in almost 90% of the cases. A more thorough analysis is depicted in the confusion

matrix of the decision tree, in Table 6.1.

The model is quite pessimistic, as it predicts failure 61%, whereas in reality it is only 52%.

95

Chapter 6 Task Context: Task Variants

Figure 6.5.The learned decision tree that predicts whether an unwanted collision will happen.

Observed Total
Fail Success Predicted

Predicted Fail 51% 10% ! 61%
Success 1% 38% ! 39%# # &

Total Observed 52% 48% 89%

Table 6.1. Confusion matrix for ball collision prediction. The model is correct in 89% of
cases

In 10% of cases, it predicts a collision when it actually does not happen. This is preferable

to an optimistic model, as it is better to be safe than sorry. This pessimism is actually no

coincidence; it is caused because a cost matrix that penalizes incorrect classification ofFail

more than it doesSuccess was passed to the decision tree (Witten and Frank, 2005).

To learn an accurate model, it is necessary to gather as much as 1000 episodes for learning.

Due to time constraints, this amount of data could not be gathered on the real robots in due

time. Therefore the models and results in this chapter only apply to the simulated soccer

robots.

6.3 Subgoal Assertion

This decision tree is exactly what we need to discern between theSuccess andFail sub-

sets. In a sense, itis the condition refinement. Whenever the decision tree returnsSuccess

for an initial state, the original action (goToPose) can be executed as is.

96

Section 6.3 Subgoal Assertion

If the the action is predicted to fail, another action, that can satisfy the refined condition

must be executed beforehand. In this case, this is simply anothergoToPose action. The

intermediate subgoal for the first action can be any from the refined precondition. For the ball

approach task, this is any position in the green area in Figure 6.5.

Although all positions in this area can function as an intermediate goal for the two

goToPose actions, the overall expected execution duration is different for all off them. Of

course, the subgoal with the smallest predicted execution duration should be chosen. In Chap-

ter 5, we saw how such and optimization problem can be solved: with subgoal refinement!

Subgoal assertion was implemented whilst the implementation of the genetic algorithm was

still underway, so the optimization has instead been done by random sampling. A thousand

are samples randomly from the refined condition, and the predicted execution duration for

both goToPose actions is computed and added. The subgoal with the minimal execution

duration is then chosen to the the intermediate subgoal. As subgoal refinement was applied,

the transitions at this subgoal is usually smooth.

Figure 6.6.Subgoal assertion in the approach ball task

In Figure 6.6, three instances of the problem are depicted. Since the robot to the left is in

the area in which no collision is predicted, it simply executesgoToPose , without asserting a

subgoal. The model predicts that the other two robots will collide with the ball when executing

goToPose , and a subgoal is asserted. The optimal positions of the subgoals, determined by

subgoal refinement, are shown as white circles.

The entire process of condition refinement, subgoal assertion and subgoal refinement can be

encapsulated in a new abstract action, for instanceapproachBall . This process of encap-

sulating several action into one is known as “chunking” in architectures such as SOAR (Laird

et al., 1986) or ACT-R (Servan-Schreiber and Anderson, 1990). Note that there is no exe-

97

Chapter 6 Task Context: Task Variants

cutable actionapproachBall , as the executablegoToPose is reused for this novel ab-

stract action. Creating a novel abstract action is necessary however, as the pre- and post-

conditions ofapproachBall have been refined as compared to those ofgoToPose .

6.4 Empirical Evaluation

To evaluate automatic subgoal assertion a hundred random ball approaches were executed in

simulation, once with assertion, and once without. The results are summarized in Table 6.2.

Before assertion, the results were, as can be expected, very similar to the results reported in

Table 6.1. A collision is again correctly predicted approximately half the time: 52% in these

hundred episodes, even slightly more than in the original 1000 episodes executed to obtain the

action model. Subgoal refinement is applied in these cases, and is almost always successful:

50% of all episodes is transfered from having a collision to a successful ball approach. Only

2% of the episodes still have a collision, despite subgoal refinement. Because no subgoal

refinement is applied whenSuccess is predicted, there is no change in the lower prediction

row. Consciously choosing not to apply subgoal refinement and not applying it are equivalent.

Observed Total
Fail Success Predicted

Predicted Fail 2% (=52%-50%) 60% (=10%+50%)! 62%
Success 1% 37% ! 38%# #

Total Observed 3% 97%

Table 6.2.Subgoal assertion results

Note that subgoal refinement was applied unnecessarily in 10% of episodes. In this case,

both episodes with and without subgoal refinement were successful. However, the execution

with subgoal assertion and consequent subgoal refinement was a significant 8% slower than

executing only the onegoToPose action. The performance loss in these cases seems an

acceptable cost compared to the pay-off of the dramatic increase in the number of successful

task completions.

Summarizing: if subgoal assertion is not necessary, it is usually not applied. Half of the

time, a subgoal is introduced, which raises successful task completion from 47 to 97%. Infre-

quently, subgoals are introduced inappropriately, which leads to a small loss of performance

in terms of execution duration.

98

Section 6.5 Related Work

Due to time constraints, subgoal refinement was not implemented or evaluated on the real

robots, as no action model was learned. Instead, a failure model, similar to the one in Fig-

ure 6.5 was acquire by manually tuning the parameters of the model to a more cautious

one. As subgoal refinements almost always chooses a subgoal somewhere on the border be-

tween the green and blue area in Figure 6.5, we wrote a heuristic that does the same. This

approachBall action, although manually specified but still based on the learned model

and subgoal refinement, was used for the real robots.

6.5 Related Work

6.5.1 Transformational planning

Sussman was the first to realize thatbugs in plans do not just lead to failure, but are actu-

ally an opportunity to construct more robust and improved plans (Sussman, 1973). Although

this research was done in the highly abstract symbolic blocks world domain, this idea is still

fundamental to transformational planning.

XFRMLearn is framework in which human-specified declarative knowledge is elegantly

combined with robot-learned knowledge (Beetz and Belker, 2000). Navigation plans are opti-

mized with respect to execution time by analyzing, transforming and testing structured reactive

controllers (SRCs) (Beetz, 1999). Designers first specify rules for analyzing and transforming

these plans, and the robot then learns from experience when these rules should be applied. A

substantial improvement in execution time of up to 44% is achieved. The analysis phase has

many similarities with condition refinement, and transformation phase with subgoal assertion.

One difference with XFRMLearn is that in our work, the analysis phase is learned instead of

human-specified. Another difference is that XFRMLearn improves existing plans, whereas

condition refinement learns learns how to adapt to changing action requirements, such as re-

fined goals.

6.5.2 Learning preconditions, effects and action failures

Methods for learning preconditions, such as the method presented in this chapter, can be

summarized well by the following quote: “The problem of learning the preconditions for

an action model can be viewed as a problem of concept learning in which the learner is given

instances of action success or failure, and induces a concept describing the conditions which

apply in successful instances.” (Shen, 1994).

99

Chapter 6 Task Context: Task Variants

In most of the research on learning preconditions, the concept that is being induced is sym-

bolic. Furthermore, the examples consist only of symbols that are not grounded in the real

world. The precondition is then learned from these examples, for instance through Inductive

Logic Programming (Benson, 1995) or more specialized methods of logic inference (Shahaf

and Amir, 2006). However, neither symbolic examples nor a symbolic precondition suffices

to encapsulate the complex conditions that arise from the robot dynamics and its action pa-

rameterizations.

(Schmill et al., 2000) presents a system in which non-symbolic planning operators are

learned from interaction of the robot with the real world. The experiences of the robot are first

partitioned into qualitatively different outcome classes, through a clustering approach. The

learned operators are very similar to previously hand-coded operators. Once these classes are

known, the robot learns to map sensory features to these classes with a decision tree, similar

to our approach. This approach aims at learning to predict what the robot will perceive after

executing an action from scratch, whereas condition refinement aims at refining an already

existing symbolic preconditions based on changing goals.

(Buck and Riedmiller, 2000) proposes a method for learning the success rate of passing

action in the context of RoboCup simulation league. Here a neural network is trained with

8000 examples in which a pass was attempted, along with the success or failure of the pass.

This information is used to manually code action selection rules such as “Only attempt a pass

if it is expected to succeed with>70%”. This is also a good example of integrating human-

specified and learned knowledge in a controller.

In (Fox et al., 2006b), an extension of the work in (Fox et al., 2006a), robots use learned

action models to determine when an action is failing. The action model is learned by first

mapping raw sensor data to observation by feature detection and classification techniques,

then mapping observations to evidence items with Kohonen networks, and evidence items to

states with state splitting (Fox et al., 2006a). This approach is used to learn a model of a

robot that takes panoramic images by turning on the spot and halting at fixed intervals to take

pictures.

With this Hidden Markov Model of the action, 50 training runs are generated. At each

time-step, the log likelihood of the sequence of states given the learned model is computed.

This yields 50 monotonously decreasing traces through time/likelihood space. The range of

all these traces is defined to be normal behavior. During testing, failures are induced such as

blocking the robot, or disconnecting communication. In three out of four error types this leads

to traces that fall outside the range of the normal behavior, and an error is correctly recognized.

The emphasis in this work is not on predicting the failure of an action in advance, but rather

100

Section 6.5 Related Work

recognizing when an action that is being executed is in the process of failing, as the following

quote shows: “Planners reason with abstracted models of the behaviors they use to construct

plans. When plans are turned into the instructions that drive an executive, the real behav-

iors interacting with the unpredictable uncertainties of the environment can lead to failure.”

Therefore, cannot be used for condition refinement, but rather for execution monitoring.

6.5.3 Inductive transfer

The transfer of knowledge from one learning task to the next has been well studied within the

context of connectionist networks (Pratt and Jennings, 1996). Here, it is termed “learning to

learn”, or “inductive transfer” (Großmann, 2001). Two well known examples of this approach

are Explanation Based Neural Networks (EBNN) (Thrun and Mitchell, 1993) and Multi Task

Learning (MTL) (Caruana, 1997).

In EBNN (Thrun and Mitchell, 1993), a neural networks learns the mappingfi from input

to target values in the training set. In addition, EBNN also learns a mapping to the slopes

(tangents) offi at the examples in the training set. These slopes provides information on how

changes of the input features will affect the network’s output, and can therefore guide the

generalization of the training examples. This second slope network represents a model of the

domain, and can be used as an inductive bias for learning novel tasks, with the same network

structure. This substantially reduces the number of needed training examples for novel tasks.

Suppose a mapping from four inputs to three different tasks must be learned from examples.

One approach would be to train three neural networks, one for each task. With this approach,

each of the three networks must learn the mapping to the output from scratch. Similarities

between tasks can therefore not be exploited. In MTL (Caruana, 1997), only one network,

in this case with three outputs, is learned, as depicted in Figure 6.7. In this network, repre-

sentations that are common to all tasks are learned in the input to hidden layer mapping, and

task specific representations in the hidden to output layer. Because all training examples can

be used to learn the common representation, learning is significantly faster than when using a

single network for each task. Empirical results have verified this (Caruana, 1997).

In analogy to the approach in this chapter is the differentiations between common task

knowledge, and specific task knowledge. ThegoToPose action can be considered as the

common knowledge needed to complete both the navigation and ball approach tasks. The

learned model (condition refinement) and subgoal assertion are the specific knowledge needed

to adapt thegoToPose action to the novel ball approach task.

Both EBNN and MTL use multi-layer perceptrons as representation, and the transfer of

knowledge is based on this representation. Furthermore, the learning performance and ease of

101

Chapter 6 Task Context: Task Variants

Figure 6.7.A multi task learning (MTL) network. Adapted from (Silver and Mercer, 1998).

transfer depend on the topology of the network, which is human-specified. Because MTL and

EBNN depend on these a priori design decisions, they are only of limited use for autonomous

learning (Großmann, 2001). For instance, they could not be applied to the task presented

in this chapter, as it was not learned using a neural network. On the other hand, condition

refinement and subgoal assertion, although their scope is limited to novel tasks with refined

goals, could be used for tasks learned with neural networks.

6.6 Conclusion

In this chapter, we have presented condition refinement, which adapts pre-conditions to novel

goal. These pre-conditions are learned with decision trees from observed experience, and are

therefore grounded in the real world. Predicted failures can be resolved by introducing new

subgoals, from which execution is predicted to succeed. In an interesting interplay between

condition refinement and subgoal refinement, the best intermediate subgoal is chosen. We

have demonstrated how thegoToPose action could be reused to successfully approach the

ball in the simulated soccer domain.

Condition refinement is a good example of combining common sense knowledge, which is

provided by humans through the symbolic preconditions, with knowledge that the robots learn

themselves. Also, condition refinement and subgoal assertion are important contributions to

bridging the gap between symbolic planning, and plan execution on robots.

Directions for future work include the integration of condition refinement in an existing

planning system, such as the one described in Section 5.2.1.

The results reported in this chapter have been published in: (Stulp and Beetz, 2006, 2005c).

102

Section 6.6 Conclusion

Summaries of these publications are given in Appendix D.

103

7. Task Context: Multiple Robots

“Wat heb je nou liever? Één goed 11-tal of 11 goede 1-tallen?”

Johan Cruijff

As robotic systems are becoming more dextrous and sophisticated, they are capable of ex-

ecuting more complex tasks. Many of these more complex application tasks require two or

more robots to cooperate in order to solve the task. A key aspect of these systems is that mul-

tiple robots share the same workspace, and can therefore not abstract away from the actions

of other robots. The problem is how to tailor your actions in the context of actions of others.

Humans are very good at performing joint actions

Figure 7.1. Two humans implicitly

coordinating the assem-

bly of a Pioneer I robot.

in shared workspaces. Consider two people assem-

bling a bookcase (or a robot, as in Figure 7.1). With

apparent ease, actions areanticipated and coordi-

nated: one person holds a shelf while the other screws

it in place, and so forth. A key aspect of this coopera-

tion is that it is executed with little or no communica-

tion. Humans achieve this by inferring the intentions

of others. Once the beliefs and desires of the coop-

erating party are known, we simply imagine what we

would do in that situation. This is called the Inten-

tional Stance (Dennett, 1987). If I see you grab a

screw-driver, I can assume that you intend to screw

the shelf in place; there is no need for you to tell me. By integrating your intentions into my

own beliefs, I can also anticipate that my holding the shelf will ease our task, thereby coming

closer to our joint desire of assembling the bookcase. Implicit coordination is used by humans

in many domains: almost all team sports, construction of bookcases and others, and also in

traffic.

105

Chapter 7 Task Context: Multiple Robots

In contrast, coordination in multi-agent and multi-robot systems is usually achieved by

extensive communication of utilities. This is calledexplicit coordination. Previous work on

cooperation seems to have focussed almost exclusively on this form of coordination (Botelho

and Alami, 1999; Chaimowicz et al., 2002; Dias and Stentz, 2001; Parker, 1998; Werger and

Mataríc, 2000). It has also been used in the RoboCup mid-size league to allocate roles to

the different players (Castelpietra et al., 2000; Spaan and Groen, 2002). However, implicit

coordination has some important benefits over explicit coordination, related to:

Complexity To enable utility communication, protocols and arbitration mechanisms must

be adopted between communicating entities , which adds complexities and can degrade

the system. It is generally argued that communication can add unacceptable delays in

information gathering and should be kept minimal (Tews and Wyeth, 2000).

Safety Because implicit coordination dispenses of the need for communication, there are

many multi-robot domains that could benefit from this approach. Rescue robotics and

autonomous vehicles operating in traffic are examples of domains in which robust com-

munication is not guaranteed, but where correct coordination and action anticipation is

a matter of life and death. When it comes to saving humans or avoiding accidents, it is

better to trust what you perceive, than what others tell you: seeing is believing.

Human Robot Interaction Another recent research focus in which implicit coordina-

tion plays an important role is human-robot interaction, for instance in space explo-

ration (Fong et al., 2005) or rescue robotics (Nourbakhsh et al., 2005). Our research

group has a long-term project for human-robot interaction in intelligent rooms (Rusu,

2006). The room and robot are equipped with cameras, laser range finders and RFID

tags, which provide robots with accurate information about what is going on in the room.

When a robot and a human perform a joint action in their shared workspace, e.g. setting

the table in the kitchen, or seam welding in outer space (Fong et al., 2005), it cannot

be expected of humans to continuously communicate their intentions. Instead, the robot

must be able to anticipate a human’s intentions, based on predictive models of human

behavior. We consider implicit coordination to be essential for natural interaction be-

tween robots and humans.

Mixed Teams In robotic soccer, there is an increasing incentive to play in mixed teams.

Since robots in a mixed team usually have very different communication software and

hardware, communication is often problematic. A solution would be to unify the soft-

ware of the different robots of a potential mixed team. This would require substantial

106

Section 7.1 Computational Model

rewriting of at least one of the team’s software. In our opinion this is undesirable. Why

should an autonomous mobile robot have to commit to any kind of sensor processing

or control paradigm to be able to cooperate with another team mate, if both are pro-

grammed to interact in the same problem domain? Professional soccer players certainly

do not need to take a language course before being able to play soccer in a new country.

Implicit coordination could solve the communication problem for robots in mixed teams

by eliminating communication altogether.

A necessity for implicit coordination is being able to predict the outcome of the actions of

others, by taking their perspective. As we saw in Section 3.2.1, it is hypothesized that the basis

of social interaction and imitation in humans is also formed by forward models (Wolpert et al.,

2003), as there are many similarities between the motor loop and the social interaction loop. It

may be that the same computational mechanisms which developed for sensorimotor prediction

have adapted for other cognitive functions. As we shall see, in implicit coordination, action

models also enable robots to predict the performance of other robots.

In this chapter, we will apply implicit coordination to a typical coordination task from

robotic soccer: regaining ball possession. Regaining ball possession is a goal for the team

as a whole, but only one of the field players is needed to achieve it. The benefit of having only

one player approach the ball is obvious: there will be less interference between the robots,

and it also allows the other robots to execute other important tasks, such as strategic reposi-

tioning or man marking. Of course, the robots must agree upon which robot will approach the

ball. The intuitive underlying locker-room agreement (Stone and Veloso, 1999) is that only

the robot who is quickest to the ball should approach it. In Figure 7.2, implicit coordination

has been highlighted within the overall system overview.

The next section will present the computational model of explicit and implicit coordination,

and Section 7.2 will demonstrate how this model is applied to the ball interception task. In

Section 7.3 we discuss some issues related to applying implicit coordination to heterogeneous

teams. In the empirical evaluation in Section 7.4, three experiments, partially conducted to-

gether with members from the Neuroinformatics Group at University of Ulm, are presented.

We conclude with related work and a summary in Sections 7.5 and 7.6 respectively.

7.1 Computational Model

In Figure 7.3, the computational model of explicit coordination is depicted. Vail and Veloso

(2003) informally describe a similar methodology. Through a certain communication channel,

the robot receives the utilities of other robots with respect to the task and possible actions at

107

Chapter 7 Task Context: Multiple Robots

Figure 7.2. Implicit coordination within the system overview.

hand. The Joint Utility model then determines what the best action is, given the utilities of all

robots.

Figure 7.3. Explicit coordination, in which the utilities of other robots are communicated.
This is the standard approach in robotics.

Implicit coordination, depicted in Figure 7.4, is a variation of explicit coordination, in which

the utilities of others are not communicated, but computed by the robot itself. It does so by

taking the perspective of others based on the states of others, and utility prediction models.

Figure 7.4. Implicit coordination without communication, in which utilities are computed
from states using action models. States are either perceived. Humans use this
approach to coordinate.

108

Section 7.2 Applying Implicit Coordination

7.2 Applying Implicit Coordination

Here, the concepts used in Figure 7.3 will be explained using examples from the ball intercep-

tion task, more or less from back to front.

My Action This is the action that the robot decides to execute. It should be coordinated with

the actions of other robots. When regaining ball possession, this means that only one

robot should approach the ball. This avoids interference between robots, and enables

the robots that are not approaching the ball to perform other tasks, such as man marking

or other offensive positioning.

Utilities In the ball interception task, the utility is approach time. The faster a robot can

approach the ball, the higher the utility. This utility can therefore be computed by deter-

mining the execution duration of theapproachBall action, given the current belief

state. This time in its turn can be acquired by calling the learned action model for exe-

cution duration of theapproachBall action, given the state of the robot and the ball.

How this model is acquired has been extensively discussed in Chapter 4.

Joint utility model The joint utility model formalizes the intuitive rule that only one robot

should approach the ball. It computes the best action a robot can execute, given its own

utility for this action, as well as the utilities of other robots. So, for the ball interception

task, the joint utility model returnsapproachBall if a robot predicted to be the fastest

to approach the ball, and another action otherwise. For this task, the joint utility model

therefore needs to know the expected time it will take to approach the ball for all robots.

Note that in this computational model, the joint utility model selects an action. For

integration in plan-based control, the joint utility model could instead return a symbolic

goal. The planner then determines an action sequence to achieve this goal.

Of course, all soccer teams will have implemented this strategy in some way, to avoid all

robots continuously pursuing the ball. The contribution of the approach presented here is

not to implement the concept of having only one robot going there. It rather shows how

exploiting action models to reason about the outcome of the actions of others enables

robots to become more independent of communication for coordination.

Communication In explicit coordination, robots compute only their own utility locally. It

then sends its utility to the other robots, and receives the utilities of the other robots,

over some communication channel. In auction based approaches (Gerkey and Matarić,

109

Chapter 7 Task Context: Multiple Robots

2003), the utilities are sent to a single arbitrator, which communicates roles or actions

back to the robots.

Perspective-taker In implicit coordination, each robot computes the utility of all robots

locally, without communicating the utilities. The perspective-taker enables each robot

to make this prediction with respect to the current task and belief state. To do this, the

robot swaps its own state with that of another robot in the belief state, and computes

the utility. This “perspective-taking” (Trafton et al., 2005) is performed for all other

robots, until the utilities for all robots are known. To compute the utility of others, the

perspective taker computes the execution of theapproachBall action for each robot.

To do so, it needs to know the state andapproachBall action model of each robot.

States of others As we saw, the robot needs to know the state of another robot to be able

to take its perspective. In the belief state of the soccer robots, states are represented by

a pose: the position and orientation of the robot. The states of others are determined

through the state estimation module.

7.2.1 Utility vs. belief communication

The most difficult aspect of implicit coordination is estimating the states of others. Especially

for robots with a limited field of view, such as ours, this is problematic. Therefore, we resorted

to the communication of beliefs as a complement of state estimation, to acquire a shared and

coherent representation, as depicted in Figure 7.5.

Figure 7.5. Implicit coordination with belief communication (BC).

This computational model might seem contrary to our communication-free paradigm, but

there is an important difference between communicatingutilities and communicatingbeliefs,

which we shall explain in this section. Of course, implicit coordination without communi-

cation is the ideal situation, which we cannot achieve due to limitations in sensors and state

estimation. Still, implicit coordination with state communication is preferable over explicit

coordination for the following reasons:

110

Section 7.3 Implicit Coordination in Heterogeneous Teams

� Since explicit coordination is only possible if you know the utilities of others, delays or

failures in utility communications will often cause complete coordination failure. With

implicit coordination, the robot can still rely on it’s own sensors and state estimation

to deduce the utilities of others. Coordination might then not be perfect, due to sensor

limitations, but at least it does not collapse completely. One of the experiments in the

experimental evaluation will verify this (Q6 in Section 7.4.2). In a sense, combining the

two methods exploits the best of both worlds.

� Improvements in sensor technology and state estimation methods will allow robots to

autonomously acquire a increasingly complete and accurate estimation of the states of

others. In RoboCup for instance, almost all mid-size teams have resorted to omni-

directional vision to achieve exactly that. So, beliefs needed to infer the utilities of oth-

ers are becoming more complete and accurate, independent of communication. More

accurate state estimation essentially replaces communication. Teams that have omni-

directional vision could probably abandon communication altogether when using im-

plicit coordination. This is certainly not the case for explicit coordination, which will

always fully rely on communication.

� To enable human-robot cooperation, robots will at some point have to rely on state esti-

mation only, as humans cannot be expected to compute their state. Implicit coordination

with belief communication is an intermediate step to this ideal situation.

Summarizing, the robots use communication as a backup system if they cannot recognize

the intentions of others, rather than as the backbone of their coordination. Improvements in

sensor and state estimation will therefore allow implicit coordination to depend less and less

on belief communication. This is necessary to simplify communication schemes, increase

coordination robustness, and enable human-robot cooperation. This work proposes a step in

this direction.

7.3 Implicit Coordination in Heterogeneous Teams

Due to scientific as well as pragmatic reasons, there is a growing interest in the robotics field

to join the efforts of different labs to form mixed teams of autonomous mobile robots. For

many tasks, a group of heterogeneous robots with diverse capabilities and strengths is likely

to perform better than one system that tries to encapsulate them all. Also, for many groups,

the increasing cost of acquiring and maintaining autonomous mobile robots keeps them from

forming a mixed team themselves.

111

Chapter 7 Task Context: Multiple Robots

Therefore, the AGILO RoboCuppers have formed a mixed team with the Ulm Sparrows (Utz

et al., 2004). The Ulm Sparrows (Kraetzschmar et al., 2004) are custom built robots. Their

sensor suites consist of infrared based near range finders and a directed camera. The available

actuators are a differential drive, a pneumatic kicking device and a pan unit to rotate the

camera horizontally (180o). One of the robots is depicted in Figure 1.4(c). As almost all robots

in this league, the robots are custom built research platforms with unique sensors, actuators,

and software architectures. Therefore, forming a heterogeneous cooperative team presents an

exciting challenge. In the next sections, we will discuss the modification necessary to enable

implicit coordination in heterogeneous teams.

7.3.1 Action models

When applying these models on-line in a game situation, the robots must know which player

has which hardware platform to apply the correct model. To do so, each robot must have all

models learned for all robots on the field, as well as a mapping from player number to temporal

prediction model. This is implemented off-line.

Learning action models, in this case model trees that predict ball approach time, is no dif-

ferent for the Ulm Sparrows than it is for the AGILO RoboCuppers. Note that the action the

Ulm Sparrows use to approach the ball is slightly different, as no orientation can be specified.

Therefore, this action is calledgoToPosition . It took 40 minutes to gather the data for this

model, and the accuracy of the learned model tree was already listed in Table 4.2.

7.3.2 Sharing belief in heterogeneous teams

To share beliefs, the teams must agree upon structures that encapsulate the information they

want to exchange, and the communication framework over which this information will be sent.

The information in the belief state contains the dynamic pose of the robot itself, as well as

the positions of observed objects, such as the ball, teammates and opponents. Each belief state

message is accurately time-stamped, so that delays in communication can be registered.

The team communication uses a message-based, type safe high-level communications pro-

tocol (Utz et al., 2004). It is transfered by IP-multicast, as such a protocol keeps the commu-

nicated data easily accessible and prevents subtle programming errors that are hard to trace

through different teams. As the communication in a team of autonomous mobile robots uses

some kind of wireless LAN, that is notoriously unstable, a connection-less message based

protocol is mandatory. With this approach, network breakdowns and latencies do not block

the sending robot. IP-multicast is also used to save bandwidth, since this way each message

112

Section 7.4 Empirical Evaluation

has only to be broadcasted once, instead ofm times forn clients.

The implementation uses the notify multicast module (NMC) of the Middleware for Robots

(M IRO) (Utz et al., 2002). MIRO provides generalized CORBA based sensor and actuator

interfaces for various robot platforms as well as higher level frameworks for robotic applica-

tions. Additionally to the method-call oriented interfaces, MIRO also uses the event driven,

message-based communications paradigm utilizing the CORBA Notification Service. This

standardized specification of a publisher/subscriber protocol is part of various CORBA imple-

mentations (Schmidt et al., 1997). Isik (2005) details about how MIRO has been ported to the

AGILO robots.

Communicating the IDL-specified belief state discussed in at 10Hz with all teammates

uses, on average, less than 10% of the available bandwidth of a standard 802.11b WLAN

(11 MBit/s) (Utz et al., 2004). This should be available, even on heavily loaded networks,

such as those in RoboCup tournaments.

7.4 Empirical Evaluation

To evaluate the performance of applying implicit coordination in ball interception task, several

experiments were conducted, first with three AGILO robots, and later with one AGILO and one

Ulm robot.

7.4.1 Experimental design

Three experiments were conducted, in a dynamic, static and simulated environment. The

questions we will answer with these experiments are: Q1) Do the robots agree upon who

should approach the ball? Q2) Do the robots choose the quickest one? Q3) Are temporal

prediction models necessary, or would a more simple value such as distance not suffice? Q4)

How robust is implicit coordination against errors in state estimation? Q5) When does implicit

coordination fail? Q6) How do communication quality and state estimation accuracy influence

coordination?

Dynamic environment experiment

This experiment was conducted with three AGILO robots, and in the mixed team with one

AGILO robot and one Ulm Sparrow. In the experiments, the robots continuously navigated to

randomly generated positions on the field. Once a robot reached its destination, the next ran-

dom position was generated. These poses were generated such that interference between the

113

Chapter 7 Task Context: Multiple Robots

robots was excluded, as depicted in Figure 7.6(a). For about half an hour (18 000 examples),

the robots perform their random navigation routines. Each robot records the state estimation

results locally every 100ms.

(a) Random navigation without interference. (b) Log-files collected in the dynamic experi-
ment.

Figure 7.6. The dynamic experiment. The same experiment was also conducted with three
AGILO robots.

Figure 7.6(b) displays which information was gathered in each log file in the experiment

with three AGILO robots. Apart from recording the temporal prediction for each robot, the

robots also record who they think should approach the ball at that time, without ever actually

approaching the ball. This allows much data to be recorded. Before the experiment, the robots

synchronize their clocks. The times stamps can therefore be used to merge the three distributed

files for further evaluation after the experiment.

Static environment experiment

In the previous experiment, it is impossible to measure if the temporal predictions were actu-

ally correct, and if potential inaccuracies caused the robots’ estimate of who is quickest to be

incorrect. Even if robots always agree on the same robot, this is of little use if the robot is not

indeed the fastest. Therefore a second experiment was conducted. During this experiment, the

goal to approach is fixed. First, the robots navigate to random positions and wait there. They

are then synchronously requested to record the same data as in the first experiment, but only

for the current static state, as shown in Figure 7.7(a). Then, one after the other, the robots

are requested to drive to the goal position, and the actual approach duration was recorded, see

Figure 7.7(b). The log-files so acquired are almost identical to the ones in the dynamic ex-

114

Section 7.4 Empirical Evaluation

periment. The only difference is that they also contain the actual observed time for the robot.

This static environment is less realistic, but allows the predicted time to be compared with the

actually measured time for each robot.

(a) Step 1) Navigate to a random
position, wait there. Record pre-
dictions.

(b) Step 2) Take turns
approaching the ball
and record observed
result.

(c) Log-files collected in the
static experiment.

Figure 7.7.The static experiment. The same experiment was also conducted with three AG-
ILO robots.

While executing this experiment, we realized a method to acquire the same data off-line.

The two log-files were identical to the log-files gathered when learning the prediction model,

as they also contain the current state, the goal state, and the real approach time. So, off-line,

two samples from both temporal prediction log-files were chosen randomly, and added the

predicted approach time for both robots. In order to do this, one sample of each pair had to be

transformed, so that the goal positions of both samples coincide. This data is the same as we

would have acquired during the experiment. In a sense, it is even more realistic, as the robot

is moving in almost all samples, whereas it would have been static if the experiment had been

conducted on-line.

Simulated experiment

Here, the experimental set-up is identical to the dynamic experiment. The simulator presented

in Section B.2 in Appendix B allows us to vary two variables that most strongly influence the

success of implicit coordination. The first is communication quality. At random times, and

for random durations, communication is switched off in both directions. By controlling the

length of the intervals, we can vary between perfect (100%) and no (0%) communication. The

second is the field of view of the robot. We can set the view angle of the robot’s forward facing

115

Chapter 7 Task Context: Multiple Robots

camera between 0 (blind) and 360 (omni-directional vision) degrees. The other robot and the

ball are only perceived when in the field of view. Gaussian noise with a standard deviation of

9, 25 and 22 cm is added to the robot’s estimates of the position of itself, the teammate and the

ball respectively. These correspond to the errors we have observed on the real robots (Stulp

et al., 2004a). Since the dynamics of the Ulm Sparrows needed for simulation are not known,

this experiment was only conducted with three AGILO RoboCuppers.

Figure 7.8. In the simulated experiment, the field of view and communication quality could
be controlled. The experiment itself was identical to the dynamic experiment in
Figure 7.6.

7.4.2 Q & A

Using the results of these experiments, we shall now answer the questions presented at the

start of this section.

Q1) Do the robots agree upon who should approach the ball?

To answer this question, we simply determined how often all robots agreed on which robot

should approach the ball. The results are listed in 7.1, in the row labeled “Chose the same

robot?”. Given the accurate estimates the robots have of each other’s states, and the accurate

predicted times that arise from this, it should not be surprising that the robots have almost

perfect agreement (99% for agilo, 96% for the mixed team) on who should approach the ball.

Action Model Distance
Agilo Mixed Agilo Mixed

Chose the same robot? 99% Q1 96% 99% Q3 95%
Chose the quickest robot? 96% Q2 92% 81% Q3 68%

Table 7.1.Accuracy of implicit coordination with belief communication

116

Section 7.4 Empirical Evaluation

Q2) Do the robots choose the quickest one?

Agreeing about who should go to the ball is of little use if the chosen robot is not actually the

quickest. Therefore, we would also like to know if the chosen robot is actually the quickest

one to approach the ball. Of course, this could only be determined in the static experiment, in

which the actual times it took each robot to approach the ball were recorded. A robot’s decision

to coordinate is deemed correct, if the robot that was the quickest was indeed predicted to be

the quickest. In the experiment with three agilo robots, the robots were correct 96% of the

time, and in the mixed team 92%, as can be seen in Table 7.1.

Q3) Are temporal prediction models necessary, or would a more simple value

such as distance not suffice?

Using distance as a rough estimate of the approach time, as done in (Murray and Stolzenburg,

2005), would save us the trouble of learning action models. Although time is certainly strongly

correlated with distance, using distance alone leads to significantly more incorrect coordina-

tions. The last column in Table 7.1 shows this. Agreement is still very good (99%/95%),

but the robot that is really the quickest is chosen only 81%/68% of the time. So, when using

distance, the robots are still very sure about who should approach it, but they are also wrong

about it much more often.

Q4) How robust is implicit coordination against errors in state estimation?

As we saw, almost perfect coordination was achieved in the dynamic experiment. This is not

so surprising, as the robots have very accurate estimates of each other’s states. To analyze

how noise in the estimates of the other robot’s states influences coordination, we took the

original log files of the three AGILO robots, and added Gaussian noise of varying degrees to

the estimates that robots have of each other’s pose ([xt,yt,�t]). The predicted times were then

computed off-line, based on these simulated log files.

The results are shown in Figure 7.9. The x-axis shows the standard deviation of the Gaussian

noise added to the data. So the first column, in which there is no added noise, represents the

results of the dynamic experiment with the three AGILO RoboCuppers, which had been listed

in Table 7.1. The y-axis shows the percentage of examples in which 0,1,2 or 3 robots intended

to approach the ball. Of course, ‘1’ means that coordination succeeded. This graph was only

generated for the initial experiment with three AGILO RoboCuppers

We can clearly see that coordination deteriorates when robots do not know each other’s

states so well. If you have a robotic (soccer) team, and know the standard deviation between

117

Chapter 7 Task Context: Multiple Robots

the robot estimations of each other’s positions, the graph gives an indication of how well

implicit coordination would work in this team.

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

70

80

90

100

Standard deviation of gaussian noise

%

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

70

80

90

100

Standard deviation of gaussian noise

%1

0

2
3

Coordination Fails

Coordination Succeeds

becoming noisy
Coordination Fails

Original logfile

Standard deviation of
gaussian noise in meters

%

Figure 7.9. Influence of simulated state estimation errors on implicit coordination.

Q5) When does implicit coordination fail?

In the log files of both the mixed team and the AGILO only team, we labeled all examples

in which exactly one robot decided to approach the ball withSuccess , and others with

Fail . A decision tree was then trained to predict this value. The learned trees are represented

graphically in Figure 7.10. For both prediction models the main rule is that if the difference

in predicted times between two robots is small, coordination is likely to fail, and if it is large,

it is likely to succeed. This is intuitive, because if the difference between the times is large,

it is less likely that adding errors to them will invert which time is the smallest. Note that in

between these two limits, there is a ’gray’ area, in which some other rules were learned. They

only accounted for a small number of example, so for clarity, we will not discuss them here.

In Figure 7.11, we present an illustration of how such failure prediction could be used in

practice. It is easiest to understand this image if one imagines that the robots are standing still

at the drawn positions, and the ball is rolling slowly from left to right. At every 5cm of the

ball’s trajectory, the robots determine who should approach the ball at that time, using implicit

coordination. Note that the arrow does not represent the direction that the ball is rolling, but

118

Section 7.4 Empirical Evaluation

Figure 7.10.Representation of the decision trees that predict coordination success.

rather the direction from which the robots should approach it. After ball interception, their

goal is to dribble it in this direction. The robot that is chosen to intercept it is connected to the

current ball’s position by a solid green line. When the decision tree predicts that coordination

might fail, the robots between which confusion might arise are both connected to the ball’s

position by a red dashed line. Note that this image was generated in simulation, not with the

real robots.

Figure 7.11.Example of implicit coordination with failure prediction. Solid green lines repre-
sent that only one robot would approach the ball at this position. Dashed red lines
show when coordination is predicted to likely fail. The robots must all approach
the ball from the right, as indicated by the arrow.

Humans also recognize when coordination might fail. For example, in sports like soccer or

volleyball, it is sometimes not completely clear who should go for the ball. Humans solve this

119

Chapter 7 Task Context: Multiple Robots

problem by making a brief exclamation such as “Mine!”, or “Leave it!”. So in these cases,

humans resort to explicit coordination and communicate their intentions. Not only do humans

have utility models of each other to coordinate implicitly, they are also aware when confusion

might arise. The learned decision tree essentially provides the robots with similar awareness,

as they predict when implicit coordination failure is likely. So, they could be used to determine

when robots should resort to other methods of coordination. For instance, soccer robots could

have a simple locker-room agreement that when coordination failure is predicted, the robot

with the higher player number should approach the ball (excluding the goalie).

Q6) How do communication quality and state estimation accuracy influence

coordination?

The results of the simulation experiment, which show how the performance of different coor-

dination strategies depends on the quality of communication and the field of view, are depicted

in Figure 7.12. Communication quality is the percentage of packets that arrive, and field of

view is in degrees. The z-axis depicts coordination success, which is the percentage that only

one robot intended to approach the ball. The computational models of the different forms of

coordination have been repeated below these graphs.

Since explicit coordination is based completely on communication, it is not surprising that

it perfectly correlates with the quality of the communication, but is independent of the size

of the field of view. No communications means no coordination, and perfect communication

means perfect coordination. For implicit coordination without communication, the relation

is converse. If a robot is able to estimate the states of others better, it is able to coordinate

better. The third graph shows implicit coordination with belief state exchange (as used on

our real robots). If the robot has another in its field of view, it determines the other’s state

through state estimation, otherwise it uses communication (if possible) to exchange beliefs.

These states are then used to predict the utilities of others, independent if they were perceived

or communicated.

This graphs clearly verify the hypothesis from Section 7.2.1 that implicit coordination with

belief exchange achieves better performance with communication loss than explicit coordina-

tion alone. Instead of complete coordination failure in case of communication loss, there is a

graceful decay, because a second system based on state estimation can still be used to estimate

the utilities of others. In Section 7.2.1, we also hypothesized that improvements in sensors

and state estimation would allow robots to acquire more accurate and complete belief states,

and rely less on communication for coordination. The arrow in the third graph in Figure 7.12

represents this direction.

120

Section 7.5 Related Work

Explicit Coordination Implicit Coordination I Implicit Coordination II

0
100

200
300

0

50

100
0

50

100

0
100

200
300

0

50

100
0

50

100

0
100

200
300

0

50

100
0

50

100

C
oo

rd
in

at
io

n

Communication Field of viewquality

Figure 7.12.Results of the simulation experiment, which show how the performance of co-
ordination strategies depends on the quality of communication and the field of
view.

7.5 Related Work

7.5.1 Explicit and implicit coordination

Previous research on cooperation has focussed almost exclusively on explicit coordina-

tion (Gerkey and Matarić, 2003). On the other hand, work on implicit coordination usually

assumes that all agents have access to a central and global representation of the world, which

is enabled by simulation, as in (Sen et al., 1994), or global perception, as in the RoboCup

small-size league (Tews and Wyeth, 2000; Veloso et al., 1999). In all this work, teammates

are not reasoned about explicitly, but are considered to be mere environment entities, that

influence behavior in similar ways to obstacles or opponents.

Stone and Veloso (1999) deals with the issue of low band-width communication in the

simulation league is bylocker-room agreements, in which players agree on assigning identi-

fication labels to certain formations. During the game, only these labels, instead of complete

formations, must be communicated.

121

Chapter 7 Task Context: Multiple Robots

Murray and Stolzenburg (2005) combines implicit and explicit coordination to achieve ball

approach coordination in the simulation league. First, each robot determines the distance of

each teammate to the ball. Based on this, each agent decides if it will approach the ball or not.

Coordination is still explicit, because the agent who decides to approach the ball first must

‘lock’ a shared resource, which prevents other robots from chasing after it. The use of this

global resource requires communication.

Most similar to our work is (Vail and Veloso, 2003), in which robots in the legged-league

also coordinate through implicit coordination which is based on representations which are

completed through the communication of belief states. Communication is essential, and as-

sumed to be flawless. It is not investigated how communication loss influences coordination.

The utility measure is a sum of heuristic functions, which are represented as potential fields.

Whereas our utility models are grounded in observed experience, and have a well-defined

meaning (e.g. execution duration in seconds), these heuristic functions have no clear seman-

tics. Therefore, customizing these functions to individual robots is difficult, as the semantics

of and interactions between them are not fully understood. However, this customization is es-

sential for achieving efficient coordination in a heterogeneous team with robots with different

dynamics and capabilities.

Buck et al. (2002b) describes a method in which robots are also coordinated by predicting

approach times locally. The motivation behind this work is that a framework for communicat-

ing state was already available, and using implicit coordination with action models was simply

easier to implement than novel utility communication and arbitration modules. The research

in this chapters extends this work by making a comparison of explicit and implicit coordina-

tion, learning models of when coordination fails, and enabling coordination in heterogeneous

teams.

7.5.2 Heterogeneous teams

The idea of cross team cooperation has some tradition within the RoboCup leagues. In the

simulation league, the source code of many teams was published on the Internet allowing new

participants to base their new team on previous participants of simulation league tournaments.

The most similar mixed team cooperation effort was the Azzurra Robot Team, a mid-size

team from various Italian universities. They also used a (proprietary) publisher/subscriber

communication protocol, utilizing UDP. This team used explicit coordination (i.e. with utility

communication) to assign roles among the field players (Castelpietra et al., 2000). Unfortu-

nately the Italian national team was dissolved after the RoboCup tournaments in 2000.

One of the most successful mixed teams in RoboCup has been the GermanTeam, which

122

Section 7.6 Conclusion

participates in the legged-league (Röfer, 2002). The GermanTeam is a cooperation of five uni-

versities participating with one team and one code repository. The exchange and integration

of software is enabled by a standardized hardware platform, as well as a modular software

design. The challenge we face is to integrate different hardware systems and software archi-

tectures, for which integration has never been a primary goal. A bottom-up design, such as the

GermanTeam has, would require complete rewrites of all systems, so instead we have chosen

a software package that extends each individual software architecture.

Many RoboCup teams acquire coherent and complete beliefs by communicating and sharing

their belief states. The use of shared representations was probably one of the key reasons for

the success of the Freiburg mid-size team (Dietel et al., 2002).

7.6 Conclusion

Whereas humans coordinate with little or no communication, robots usually rely on extensive

communication of utilities or intentions. In this chapter, we have implemented a framework

that enables robots to reason about the utilities of others in a ball interception task, and coor-

dinate their global behavior by making only local decisions, based on the action models and

states of the other robots. Unfortunately, the state estimation is not reliable enough to accu-

rately and robustly determine the states of others, so it is necessary to communicate belief

states. We have motivated why state communication is preferable over utility communica-

tion. The robustness of implicit coordination was demonstrated in both a homogeneous and

heterogeneous team of soccer robots.

We have shown that action models outperform more simple performance measures such

as distance, and that action models can be learned for robots of other teams. Due to the

redundancy in using both state communication and estimation, implicit coordination is more

robust against network failures, which was evaluated in several experiments. These aspects

must be taken into account when transferring multi-agent research to multi-robot teams. This

chapter is a contribution to the evaluation of advantages and disadvantages of implicit and

explicit coordination in robotic teams.

Future work includes learning action models for opponent robots. If the actions of the

opponent could be anticipated, a robot couldcoordinateits own actions with that of the oppo-

nents. Of course, this coordination is only beneficial for one of the robots. Furthermore, we

have done some preliminary work on learning temporal prediction models that take opponent

robots into account. Due to the increased state space, and the unpredictability of what the

opponent will do, learning accurate models is more complicated. By partitioning all possible

123

Chapter 7 Task Context: Multiple Robots

scenarios into several classes, relatively accurate models could be learned for each class.

The results reported in this chapter have been published in: (Stulp et al., 2006a; Stulp and

Beetz, 2006; Isik et al., 2006; Utz et al., 2004; Stulp and Beetz, 2005c). Summaries of these

publications are given in Appendix D.

124

8. Conclusion

To adapt to novel environments and tasks, agents must be able to learn. Learning means

experimenting, observing the results of experimentation, and generalizing over that which

was observed. Forward models, which predict the outcome of motor commands, are good

examples of knowledge that humans learn from experience, and use to adapt to novel contexts.

The concept of a forward model can be extended to action models, which predict the outcome

of durative actions. We have shown how robots can acquire such action models.

On the other hand, domain knowledge formalization as well as abstraction and reasoning

capabilities are currently not yet at a stage that enables robots to robustly acquire declarative

common-sense knowledge autonomously. Therefore, it is common that such knowledge on

what to do in the first place is specified by human controller designers. The key idea in this

dissertation is to merge this human specification with learned action models, as they comple-

ment each other well.

To do so, we developed a framework in which action models are integrated in a controller,

partially specified by human designers. The action models enable the robot to autonomously

answers questions that designers find difficult to answer themselves, even for their own ac-

tions. We have implemented several applications of action models, with an emphasis on an-

swering questions that arise when applying existing actions to novel task contexts:

� Subgoal refinement optimizes action sequences with partially specified subgoals, by

extracting free action parameters, and optimizing them with respect to the expected

performance, predicted with action models. The resulting motion is more efficient and

fluent.

� Condition refinement and subgoal assertion, in which preconditions are refined by learn-

ing when executing an existing action will succeed at achieving novel goals. Failure pre-

diction is resolved by introducing intermediate goals, which are optimized with subgoal

refinement.

125

Chapter 8 Conclusion

� Implicit coordination enables robots to coordinate their actions by reasoning about the

utilities of others, using action models and knowledge about the states of others. Coor-

dination that relies on state estimation and communication is more robust than relying

on communication of utilities alone.

We have demonstrated that enabling robots to refine and improve their actions and plans

themselvesnot only alleviates the designer’s task, but also improves the robot’s performance,

autonomy, adaptivity and robustness. Robots can only do so if they learn to predict the out-

come of their actions from experience, as we do ourselves.

126

Appendices

A Action Libraries

A.1 Action: goToPose

This is a navigation action that takes the robot to a target position with a target orientation

and speed, and returns the desired translation and rotational velocity. It is implemented by

computing an intermediate position behind the goal pose, where behind is defined in terms of

the orientation at the desired pose. This intermediate position (IP) behind the desired pose is

then approached. As the robot closes in on the IP, the IP approaches the final goal pose, thus

luring the robot towards the desired position. Since the robot initially approaches the goal pose

from behind, it is has the correct orientation one the goal pose is reached. Behnke and Rojas

(2001) outlines a very similar method. Some example runs of this action will be visualized in

the next chapter, in Figure 4.2.

This navigation action was used on the AGILO robots previously with the Pioneer 1 con-

trollers. With different parameterizations, it could also be used for the AGILO robots with the

Roboteq controllers, as well as the simulated B21.

A.2 Action: goToPosition

The Ulm Sparrow robot is from a different research group altogether. Therefore, we have

no knowledge of how thegoToPosition of this robot was implemented. The interesting

aspect of learning and applying action models is that the implementation of the action need not

be known, because the models are learned from observed behavior, not an analysis of the inner

workings of the robot. However, it is necessary that action parameters are known, as the robot

must known with which variables the action model should be learned and called. These are the

same as for thegoToPose actions, with the exception that the target orientation cannot be

127

Chapter 8 Conclusion

set. It also returns a motor command that contains desired translation and rotational velocity,

thought this knowledge is also irrelevant for learning or applying action models.

A.3 Action: reach (B21)

The exact implementation of this action was also not known. It had been previously developed,

and integrated in the B21 model in the Player module of the Player/Stage framework. For this

reason, the exact representation of the motor command is not known. Again, the signature of

the action was known, and listed in Table 2.1. The x,y,z coordinates specify the 3-D location

of end of the arm relative to the robot body, and the ax,ay,az the angles of the gripper relative

to the arm.

Again, the action parameters are all that is needed to acquire an action model. The same

holds for humans. Although we have several inverse models (actions) to reach for objects, we

are not aware that there are several of them, and find it difficult to explain exactly how we

perform this action (Haruno et al., 2001). We simply do. Note that this does not keep us from

learning forward models (action models) for these actions (Flanagan et al., 2003).

A.4 Action: reach (PowerCube)

In the PowerCube domain, the state is represented in joint space with the angles and angular

velocities at both joints:�a; _�a; �b; _�b. The reach action on the PowerCube takes the arm

from one state to the next using a ramp velocity-profile. The ramp has three phases: acceler-

ation, cruise speed, de-acceleration. Each joint accelerates with a constant acceleration value,

reaches the desired cruise speed and stays there until it begins the de-acceleration phase, which

is done also with constant acceleration. The trajectories of both joints are synchronized so they

begin exactly at the same time, and have the same length. This allows us to control the com-

bined speed of the end-effector of the arm at desired states, by decomposing this speed and

direction into the appropriate velocity for each joint. A PID controller sends power commands

to the joints to allows fine control of the action.

128

Section B AGILO RoboCuppers: Hardware and Tools

B AGILO RoboCuppers: Hardware and Tools

In this appendix, the hardware of the AGILO RoboCuppers will be introduces, along with

some of the tools used in controller development.

B.1 AGILO RoboCuppers hardware

The AGILO team is realized using inexpensive, off-the-shelf, easily extendible hardware com-

ponents and a standard C++ software environment. The team consists of four customized

ActivMedia Pioneer I robots (ActivMedia Robotics, 1998) (1); one of which is depicted in

figure B.1. The robot has a controller-board (2) and differential drive (3). For ball handling,

the robot has a passive ball guide rail (4) and a spring-based kicking device (5). The only

sensor apart from the odometry is a fixed, forward-facing color CCD Firewire camera with a

lens opening angle of of 90o (6). All computation is done on a standard 900 MHz laptop with

Linux operating system (7). The robot uses a Wireless LAN device (8) for communication

with teammates (Stulp et al., 2004b).

Figure B.1. The hardware components of the AGILO soccer robots.

During the research, we upgraded the controller boards from the original board delivered

with the Pioneer I robot to the Roboteq AX2550 board (Roboteq Inc., 2004). Models have

been learned for both robots. When discussing these robots we shall normally refer to the

version with the novel Roboteq board, and explicitly mention when the original Pioneer I

board was used.

129

Chapter 8 Conclusion

B.2 Simulator

Robot simulation in general is a powerful tool for the development of autonomous robot con-

trol systems because it allows for fast and cheap prediction and makes experiments control-

lable and repeatable. The first step in developing or adapting skills for our robots is made in

the MRose simulator (Buck et al., 2002a). The main features of the MRose simulator shows

its focus on learning and designing controllers:

Accurate Dynamics The skills designed in the simulator can only be used on the real

robots if the dynamics of the simulated robots is similar enough to that of the real robots.

Therefore, the dynamics have been learned using neural networks, from experience ob-

served on the real robots (Buck et al., 2002a).

Fast To learn actions and action models, sufficient experience needs to be available. To

quickly gather sufficient data, it is essential that simulation is an order of magnitude

faster than the real world time. The learned dynamics facilitate this, as well as simu-

lating the robots in only two dimensions. These features enable the simulator to run at

100x real-time.

No State Estimation Sensors and state estimation are not part of the simulator. The inac-

curacy and uncertainty that arise from sensing and state estimation are simulated.

Figure B.2. The Qt simulator GUI.

We have equipped the physics engine of the MRose simulator with a new Graphical User

Interface, written in Qt (Trolltech, 2005). This GUI allows the controller to visualize internal

130

Section B AGILO RoboCuppers: Hardware and Tools

parameterizations in the field, as shown in Figure B.2. Here, the blue circle is the intermedi-

ate goal, and the yellow circle the final goal. Circle radius indicates the desired translational

velocity. Such information is very useful for debugging. The slider below allows the sim-

ulation acceleration to be set. It can be set from 0.1x (slow motion), over 1.0x (to monitor

real-time behavior) to 100x (to gather data) real-time. The field display can be turned off to

have the simulated world to run at top speed. The simulator can also be started without the

GUI, allowing many examples to be gathered in little time

B.3 Evaluation with ground truth

Evaluating dynamic robotic multi-agent systems as in robotic soccer is difficult for several

reasons. Since these systems are dynamic, it is difficult to capture the state of the world at a

certain time or at certain time intervals without interfering with the course of events. How to

accurately measure the position of a robot, if it is traveling at 2m/s? Robotic platforms usually

suffer from noisy sensors and hidden state. A robot’s beliefs about the world are therefore

incomplete, uncertain and inaccurate. How to determine where a robotreally was, if you only

have its belief state to judge by? Multi-agent systems also require that several subsystems

are evaluated at the same time, as well as the interactions between them. Furthermore, for the

experiments presented later, it is important that the variables are controllable and reproducible.

For these reasons, we have used our ground truth system (Stulp et al., 2004a). This vision-

based system can automatically provideground truthabout the state of the world in dynamic

robotic multi-agent systems. It is very similar to the global view cameras use in the RoboCup

small-sized league. It consists of one or more cameras mounted above the field looking down-

ward. Each robot has a distinctive top-marker that is easy to detect by these cameras. Since

the cameras are static, and can locate the markers precisely, this yields very accurate data on

the location and orientation of each robot on the field.

The ground truth system consists of two cameras with an opening angle of 90�, at a height

of approximately 3m above the field. The cameras are facing downward, and together they

cover the whole training field, which is 6.4m x 10.4m. The robots can be distinguished from

one another using color markers, exactly as in done in the RoboCup small-size league (F180

Laws, 2004). Each camera grabs images at a rate of 15Hz. The first image in Figure B.3

shows an example of such an image. The images are then segmented by color using the look-

up tables generated during color calibration, as the center image of Figure B.3 shows. The

acquired blobs are then filtered according to size and shape. With the configuration of blob

groups, the position, orientation, team and player number of each robot can be determined.

This information is logged in a log-file, together with the belief states of the other robots. It

131

Chapter 8 Conclusion

(a) Original image. (b) Relevant blobs. (c) Monitor view.

Figure B.3. Intermediate steps in ground truth image processing..

can also be communicated to the robots themselves, as well as the program uses to monitor and

display the state of the world, as can be seen in the last image Figure B.3. In this example, there

are two robots, whose self-localization is displayed in blue. Their actual position, determined

by the ground truth system, is displayed as a white line, the start of which indicates the robot’s

center. The orange ball is where robot 3 beliefs the ball to be, and the ground truth position is

displayed in red. This graphical display allows us to make quick on-line inferences: “Robot 3

is localized very well, and has localized the ball reasonably. Robot 1 is not localized that well,

but good enough for performing useful behavior.”

To determine the accuracy of robot localization by the ground truth system, we placed a

robot with marker on fifteen different positions on the field. We measured the actual position

by hand (ground ground truth, so to speak), and compared it to the pose estimated by the

system. For the localization of the robots we have an accuracy of 0.3 to 5.2 cm and for its

orientation 1 to 2.3�. Apart from the accuracy, another important issue is whether a marker is

detected at all. Three experiments, described in (Stulp et al., 2004a), were conducted to deter-

mine the robustness of marker detection. In a static environment, the number of false positives

is only 0.1%, and the number of false negatives is 1%, averaged over all eight markers. This

last value is 2.5% in dynamic environments.

Providing robots with the global state

Having access to the global game state also allows a thorough evaluation of the action selection

module, independent of the inaccuracies and uncertainties that arise from the state estimation

performed locally on the robot.

132

Section B AGILO RoboCuppers: Hardware and Tools

In our system, the first step in developing or adapting control routines is made in the MRose

simulator (Buck et al., 2002a). This simulator has an accurate learned model of the robot dy-

namics, and can simulate multiple robots on one field in parallel, using the same controller the

robots use in the real world. Even though this simulator has good models of the environment,

the low-level routines do not map to the real controller perfectly. Testing of the controller

on the real robot is necessary to fine-tune the low-level routines. Without ground truth, this

is difficult, as the robot’s imperfect state estimation makes is difficult to see the effects of

changes to the low-level controllers, because unexpected behavior might arise due to false

self-localization.

To make this process easier we have enabled functionality to provide the robots with the

global state, as computed by the ground truth cameras. This is exactly the same as in RoboCup

small-size league. Using this set-up, we can test the robots’ control routines, without depend-

ing on state estimation.

The topics reported in this section have been published in: (Beetz et al., 2004; Stulp et al.,

2004a,b,c). Summaries of these publications are given in Appendix D.

133

Chapter 8 Conclusion

C Tree-based Induction

C.1 Decision Trees

A decision tree is a flow-chart-like tree structure, in which internal nodes denote a test on

an attribute, a branch represents an outcome of the test, and the leaf nodes represent class

labels or class distributions. The famous decision tree example from the textbook “Artificial

Intelligence: A Modern Approach” is depicted in Figure C.4. An example set of attributes can

be classified by traversing the tree, choosing branches based on the attributes in the example

and the test in the nodes, until a leaf is reached. The class in this leaf is the classification

for this set of attributes. In the example, the waiting for a table is decided on evaluating the

attributesPatrons? , WaitEstimate? , etc, until one of the decision leavesYes or No is

reached.

Figure C.4. A decision tree for deciding whether to wait for a table. Adapted from (Russell
and Norvig, 2003).

Decision trees can be learned from a set of examples, which consist of specific values as-

signed to the attributes, along with the value of the target class. The decision tree is induced

by a process known as recursive partitioning. At the start, all the training examples are at the

root. A certain attribute is then chosen, and the examples are partitioned inton sets, one for

each of then values the attribute can take. In each set, all examples have the same value for

the chosen attribute. This partitioning continues recursively on the set in each node, until all

134

Section C Tree-based Induction

or most examples at each node have the same target value.

The first issue in decision tree induction is which attribute to use to partition a set of exam-

ples. The ideal attribute would separate the examples intopure sets in which each example

has the same target class. Because such an ideal attribute is often not available, animpurity

measureis defined, which expresses the impurity as a real value. The decision trees algorithm

we use (Witten and Frank, 2005), implements the C4.5 algorithm (Quinlan, 1993), which uses

the entropyI as an impurity measure. The entropy of a setS with target classy which can

take the valuesy1; : : : ; yk is:

I(S) = cX
i=1 �

pijSj log2
pijSj (C.1)

In this equation,pi is the number of occurrences ofyi in S. Given this formula, the entropy

gain is defined as the entropy of the original set minus the remaining entropy after splitting

the set based on some attributeA:

gain(S;A) = I(S)� X
v2values(A)

jSvjjSj I(Sv) (C.2)

Here,Sv is the subset ofS in which the value of attributeA is v in all examples. In the

algorithm used, the attribute used to split a set is the one with the largest gain.

The second issue is when to stop splitting. If splitting continues until all leaf sets are pure,

the decision tree will not likely generalize to unseen cases due to overfitting. One solution to

this problem is stop splitting once the impurity of a leaf lies below a certain threshold. Another

solution is to generate a very large tree, and prune branches that reflect noise or outliers. In

this approach, a subset of the training examples is used to generate a very large decision tree,

e.g. with pure sets at the leaves. Then, the remaining training data is used to prune the tree.

Two leaf nodes are merged if the prediction error on the validation set is less with the resulting

smaller tree than it was with the bigger tree (Quinlan, 1993).

For more information on decision trees, please see (Quinlan, 1993) or (Russell and Norvig,

2003). The WEKA implementation of the C4.5 algorithms we use is described in (Witten and

Frank, 2005).

C.2 Regression and Model Trees

Regression trees may be considered as a variant of decision trees, designed to approximate

real-valued functions instead of being used for classification tasks. Instead of a nominal value

in each leaf, regression trees have a value which is the mean of the data examples in the

135

Chapter 8 Conclusion

partition. This representation requires a different splitting criterion. The algorithm chooses

the split that partitions the data into two parts such that it minimizes the sum of the variance

in the separate parts.

Model trees take it one step further, as their leaves repre-

Figure C.5.Model trees.

sent line segments, representing the data in a partition (Quinlan,

1992). These line segments are acquired by performing standard

multivariate linear regression on the examples in the partition.

The impurity measure used to grow and prune model trees is:

I(S) = Xi:si2S
(yi � g(xi))2 (C.3)

In which xi are the attribute values the in examplesi, yi the

corresponding observed target value, andg is the value predicted

by the line function. In principleg could be a more complex

model, such as neural networks, but in practice this approach is

seldom used (Belker, 2004).

C.3 Optimization of Model Trees

This section will describe an analytical procedure to find the minimum of a model tree, or

sums of several model trees.

One way to determine the minimum of a model tree experimentally is to sample along

all the dimensions (the variables with which it is called) in the model tree, and determine

which combination of samples returns the lowest value. Of course, this minimum is only an

approximation of the actual minimum. The higher the sampling rate, the higher its accuracy.

Furthermore, sampling has a complexity ofO(nd), in whichn is the number of samples per

dimension, andd the number of dimensions.

Our novel analytical method exploits the fact that a model tree is a set rules, each a bounded

hyperplane. Determining the minimum of a bounded hyperplane is very easy: simply deter-

mine the values at the bounds, and take the minimum. Our approach is based on determining

the minimum of each hyperplane, and then taking the minimum of all these values. This ap-

proach isO(k), in which k is the number of hyperplanes, which is equivalent to the number

of rules, or leaves in the model tree.

Figure C.6 shows a simple example for a one-dimensional search space, and three one-

dimensional hyperplanes. In one-dimension, bounded hyperplanes are simply line segments.

136

Section C Tree-based Induction

Figure C.6.Determining the minimum of a model tree. Instead of sampling along the x-axis,
it is more efficient to determine the minimum of each line segment, and take the
minimum of these minima.

Optimization of single Model Trees

In this section we will explain how this idea has been implemented. Below is fictional model

tree, kept simple for reasons of clarity. Its format is the same as the resultbuffer in the WEKA

program (Witten and Frank, 2005).

dist <= 1.52 :

| dist <= 0.59 : 1.39*dist + 0.68*angle + 0.09

| dist > 0.59 :

| | angle <= 0.62 : 1.35*dist + 0.22*angle + 0.13

| | angle > 0.62 : - 0.01*dist + 0.80*angle + 1.15

dist > 1.52 : 1.32*dist + 0.51*angle + 0.15

The first step is to convert the decision tree into a set of rules:

R1: (dist <= 1.52) & (dist <= 0.59) : 1.39*dist + 0.68*angle + 0.09

R2: (dist <= 1.52) & (dist > 0.59) & (angle <= 0.62) : 1.35*dist + 0.22*angle + 0.13

R3: (dist <= 1.52) & (dist > 0.59) & (angle > 0.62) : -0.01*dist + 0.80*angle + 1.15

R4: (dist > 1.52) : 1.32*dist + 0.51*angle + 0.15

Then, the minimum for each rule (hyperplane) is determined. We will use R3 as an example.

First, we need to know the minimum and maximum values of all variables (e.g.0 < dist < 3,

angle0 < angle < PI). In R3, the following ranges are valid.

R3: dist=[0.59..1.52], angle=[0.62..PI]

We determine the minimum of R3 by taking the extreme values in these ranges. The smallest

value in the range is used if the variable is added, and the highest value if it is subtracted. This

procedure is extremely fast, so there is little computation for each rule. For R3 the result is:

R3: -0.01*[0.59..1.52] + 0.80*[0.62..PI] + 1.15

=> -0.01*1.52 + 0.80*0.62 + 1.15 = 1.63

So, the minimum value R3 can reach is 1.63. For all the rules, these values are.

137

Chapter 8 Conclusion

R1: 1.39*[0.00-0.59]+0.68*[0.00- PI]+0.09 => 1.39*0.00+0.68*0.00+0.09 = 0.09

R2: 1.35*[0.59-1.52]+0.22*[0.00-0.62]+0.13 => 1.35*0.59+0.22*0.00+0.13 = 0.93

R3: -0.01*[0.59-1.52]+0.80*[0.62- PI]+1.15 => -0.01*1.52+0.80*0.62+1.15 = 1.63

R4: 1.32*[1.52-3.00]+0.51*[0.00- PI]+0.15 => 1.32*1.52+0.51*0.00+0.15 = 2.16

The last step is to simply take the minimum of the rule minima (0.09, 0.93, 1.63, 2.16),

which is 0.09. From R1, it can be read that this minimum is achieved with dist=0.00 and

angle=0.00.

Processing bound variables

Often, some of the variables with which the model tree is called are already bound. For

instance, the value of ‘angle’ might be 0.7. The procedure above does not change at all, since

it operates on variable ranges, and the range ofangle is simply defined to be [0.7,0.7]. As an

added benefit, this knowledge makes computation faster, because we can eliminate all rules in

which this value does not hold. In our simple example, angle=0.7 does not hold in R2.

R1: (dist <= 1.52) & (dist <= 0.59) : 1.39*dist + 0.68*angle + 0.09

R3: (dist <= 1.52) & (dist > 0.59) & (angle > 0.62) : -0.01*dist + 0.80*angle + 1.15

R4: (dist > 1.52) : 1.32*dist + 0.51*angle + 0.15

Then, as before, determine the ranges, choose the appropriate extreme value from this range,

and voilá. Note that the angle has no real range, as it was set.

R1: 1.39*[0.00-0.59]+0.68*[0.70,0.70]+0.09 => 1.39*0.00+0.68*0.70+0.09 = 0.57

R3: -0.01*[0.59-1.52]+0.80*[0.70,0.70]+1.15 => -0.01*1.52+0.80*0.70+1.15 = 1.69

R4: 1.32*[1.52-3.00]+0.51*[0.70,0.70]+0.15 => 1.32*1.52+0.51*0.70+0.15 = 2.50

So, the minimum this model tree can have with an angle of 0.70 is 0.57, with dist=0.00.

Optimization of summations of Model Trees

In Section 5.3.2 on subgoal refinement, we saw that the minimum of the sum of two temporal

prediction models of two consecutive actions was determined. This means that we need to

determine the minimum of the sum of two model trees. This is done by first merging the

two model trees into one, and then determining the minimum of the one model tree with the

methods described above. The intuition behind this approach is shown in Figure C.7.

Instead of merging the model trees directly, they are first converted into sets of rules. These

rulesets are then merged. Here is an example of two model trees, and their corresponding

rulesets.

138

Section C Tree-based Induction

Figure C.7.Merging model trees

ModelTree 1 RuleSet 1

a<=1 :

| b<=3 : 3*a+2*b+1 (lm1) (a<=1) & (b<=3) : 3*a+2*b+1

| b>3 : 4*a+5*b+6 (lm2) <=> (a<=1) & (b>3) : 4*a+5*b+6

a>1 : 3*a+4*b+1 (lm3) (a>1) : 3*a+4*b+1

ModelTree 2 RuleSet 2

b<=2 : 1*a+1*b+1 (lm4) (b<=2) : 1*a+1*b+1

b>2 :

| a<=2 : 1*a+3*b+2 (lm5) <=> (b>2) & (a<=2) : 1*a+3*b+2

| a>2 : 1*a+2*b+3 (lm6) (b>2) & (a>2) : 1*a+2*b+3

Merging these two sets is done by first merging each rule of RuleSet1 with those of Rule-

Set2. The two lists of conditions are simply appended, and the linear models (lm) are summed.

This yields the following set of rules:

RuleSet12 = RuleSet1 + RuleSet2

(a<=1) & (b<=3) : lm1

(b<=2) : lm4 (a<=1) & (b<=3) & (b<=2) : lm1+lm4

(b>2) & (a<=2) : lm5 => (a<=1) & (b<=3) & (b>2) & (a<=2) : lm1+lm5

(b>2) & (a>2) : lm6 (a<=1) & (b<=3) & (b>2) & (a>2) : lm1+lm6

(a<=1) & (b>3) : lm2

(b<=2) : lm4 (a<=1) & (b>3) & (b<=2) : lm2+lm4

(b>2) & (a<=2) : lm5 => (a<=1) & (b>3) & (b>2) & (a<=2) : lm2+lm5

(b>2) & (a>2) : lm6 (a<=1) & (b>3) & (b>2) & (a>2) : lm2+lm6

(a>1) : lm3

139

Chapter 8 Conclusion

(b<=2) : lm4 (a>1) & (b<=2) : lm3+lm4

(b>2) & (a<=2) : lm5 => (a>1) & (b>2) & (a<=2) : lm3+lm5

(b>2) & (a>2) : lm6 (a>1) & (b>2) & (a>2) : lm3+lm6

As can be seen, some of the lists of conditions contain contradictory conditions. For in-

stance, in lm1+lm6, the conditions(a<=1) and(a>2) could never hold at the same time.

Therefore, any new rule with such contradictions is removed (in this case lm1+lm6, lm2+lm4,

lm2+lm6). This yields the six rules below. Summing the two linear models is easily done.

(a<=1) & (b<=2) : lm1+lm4 = 4*a+3*b+2

(a<=1) & (2<b<=3) : lm1+lm5 = 4*a+5*b+3

(a<=1) & (b>3) : lm2+lm5 = 5*a+8*b+8

(a>1) & (b<=2) : lm3+lm4 = 4*a+5*b+2

(1<a<=2) & (b>2) : lm3+lm5 = 4*a+7*b+3

(a>2) & (b>2) : lm3+lm6 = 4*a+6*b+4

This procedure has been visualized in Figure C.8

Figure C.8.Example of two merged model trees

The minimum of this ruleset can then be determined with the methods described in Sec-

tion C.3. A downside of merging two rulesets is that the resulting ruleset will have many

more rules. The worst case scenario is that merging two rulesets withr1 andr2 number of

rules yield a ruleset withr1 � r2 rules. This happens for instance when the two rulesets have

conditions on different variables. If conditions on variables are contradictory, rules can be

eliminated, and the ruleset contains< r1 � r2 rules.

We have merged many temporal prediction models in the soccer domain, and the merged

rulesets contain on average0:4 � r1 � r2 rules. The number of rules in the learned models

trees is typically between 20 and 100, so merged rulesets contain between about 150 and 4000

rules. Note that determining the minimum of 4000 rules is usually much more efficient than

optimizing in the variable space, especially for higher dimensions, as their complexities are

O(k) andO(nd) respectively.

140

Section D Summaries of Publications

D Summaries of Publications

We will now briefly present which systems, methods and results presented in this dissertation

were published in which journals and conferences. The papers from 2004 are mostly on the

enabling technologies. In 2005, the papers contain preliminary work and overviews. The

final system and results described in this dissertation are presented in the papers from 2006

onwards.

(Beetz et al., 2004) Beetz, M., Schmitt, T., Hanek, R., Buck, S., Stulp, F., Schröter, D.,

and Radig, B. (2004). The AGILO robot soccer team experience-based learning and

probabilistic reasoning in autonomous robot control.Autonomous Robots, 17(1):55–77.

An extensive journal article on the hardware, state estimation, and previous action se-

lection module of the AGILO RoboCuppers. (Section 1.2.1)

(Utz et al., 2004) Utz, H., Stulp, F., and Mühlenfeld, A. (2004). Sharing belief in teams of

heterogeneous robots. In Nardi, D., Riedmiller, M., and Sammut, C., editors,RoboCup-

2004: The Eighth RoboCup Competitions and Conferences. Springer Verlag.

Description of belief state exchange requirements, and the implementation of the

CORBA-based communication module. Joint publication with the University of Ulm

and Universit of Graz. (Section 7.3.2)

(Stulp et al., 2004b) Stulp, F., Kirsch, A., Gedikli, S., and Beetz, M. (2004b). AGILO

RoboCuppers 2004. InRoboCup International Symposium 2004, Lisbon.

Team Description Paper of the AGILO RoboCuppers at the RoboCup Competitions in

Lisbon, Portugal. (Section 1.2.1)

(Stulp et al., 2004a) Stulp, F., Gedikli, S., and Beetz, M. (2004a). Evaluating multi-agent

robotic systems using ground truth. InProceedings of the Workshop on Methods and

Technology for Empirical Evaluation of Multi-agent Systems and Multi-robot Teams

(MTEE).

Implementation and evaluation of the ground truth system. (Section B.3)

(Stulp and Beetz, 2005b) Stulp, F. and Beetz, M. (2005b). Optimized execution of action

chains using learned performance models of abstract actions. InProceedings of the

Nineteenth International Joint Conference on Artificial Intelligence (IJCAI).

First subgoal refinement results in the simulated soccer domain. (Chapter 5)

141

Chapter 8 Conclusion

(Stulp and Beetz, 2005c) Stulp, F. and Beetz, M. (2005c). Tailoring action parameteri-

zations to their task contexts. IJCAI Workshop “Agents in Real-Time and Dynamic

Environments”.

An overview of all applications of action models in one coherent computational model.

(Overview of Dissertation)

(Stulp and Beetz, 2005a) Stulp, F. and Beetz, M. (2005a). Optimized execution of action

chains through subgoal refinement. ICAPS Workshop “Plan Execution: A Reality

Check”.

A brief overview of subgoal refinement from a planning perspective. (Chapter 5)

(Stulp and Beetz, 2006) Stulp, F. and Beetz, M. (2006). Action awareness – enabling

agents to optimize, transform, and coordinate plans. InProceedings of the Fifth Inter-

national Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS).

A brief overview of subgoal refinement and implicit coordination. (Overview of Disser-

tation)

(Stulp et al., 2006a) Stulp, F., Isik, M., and Beetz, M. (2006a). Implicit coordination in

robotic teams using learned prediction models. InProceedings of the IEEE Interna-

tional Conference on Robotics and Automation (ICRA).

Extensive evaluation of implicit coordination within the AGILO RoboCuppers. (Chap-

ter 7)

(Isik et al., 2006) Isik, M., Stulp, F., Mayer, G., and Utz, H. (2006). Coordination without

negotiation in teams of heterogeneous robots. InProceedings of the RoboCup Sympo-

sium.

Integrates and extends the results of (Utz et al., 2004) and (Stulp et al., 2006a) by eval-

uating implicit coordination in heterogeneous teams. (Chapter 7)

(Stulp et al., 2006b) Stulp, F., Pflüger, M., and Beetz, M. (2006b). Feature space gen-

eration using equation discovery. InProceedings of the 29th German Conference on

Artificial Intelligence (KI).

Implementation and evaluation of the directed equation discovery system for generating

appropriate feature spaces. (Section 4.1.1)

142

Section D Summaries of Publications

(Stulp et al., 2007) Stulp, F., Koska, W., Maldonado, A., and Beetz, M. (2007). Seamless

execution of action sequences. InAccepted for the IEEE International Conference on

Robotics and Automation (ICRA). to appear.

Subgoal refinement integrated in the PDDL planner VHPOP. First results on real soc-

cer robots. Further evaluation in the service robotics and arm control domain. (Sec-

tion 5.2.1)

143

Chapter 8 Conclusion

144

Bibliography

ActivMedia Robotics (1998). Pioneer 1/at operations manual, ed. 2.

http://robots.mobilerobots.com/docs/all_docs/opmanv2.pdf .

Amtec Robotics (2005). Programmers guide for PowerCube.

http://www.amtec-robotics.com/files/Programmers guide for

PowerCube.pdf .

Andre, D. and Russell, S. (2001). Programmable reinforcement learning agents. InProceedings of the

13th Conference on Neural Information Processing Systems, pages 1019–1025, Cambridge, MA.

MIT Press.

Arai, T. and Stolzenburg, F. (2002). Multiagent systems specification by UML statecharts aiming at

intelligent manufacturing. In C. Castelfranchi, W. L. J., editor,Proceedings of the 1st International

Joint Conference on Autonomous Agents and Multi-Agent Systems, pages 11–18.

Ariff, G., Donchin, O., Nanayakkara, T., and Shadmehr, R. (2002). A real-time state predictor in

motor control: study of saccadic eye movements during unseen reaching movements.Journal of

Neuroscience, 22:7721–7729.

Arkin, R. (1998).Behavior based Robotics. MIT Press, Cambridge, Ma.

Auster, P. (1987).The New York Trilogy. Faber & Faber.

Baerends, G. P. (1970). A model of the functional organization of incubation behaviour.Behaviour

Supplement, 17:263–312.

Balac, N. (2002).Learning Planner Knowledge in Complex, Continuous and Noisy Environments. PhD

thesis, Vanderbilt University.

Balac, N., Gaines, D., and Fisher, D. (2000). Learning action models for navigation in noisy environ-

ments. InIn ICML Workshop on Machine Learning of Spatial Knowledge.

145

Bibliography

Barto, A. and Mahadevan, S. (2003). Recent advances in hierarchical reinforcement learning.Discrete

event systems.

Beetz, M. (1999). Structured Reactive Controllers — a computational model of everyday activity. In

Etzioni, O., Müller, J., and Bradshaw, J., editors,Proceedings of the Third International Conference

on Autonomous Agents, pages 228–235.

Beetz, M. (2000).Concurrent Reactive Plans: Anticipating and Forestalling Execution Failures, vol-

ume LNAI 1772 ofLecture Notes in Artificial Intelligence. Springer Publishers.

Beetz, M. (2001). Structured Reactive Controllers.Journal of Autonomous Agents and Multi-Agent

Systems. Special Issue: Best Papers of the International Conference on Autonomous Agents ’99,

4:25–55.

Beetz, M. and Belker, T. (2000). XFRMLearn - a system for learning structured reactive navigation

plans. InProceedings of the 8th International Symposium on Intelligent Robotic Systems.

Beetz, M., Gedikli, S., Hanek, R., Schmitt, T., and Stulp, F. (2003a). AGILO RoboCuppers 2003: Com-

putational Priciples and Research Directions. InRoboCup International Symposium 2003, Padova.

Beetz, M., Schmitt, T., Hanek, R., Buck, S., Stulp, F., Schröter, D., and Radig, B. (2004). The AG-

ILO robot soccer team experience-based learning and probabilistic reasoning in autonomous robot

control. Autonomous Robots, 17(1):55–77.

Beetz, M., Stulp, F., Kirsch, A., Müller, A., and Buck, S. (2003b). Autonomous robot controllers

capable of acquiring repertoires of complex skills. InRoboCup International Symposium 2003,

Padova.

Behnke, S. and Rojas, R. (2001). A hierarchy of reactive behaviors handles complexity. InBalancing

Reactivity and Social Deliberation in Multi-Agent Systems, From RoboCup to Real-World Applica-

tions (selected papers from the ECAI 2000 Workshop and additional contributions).

Belker, T. (2004).Plan Projection, Execution, and Learning for Mobile Robot Control. PhD thesis,

Department of Applied Computer Science, Univ. of Bonn.

Belker, T., Hammel, M., and Hertzberg, J. (2003). Learning to optimize mobile robot navigation based

on htn plans. InProceedings of the International Conference on Robotics and Automation (ICRA03).

Bell, C. C., Han, V. Z., Sugawara, Y., and Grant, K. (1997). Synaptic plasticity in a cerebellum-like

structure depends on temporal order.Nature, 387:278?281.

Benson, S. (1995). Inductive learning of reactive action models. InInternational Conference on

Machine Learning, pages 47–54.

146

Bibliography

Bloedorn, E. and Michalski, R. S. (1998). Data-driven constructive induction.IEEE Intelligent Systems,

13(2):30–37.

Blumberg, B. M. (2003).D-Learning: what learning in dogs tells us about building characters that

learn what they ought to learn, pages 37–67. Morgan Kaufmann Publishers Inc., San Francisco, CA,

USA.

Botelho, S. C. and Alami, R. (1999). M+: A scheme for multi-robot cooperation through negotiated

task allocation and achievement. InProceedings of the IEEE International Conference on Robotics

and Automation (ICRA99).

Bouguerra, A. and Karlsson, L. (2005). Symbolic probabilistic-conditional plans execution by a mobile

robot. InIJCAI-05 Workshop: Reasoning with Uncertainty in Robotics (RUR-05).

Brachman, R. (2002). Systems that know what they’re doing.IEEE Intelligent Systems, pages 67 – 71.

Brock, O. and Khatib, O. (1999). Elastic Strips: A framework for integrated planning and execution.

In Proceedings International Symposium on Experimental Robotics.

Brooks, R. (1986). A robust layered control system for a mobile robot.IEEE Journal of Robotics and

Automation, pages 14–23.

Bruegge, B. and Dutoit, A. H. (2003).Object-Oriented Software Engineering Using UML, Patterns,

and Java. Prentice Hall.

Buck, S. (2003).Experience-Based Control and Coordination of Autonomous Mobile Systems in Dy-

namic Environments. PhD thesis, Department of Informatics, Technische Universität München.

Buck, S., Beetz, M., and Schmitt, T. (2002a). M-ROSE: A Multi Robot Simulation Environment

for Learning Cooperative Behavior. In Asama, H., Arai, T., Fukuda, T., and Hasegawa, T., editors,

Distributed Autonomous Robotic Systems 5, Lecture Notes in Artificial Intelligence, LNAI. Springer-

Verlag.

Buck, S., Beetz, M., and Schmitt, T. (2002b). Reliable Multi Robot Coordination Using Minimal Com-

munication and Neural Prediction. In Beetz, M., Hertzberg, J., Ghallab, M., and Pollack, M., edi-

tors,Advances in Plan-based Control of Autonomous Robots. Selected Contributions of the Dagstuhl

Seminar “Plan-based Control of Robotic Agents”, Lecture Notes in Artificial Intelligence. Springer.

Buck, S. and Riedmiller, M. (2000). Learning situation dependent success rates of actions in a RoboCup

scenario. InPacific Rim International Conference on Artificial Intelligence, page 809.

147

Bibliography

Buck, S., Stulp, F., Beetz, M., and Schmitt, T. (2002c). Machine Control Using Radial Basis Value

Functions and Inverse State Projection. InProc. of the IEEE Intl. Conf. on Automation, Robotics,

Control, and Vision.

Cambon, S., Gravot, F., and Alami, R. (2004). A robot task planner that merges symbolic and geometric

reasoning. InECAI, pages 895–899.

Carpenter, P., Riley, P. F., Veloso, M., and Kaminka, G. (2002). Integration of advice in an action-

selection architecture. InProceedings of the 2002 RoboCup Symposium.

Caruana, R. (1997). Multitask learning.Machine Learning, 28(1):41–75.

Castelpietra, C., Iocchi, L., Nardi, D., Piaggio, M., Scalzo, A., and Sgorbissa, A. (2000). Coordination

among heterogenous robotic soccer players. InProceedings of the International Conference on

Intelligent Robots and Systems (IROS 2000).

Cavaco, S., Anderson, S., Allen, J., Castro-Caldas, A., and Damasio, H. (2004). The scope of preserved

procedural memory in amnesia.Brain, 127:1853–67.

Chaimowicz, L., Campos, M. F. M., and Kumar, V. (2002). Dynamic role assignment for cooperative

robot. InProceedings of the IEEE International Conference on Robotics and Automation (ICRA02).

Choi, W. and Latombe, J. (1991). A reactive architecture for planning and executing robot motion with

incomplete knowledge. InIn IEEE/RSJ International Workshop on Intelligent Robots and Systems,

pages 24–29.

Coradeschi, S. and Saffiotti, A. (2001). Perceptual anchoring of symbols for action. InProceedings of

the International Joint Conference on Artificial Intelligence, pages 407–416.

Cortés, U., Annicchiarico, R., Vázquez-Salceda, J., Urdiales, C., namero, L. C., López, M., Sànchez-

Marrè, M., and Caltagirone, C. (2003). Assistive technologies for the disabled and for the new

generation of senior citizens: the e-tools architecture.AiCommunications, 16(3):193–207.

Cosy (2004). Cosy homepage.www.cognitivesystems.org .

Dean, T. and Wellmann, M. (1991).Planning and Control. Morgan Kaufmann Publishers.

Dearden, A. (2006). Personal communication.

Dearden, A. and Demiris, Y. (2005). Learning forward models for robotics. InProceedings of the

Nineteenth International Joint Conference on Artificial Intelligence (IJCAI), pages 1440–1445.

Dennett, D. (1987).The Intentional Stance. MIT-Press.

148

Bibliography

Dias, M. B. and Stentz, A. (2001). A market approach to multirobot coordination. Technical Report

CMU-RI -TR-01-26, Robotics Institute, Carnegie Mellon University.

Dietel, M., Gutmann, S., and Nebel, B. (2002). CS Freiburg: Global view by cooperative sensing.

In Proceedings of RoboCup International Symposium 2001, volume 2377 ofLNAI, pages 133–143.

Springer-Verlag.

Dietterich, T. G. (2000). Hierarchical reinforcement learning with the MAXQ value function decom-

position.Journal of Artificial Intelligence Research, 13:227–303.

Doherty, P., Granlund, G., Kuchcinski, K., Sandewall, E., Nordberg, K., Skarman, E., and Wiklund, J.

(2000). The WITAS unmanned aerial vehicle project. InProceedings ECAI-00.

F180 Laws (2004). Laws of the RoboCup F180 league 2004. http://www.itee.uq.edu.au/˜wyeth/F180

Fikes, R. O. and Nilsson, N. J. (1971). STRIPS: A new approach to the application of theorem proving

to problem solving. Technical Report 43r, AI Center, SRI International.

Firby, R., Prokopowicz, P., Swain, M., Kahn, R., and Franklin, D. (1996). Programming CHIP for the

IJCAI-95 robot competition.AI Magazine, 17(1):71–81.

Flanagan, J. R., Vetter, P., Johansson, R. S., and Wolpert, D. M. (2003). Prediction precedes control in

motor learning.Current Biology, 13:146–150.

Flash, T. and Hogan, N. (1985). The coordination of arm movements - an experimentally confirmed

mathematical model.Journal of Neuroscience, 5:1688–1703.

Fong, T., Nourbakhsh, I., Kunz, C., Flückiger, L., and Schreiner, J. (2005). The peer-to-peer human-

robot interaction project.Space.

Fox, M., Ghallab, M., Infantes, G., and Long, D. (2006a). Robot introspection through learned hidden

markov models.Artificial Intelligence, 170(2):59–113.

Fox, M., Gough, J., and Long, D. (2006b). Using learned action models in execution monitoring. In

Proceedings of UK Planning and Scheduling SIG.

Fox, M. and Long, D. (2003). PDDL2.1: An extension of PDDL for expressing temporal planning

domains.Journal of AI Research, 20:61–124.

Gabel, T., Hafner, R., Lange, S., Lauer, M., and Riedmiller, M. (2006). Bridging the gap: Learning in

the RoboCup simulation and midsize league. InProceedings of the 7th Portuguese Conference on

Automatic Control.

149

Bibliography

Gabrieli, J. D. E., Corkin, S., Mickel, S. F., , and Growdon, J. H. (2004). Intact acquisition and

long-term retention of mirror-tracing skill in alzheimer’s disease and in global amnesia.Behavioral

Neuroscience, 107(6):899–910.

Gallego, J. and Perruchet, P. (2006). Do dogs know related rates rather than optimization?College

Mathematics Journal.

Gerkey, B., Vaughan, R. T., and Howard, A. (2003). The Player/Stage Project: Tools for multi-robot

and distributed sensor systems. InProceedings of the 11th International Conference on Advanced

Robotics (ICAR2003), pages 317–323.

Gerkey, B. P. and Matarić, M. J. (2003). Multi-robot task allocation: Analyzing the complexity and

optimality of key architectures. InProc. of the IEEE Intl. Conf. on Robotics and Automation (ICRA).

Goldberg, D. E. (1989).Genetic Algorithms in Search, Optimization and Machine Learning. Kluwer

Academic Publishers.

Grossberg, S. (1987). Competitive learning: From interactive activation to adaptive resonance.Cogni-

tive Science, 11(1):23–63.

Großmann, A. (2001).Continual learning for mobile robots. PhD thesis, School of Computer Science,

The University of Birmingham.

Grounds, M. and Kudenko, D. (2005). Combining reinforcement learning with symbolic planning. In

Proceedings of the Fifth European Workshop on Adaptive Agents and Multi-Agent Systems.

Haigh, K. Z. (1998). Situation-Dependent Learning for Interleaved Planning and Robot Execution.

PhD thesis, School of Computer Science, Carnegie Mellon University.

Harris, C. M. and Wolpert, D. M. (1998). Signal-dependent noise determines motor planning.Nature,

394(20):780–784.

Haruno, M., Wolpert, D. M., and Kawato, M. (1999). Multiple paired forward-inverse models for

human motor learning and control. InProceedings of the 1998 conference on Advances in neural

information processing systems II, pages 31–37, Cambridge, MA, USA. MIT Press.

Haruno, M., Wolpert, D. M., and Kawato, M. (2001). MOSAIC model for sensorimotor learning and

control. Neural Computation, 13:2201–2220.

Hawkins, J. and Blakeslee, S. (2004).On Intelligence. Times Books.

Helmholtz, H. v. (1896).Handbuch der physiologischen optik. L. Voss.

150

Bibliography

Hoffmann, J. (2003). The metric-FF planning system: Translating ignoring delete lists to numerical

state variables.Journal of Artificial Intelligence Research, 20.

Hoffmann, J. and Düffert, U. (2004). Frequency space representation and transitions of quadruped

robot gaits. InProceedings of the 27th conference on Australasian computer science.

Hooper, R. (1994).Multicriteria Inverse Kinematics for General Serial Robots. PhD thesis, University

of Texas.

Infantes, G., Ingrand, F., and Ghallab, M. (2006). Learning behaviors models for robot execution

control. InProceedings of the 17th European Conference on Artificial Intelligence (ECAI).

Isik, M. (2005). Installation eines CORBA basierten frameworks (MIRO) auf den Agilo robocup

robotern. Software Development Project (SEP) Report, Technische Universiät München.

Isik, M. (2006). Implizite koordination innerhalb heterogener roboterteams. Master’s thesis, Technis-

che Universiät München.

Isik, M., Stulp, F., Mayer, G., and Utz, H. (2006). Coordination without negotiation in teams of

heterogeneous robots. InProceedings of the RoboCup Symposium.

Jacobs, R. A. and Jordan, M. I. (1993). Learning piecewise control strategies in a modular neural

network. IEEE Transactions on Systems, Man and Cybernetics, 23(3):337–345.

Jaeger, H. and Christaller, T. (1998). Dual dynamics: Designing behavior systems for autonomous

robots.Artificial Life and Robotics.

John, G. H., Kohavi, R., and Pfleger, K. (1994). Irrelevant features and the subset selection problem.

In Proceedings of International Conference on Machine Learning, pages 121–129.

Jordan, M. I. and Rumelhart, D. E. (1992). Forward models: Supervised learning with a distal teacher.

Cognitive Science, 16:307–354.

Kalman, R. E. (1960). A new approach to linear filtering and prediction problems.Transactions of the

ASME–Journal of Basic Engineering, 82(Series D):35–45.

Kambhampati, S., Knoblock, C. A., and Yang, Q. (1995). Planning as refinement search: A unified

framework for evaluating design tradeoffs in partial-order planning.Artificial Intelligence, 76(1–

2):167–238.

Kaplan, F., P-Y., O., Revel, A., Gaussier, P., Nadel, J., Berthouze, L., Kozima, H., Prince, G. C.,

and Balkenius, C., editors (2006).Proceedings of the Sixth International Conference on Epigenetic

Robotics: Modeling Cognitive Development in Robotic Systems. Lund University Cognitive Studies.

151

Bibliography

Karlsson, L. and Schiavinotto, T. (2002). Progressive planning for mobile robots: a progress report.

Kitano, H., Asada, M., Kuniyoshi, Y., Noda, I., and Osawa, E. (1997). RoboCup: The robot world cup

initiative. In Agents, pages 340–347.

Kleiner, A., Dietl, M., and Nebel, B. (2002). Towards a life-long learning soccer agent. InProceedings

of the International RoboCup Symposium 2002.

Kobialka, H.-U. and Jaeger, H. (2003). Experiences using the dynamical system paradigm for pro-

gramming RoboCup robots. InProceedings of the 2nd International Symposium on Autonomous

Minirobots for Research and Edutainment (AMiRE), pages 193–202.

Kollar, T. and Roy, N. (2006). Using reinforcement learning to improve exploration trajectories for

error minimization. InProceedings of the International Conference on Robotics and Automation

(ICRA).

Koska, W. (2006). Optimizing autonomous service robot plans by tuning unbound action. Master’s

thesis, Technische Universiät München.

Kovar, L. and Gleicher, M. (2003). Flexible automatic motion blending with registration curves. In

Proceedings of ACM SIGGRAPH.

Kraetzschmar, G. K., Mayer, G., Utz, H., Baer, P., Clauss, M., Kaufmann, U., Lauer, M., Natterer, S.,

Przewoznik, S., Reichle, R., Sitter, C., Sterk, F., and Palm, G. (2004). The Ulm Sparrows 2004 -

team description paper. In Nardi, D., Riedmiller, M., Sammut, C., and Santos-Victor, J., editors,

RoboCup 2004: Robot Soccer World Cup VIII, volume 3276 ofLecture Notes in Computer Science,

Berlin, Heidelberg, Germany. Springer-Verlag.

Kushmerick, N., Hanks, S., and Weld, D. (1994). An algorithm for probabilistic least-commitment

planning. InProceedings of the Twelfth National Conference on Artificial Intelligence (AAAI-94),

volume 2, pages 1073–1078, Seattle, Washington, USA. AAAI Press/MIT Press.

Laird, J., Rosenbloom, P., and Newell, A. (1986). Chunking in SOAR: the anatomy of a general

learning mechanism.Machine Learning, 1:11–46.

Langley, P., Simon, H., Bradshaw, G., and Zytkow, J. (1987).Scientific Discovery: Computational

Explorations of the Creative Processes. MIT Press.

Liu, H. and Motoda, H. (1998). Feature transformation and subset selection.IEEE Intelligent Systems,

13(2):26–28.

Lopes, M. and Santos-Victor, J. (2005). Visual learning by imitation with motor representations.IEEE

Transactions on Systems, Man, and Cybernetics, Part B, 35(3):438–449.

152

Bibliography

Lötzsch, M., Bach, J., Burkhard, H.-D., and Jüngel, M. (2004). Designing agent behavior with the ex-

tensible agent behavior specification language XABSL. In7th International Workshop on RoboCup

2003.

Metta, G., Sandini, G., Vernon, D., Caldwell, D., Tsagarakis, N., Beira, R., Santos-Victor, J., Ijspeert,

A., Righetti, L., Cappiello, G., Stellin, G., and Becchi, F. (2006). The RobotCub project – an open

framework for research in embodied cognition. InHumanoids Workshop, Proceedings of the IEEE–

RAS International Conference on Humanoid Robots.

Müller, A. and Beetz, M. (2006). Designing and implementing a plan library for a simulated household

robot. In Beetz, M., Rajan, K., Thielscher, M., and Rusu, R. B., editors,Cognitive Robotics: Papers

from the AAAI Workshop, Technical Report WS-06-03, pages 119–128, Menlo Park, California.

American Association for Artificial Intelligence.

Murray, J. (2001). Specifying agents with UML in robotic soccer. Technical Report 10-2001, Univer-

sität Koblenz-Landau, Institut für Informatik, Rheinau 1, D-56075 Koblenz.

Murray, J. and Stolzenburg, F. (2005). Hybrid state machines with timed synchronization for multi-

robot system specification. In Reis, L. P., Carreto, C., Silva, E., and Lau, N., editors,Proceedings of

Workshop on Intelligent Robotics (IROBOT2005).

Nakanishi, J., Cory, R., Mistry, M., Peters, J., and Schaal, S. (2005). Comparative experiments on task

space control with redundancy resolution. InIEEE International Conference on Intelligent Robots

and Systems (IROS 2005), pages 3901–3908.

Nilsson, N. J. (1984). Shakey the robot. Technical Report 323, AI Center, SRI International.

Nilsson, N. J. (1994). Teleo-reactive programs for agent control.Journal of Artificial Intelligence

Research.

Nourbakhsh, I., Szcara, K., Koes, M., Yong, M., Lewis, M., and Burion, S. (2005). Human-robot

teaming for search and rescue.Pervasive Computing.

Obst, O. (2002). Specifying rational agents with statecharts and utility functions. In A. Birk, S. Corade-

schi, S. T., editor,RoboCup 2001 Robot Soccer World Cup V, pages 173?–182.

Parker, L. E. (1998). Alliance: An architecture for fault-tolerant multi-robot cooperation.IEEE Trans-

actions on Robotics and Automation, 14(2):220–240.

Parr, R. (1998).Hierarchical Control and learning for Markov Decision Processes. PhD thesis, Uni-

versity of California at Berkeley.

Pennings, T. (2007). Personal communication.

153

Bibliography

Pennings, T. J. (2003). Do dogs know calculus?College Mathematics Journal, 4(May):178–182.

Perlin, K. (1995). Real time responsive animation with personality.IEEE Transactions on Visualization

and Computer Graphics, 1(1):5–15.

Pflüger, M. (2006). Feature space transformation using directed equation discovery. Master’s thesis,

Technische Universiät München.

Pratt, L. Y. and Jennings, B. (1996). A survey of transfer between connectionist networks.Connection

Science, 8(2):163–184.

Qin, S. J. and Badgwell, T. J. (1998). An overview of nonlinear model predictive control applications.

Presented at Nonlinear MPC Workshop.

Quinlan, R. (1992). Learning with continuous classes. In Adams, A. and Sterling, L., editors,Proceed-

ings of the5th Australian Joint Conference on Artificial Intelligence, pages 343–348.

Quinlan, R. (1993).C4.5: Programs for Machine Learning. Morgan Kaufmann, San Mateo, California.

Rao, R., Shon, A., and Meltzoff, A. (2005). A bayesian model of imitation in infants and robots. In

Imitation and Social Learning in Robots, Humans, and Animals. Cambridge University Press.

Roboteq Inc. (2004). AX2550 datasheet.http://www.roboteq.com/files/datasheets/ax2550datasheet.pdf .

Röfer, T. (2002). An architecture for a national RoboCup team. InProceedings of RoboCup Interna-

tional Symposium 2002, volume 2752 ofLNAI, pages 417–425. Springer-Verlag.

Russell, S. and Norvig, P. (2003).Artificial Intelligence - A Modern Approach. Prentice Hall, Upper

Saddle River, New Jersey.

Rusu, R. B. (2006). Acquiring models of everyday activities for robotic control in ’current PhD re-

search in pervasive computing’.Technical Reports - University of Munich, Department of Computer

Science, Media Informatics Group, LMU-MI-2005-3.

Ryan, M. and Pendrith, M. (1998). RL-TOPs: an architecture for modularity and re-use in reinforce-

ment learning. InProc. 15th International Conf. on Machine Learning.

Ryan, M. R. K. (2004). Hierarchical Reinforcement Learning: A Hybrid Approach. PhD thesis,

University of New South Wales, School of Computer Science and Engineering.

Ryan, M. R. K. and Reid, M. D. (2000). Learning to fly: An application of hierarchical reinforcement

learning. InProceedings of the 17th International Conference of Machine Learning.

154

Bibliography

Saffiotti, A., Ruspini, E. H., and Konolige, K. (1993). Blending reactivity and goal-directedness in a

fuzzy controller. InProc. of the IEEE Int. Conf. on Fuzzy Systems, pages 134–139, San Francisco,

California. IEEE Press.

Schaal, S. and Schweighofer, N. (2005). Computational motor control in humans and robots.Current

Opinion in Neurobiology, 15:675–682.

Schmidt, D. C., Gokhale, A., Harrison, T., and Parulkar, G. (1997). A high-performance endsystem

architecture for real-time CORBA.IEEE Comm. Magazine, 14(2).

Schmill, M. D., Oates, T., and Cohen, P. R. (2000). Learning planning operators in real-world, par-

tially observable environments. InProceedings of the Fifth International Conference on Artificial

Intelligence Planning Systems, pages 246–253.

Schmitt, T., Hanek, R., Beetz, M., Buck, S., and Radig, B. (2002). Cooperative probabilistic state esti-

mation for vision-based autonomous mobile robots.IEEE Transactions on Robotics and Automation,

18(5).

Scholz, J. and Schöner, G. (1999). The uncontrolled manifold concept: identifying control variables

for a functional task.Exp Brain Res, 126(3):289–306.

Scoville, W. B. and Milner, B. (1957). Loss of recent memory after bilateral hippocampal lesions.

Journal of Neurology, Neurosurgery and Psychiatry, 20:11–21.

Sen, S., Sekaran, M., and Hale, J. (1994). Learning to coordinate without sharing information. In

Proceedings of the Twelfth National Conference on Artificial Intelligence, pages 426–431.

Servan-Schreiber, E. and Anderson, J. R. (1990). Chunking as a mechanism of implicit learning.

Journal of Experimental Psychology: Learning, Memory, and Cognition, 16:592–608.

Shahaf, D. and Amir, E. (2006). Learning partially observable action schemas. InProceedings of the

Twenty-First National Conference on Artificial Intelligence.

Shapiro, A., Pighin, F., , and Faloutsos, P. (2003). Hybrid control for interactive character animation.

In Pacific Graphics, pages 455–461.

Shen, W.-M. (1994).Autonomous Learning from the Environment. W. H. Freeman & Co., New York,

NY, USA.

Silver, D. L. and Mercer, R. E. (1998). The task rehearsal method of sequential learning.

Siméon, T., Laumond, J.-P., and Lamiraux, F. (2001). Move3D: a generic platform for path planning.

In 4th International Symposium on Assembly and Task Planning.

155

Bibliography

Simmons, G. and Demiris, Y. (2004). Biologically inspired optimal robot arm control with signal-

dependent noise. InProceedings of IEEE International Conference on Intelligent Robots and Sys-

tems, pages 491–496.

Sloman, A. (2006). Architecture of brain and mind integrating high level cognitive processes with

brain mechanisms and functions in a working robot. Technical Report COSY-TR-0602, University

of Birmingham.

Smith, D., Frank, J., and Jónsson, A. (2000). Bridging the gap between planning and scheduling.

Knowledge Engineering Review.

Smith, R. (2004). Open dynamics engine.http://www.ode.org .

Spaan, M. T. J. and Groen, F. C. A. (2002). Team coordination among robotic soccer players. In

Kaminka, G., Lima, P. U., and Rojas, R., editors,Proceedings of RoboCup International Symposium

2002.

Stone, P. and Veloso, M. (1999). Task decomposition, dynamic role assignment, and low-bandwidth

communication for real-time strategic teamwork.Artificial Intelligence, 110(2):241–273.

Stulp, F. and Beetz, M. (2005a). Optimized execution of action chains through subgoal refinement.

ICAPS Workshop “Plan Execution: A Reality Check”.

Stulp, F. and Beetz, M. (2005b). Optimized execution of action chains using learned performance

models of abstract actions. InProceedings of the Nineteenth International Joint Conference on

Artificial Intelligence (IJCAI).

Stulp, F. and Beetz, M. (2005c). Tailoring action parameterizations to their task contexts. IJCAI

Workshop “Agents in Real-Time and Dynamic Environments”.

Stulp, F. and Beetz, M. (2006). Action awareness – enabling agents to optimize, transform, and coor-

dinate plans. InProceedings of the Fifth International Joint Conference on Autonomous Agents and

Multiagent Systems (AAMAS).

Stulp, F., Gedikli, S., and Beetz, M. (2004a). Evaluating multi-agent robotic systems using ground

truth. In Proceedings of the Workshop on Methods and Technology for Empirical Evaluation of

Multi-agent Systems and Multi-robot Teams (MTEE).

Stulp, F., Isik, M., and Beetz, M. (2006a). Implicit coordination in robotic teams using learned pre-

diction models. InProceedings of the IEEE International Conference on Robotics and Automation

(ICRA).

156

Bibliography

Stulp, F., Kirsch, A., Gedikli, S., and Beetz, M. (2004b). AGILO RoboCuppers 2004. InRoboCup

International Symposium 2004, Lisbon.

Stulp, F., Koska, W., Maldonado, A., and Beetz, M. (2007). Seamless execution of action sequences.

In Accepted for the IEEE International Conference on Robotics and Automation (ICRA). to appear.

Stulp, F., Pflüger, M., and Beetz, M. (2006b). Feature space generation using equation discovery. In

Proceedings of the 29th German Conference on Artificial Intelligence (KI).

Stulp, F., Utz, H., and Nebel, B., editors (2004c).Proceedings of the Workshop on Methods and Tech-

nology for Empirical Evaluation of Multi-agent Systems and Multi-robot Teams (MTEE). Springer.

In conjunction with the 27th German Conference on Artificial Intelligence.

Sussman, G. J. (1973).A computational model of skill acquisition. PhD thesis, Massachusetts Institute

of Technology.

Sutton, R. and Barto, A. (1998).Reinforcement Learning: an Introduction. MIT Press.

Sutton, R. S., Precup, D., and Singh, S. P. (1999). Between MDPs and semi-MDPs: A framework for

temporal abstraction in reinforcement learning.Artificial Intelligence, 112(1-2):181–211.

Tews, A. and Wyeth, G. (2000). Thinking as one: Coordination of multiple mobile robots by shared

representations. InIntl. Conf. on Robotics and Systems (IROS).

Thrun, S. and Mitchell, T. (1993). Lifelong robot learning. Technical Report IAI-TR-93-7, University

of Bonn, Department of Computer Science.

Thrun, S., Montemerlo, M., Dahlkamp, H., Stavens, D., Aron, A., Diebel, J., Fong, P., Gale, J.,

Halpenny, M., Hoffmann, G., Lau, K., Oakley, C., Palatucci, M., Pratt, V., Stang, P., Strohband,

S., Dupont, C., Jendrossek, L.-E., Koelen, C., Markey, C., Rummel, C., van Niekerk, J., Jensen,

E., Alessandrini, P., Bradski, G., Davies, B., Ettinger, S., Kaehler, A., Nefian, A., and Mahoney, P.

(2006). Stanley, the robot that won the DARPA grand challenge.Journal of Field Robotics.

Trafton, J. G., Cassimatis, N. L., Bugasjska, M. D., Brock, D. P., Mintz, F. E., and Schultz, A. C. (2005).

Enabling effective human-robot interaction using perspective taking in robots.IEEE Transactions

on Systems, Man and Cybernetics, 35(4):460–470.

Trolltech (2005). Qt homepage.www.trolltech.com/products/qt .

Uno, Y., Wolpert, D. M., Kawato, M., and Suzuki, R. (1989). Formation and control of optimal trajec-

tory in human multijoint arm movement - minimum torque-change model.Biological Cybernetics,

61(2):89–101.

157

Bibliography

Utz, H., abd Gerd Mayer, G. K., and Palm, G. (2005). Hierarchical behavior organization. InProceed-

ings of the 2005 International Conference on Intelligent Robots and Systems (IROS).

Utz, H., Sablatnög, S., Enderle, S., and Kraetzschmar, G. K. (2002). Miro – middleware for mobile

robot applications.IEEE Trans. on Robotics and Automation, 18:493–497.

Utz, H., Stulp, F., and Mühlenfeld, A. (2004). Sharing belief in teams of heterogeneous robots. In Nardi,

D., Riedmiller, M., and Sammut, C., editors,RoboCup-2004: The Eighth RoboCup Competitions

and Conferences. Springer Verlag.

Vail, D. and Veloso, M. (2003). Multi-robot dynamic role assignment and coordination through shared

potential fields. InMulti-Robot Systems. Kluwer.

Veloso, M., Stone, P., and Bowlin, M. (1999). Anticipation as a key for collaboration in a team of

agents: A case study in robotic soccer. InProceedings of SPIE Sensor Fusion and Decentralized

Control in Robotic Systems II.

Vilalta, R. and Drissi, Y. (2002). A perspective view and survey of metalearning.Artificial Intelligence

Review.

Weld, D. (1994). An introduction to least commitment planning.AI Magazine, 15(4):27–61.

Werger, B. B. and Matarić, M. J. (2000). Broadcast of local eligibility: behavior-based control for

strongly cooperative robot teams. InAGENTS ’00: Proceedings of the fourth international confer-

ence on Autonomous agents, pages 21–22.

Winograd, T. (1975). Frame representations and the procedural/declarative controversy. In Bobrow,

D. G. and Collins, A., editors,Representation and Understanding: Studies in Cognitive Science,

pages 185–210. Academic Press, New York.

Witten, I. H. and Frank, E. (2005).Data Mining: Practical machine learning tools and techniques.

Morgan Kaufmann, San Francisco, 2 edition.

Wolpert, D. and Ghahramani, Z. (2000). Computational principles of movement neuroscience.Nature

Neuroscience Supplement, 3.

Wolpert, D. M., Doya, K., and Kawato, M. (2003). A unifying computational framework for motor

control and social interaction.Philosophical Transactions of the Royal Society, 358:593–602.

Wolpert, D. M. and Flanagan, J. (2001). Motor prediction.Current Biology, 11(18):729–732.

Younes, H. L. S. and Simmons, R. G. (2003). VHPOP: Versatile heuristic partial order planner.Journal

of Artificial Intelligence Research, 20:405–430.

158

	Introduction
	Key Principles
	 Principle I. Declarative knowledge: human specified
	 Principle II. Procedural knowledge: durative actions
	 Principle III. zzz
	 Principle IV. Predictive knowledge enables effective control
	 Principle V. Predictive knowledge can be learned
	Robotic Domains
	 Robotic soccer
	 Service robotics
	 Arm control
	Contributions
	Outline

	Computational Model
	Dynamic System Model
	Durative Actions and Action Selection
	Guide to the Remainder of the Dissertation

	Related Work
	Action Selection Schemes
	Action Models
	Cognitive Systems

	Learning Action Models
	Acquisition of Training Data
	Learning Algorithms
	Empirical Evaluation
	Related Work
	Conclusion

	Task Context: Action Sequences
	Computational Model
	Action Sequence Generation
	Subgoal Refinement
	Empirical Evaluation
	Related Work
	Conclusion

	Task Context: Task Variants
	Computational Model
	Condition Refinement
	Subgoal Assertion
	Empirical Evaluation
	Related Work
	Conclusion

	Task Context: Multiple Robots
	Computational Model
	Applying Implicit Coordination
	Implicit Coordination in Heterogeneous Teams
	Empirical Evaluation
	Related Work
	Conclusion

	Conclusion
	Appendices
	Action Libraries
	Agilo RoboCuppers: Hardware and Tools
	Tree-based Induction
	Summaries of Publications

