
 http://ijr.sagepub.com/
Robotics Research

The International Journal of

 http://ijr.sagepub.com/content/15/6/557
The online version of this article can be found at:

 
DOI: 10.1177/027836499601500603

 1996 15: 557The International Journal of Robotics Research
Robert D. Howe and Mark R. Cutkosky

Practical Force-Motion Models for Sliding Manipulation
 
 

Published by:

 http://www.sagepublications.com

On behalf of:
 

 
 Multimedia Archives

 can be found at:The International Journal of Robotics ResearchAdditional services and information for 
 
 
 
 

 
 http://ijr.sagepub.com/cgi/alertsEmail Alerts: 

 

 http://ijr.sagepub.com/subscriptionsSubscriptions:  

 http://www.sagepub.com/journalsReprints.navReprints: 
 

 http://www.sagepub.com/journalsPermissions.navPermissions: 
 

 http://ijr.sagepub.com/content/15/6/557.refs.htmlCitations: 
 

 What is This?
 

- Dec 1, 1996Version of Record >> 

 at TU Muenchen on February 16, 2012ijr.sagepub.comDownloaded from 

http://ijr.sagepub.com/
http://ijr.sagepub.com/content/15/6/557
http://www.sagepublications.com
http://www.ijrr.org/
http://ijr.sagepub.com/cgi/alerts
http://ijr.sagepub.com/subscriptions
http://www.sagepub.com/journalsReprints.nav
http://www.sagepub.com/journalsPermissions.nav
http://ijr.sagepub.com/content/15/6/557.refs.html
http://ijr.sagepub.com/content/15/6/557.full.pdf
http://online.sagepub.com/site/sphelp/vorhelp.xhtml
http://ijr.sagepub.com/


557

Practical Force-Motion
Models for Sliding
Manipulation

Robert D. Howe
Division of Engineering and Applied Sciences
Harvard University
Cambridge, Massachusetts 02138

Mark R. Cutkosky
Department of Mechanical Engineering
Stanford University
Stanford, California 94305

Abstract

The goal of this article is to develop practical descriptions of
the relationship between forces and motions in sliding manipu-
lation. We begin by reviewing the limit surface, a concept from
the mechanics of sliding bodies that uses kinematic analysis
to find the force and moment required to produce any given
sliding motion. Next we provide experimental results showing
that the limit surface only approximates the actual force-motion
relationship. Then we look at other approximations that can be
used to provide a simplified model useful in control, planning,
and simulation of manipulation. These approximations include

square pyramids, cones, ellipsoids, and ellipsoids with facets
removed. Different approximations may be most appropriate,
depending on the required computational speed and accuracy
and the need to produce conservative results.

1. Introduction

Consider picking up one of the tools on your desk (e.g., a
pencil, pair of scissors, or telephone receiver) and moving
it between your fingers to shift to a useful grasp. Such
tasks inevitably require manipulation with controlled slid-
ing. Sliding increases the mobility of the grasped object
and the dexterity of the hand, provided that the force re-
quired to initiate sliding and the subsequent direction of
motion are predictable. At other times, as when holding
a heavy or delicate object, the main concern is to prevent
unwanted slips. Again, it is important to know the forces
at which sliding will commence. Knowledge of the prob-
able direction of sliding can also be useful for readjusting
the grasp.
The study of sliding with friction has become an in-

creasingly important research topic in robotics; for recent
comprehensive reviews, see Armstrong-Helouvry et al.

(1994) and Erdmann (1994). In some of this work the

emphasis is on constitutive laws to accurately predict fric-
tion forces as a function of materials properties, pressures,
velocities, etc. (Cutkosky and Wright 1986). This work
draws on an extensive literature on tribology (Schalla-
mach 1957, Armstrong-Helouvry 1991). Other work has
been concerned with ambiguities and inconsistencies in
quasistatic mechanical analyses that assume both rigid
body and Coulomb friction models; examples include
Lbtstedt (1981), Howard and Kumar (1993), Dupont
(1993), and Lynch and Mason (1995).
A number of problems that involve sliding with friction

have received attention in robotic manipulation research.
One topic is the manipulation of objects by pushing them
along a surface (Mason 1986; Peshkin 1986; Brost 1991;
Lynch 1992; Rao and Goldberg 1993; Alexander and
Maddocks 1993). Another is the assembly of close-fitting
parts that slide against each other as part of the mating
process (Whitney 1982; Erdmann 1994). In some work in
the area of manipulation by multifingered hands, the goal
is the prevention of sliding at the fingertips (Kerr and
Roth 1986; Jameson 1985). Similar concerns motivate
work toward configuring fixtures for holding work-
pieces to minimize unwanted slips (Sakurai 1990; Lee
and Cutkosky 1991).

In other work with robot hands, the emphasis is on the
kinematics of manipulation with sliding; one example is
determining the admissible motions and trajectories that
allow a sliding body to maintain contact with a set of
fingertips (Montana 1988; Cai 1990; Rus 1992; Trinkle
and Zeng 1994). In other work the goal is the use of con-
trolled sliding to reorient the object in the hand (Brock
1988; Cole et al. 1992; Kao and Cutkosky 1992; Sun and
Shi 1995). The methods used in a number of these studies
are reviewed and contrasted in Section 4.1 below.

In this article the emphasis is on modeling the rela-
tionship between applied forces and moments and the
corresponding directions of motion for distributed areas
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of contact. We are particularly interested in finding sim-
ple models that are easily computed for use in real-time
planning and control of manipulation. We begin with a
review of the theoretical developments concerning friction
with finite contact areas. These kinematic arguments use a

description of the motion of a body sliding over a planar
surface to derive frictional forces; the results are then in-
verted to find the motion resulting from an applied force
and moment. We next compare the theoretical predictions
with analytic approximations and the results of experi-
ments that measure the force-motion relationships. The
conclusion is that there are several approximations that
may be used in particular situations to provide the right
balance of accuracy and computational efficiency.

2. Models of the Force-Motion Relationship
This section examines methods for calculating and de-
scribing the relationship between sliding motions and
applied forces and moments. We also examine how the
motion-force relationship is affected by various contact
conditions. The analytical approach is closely related to
work in classic plasticity theory concerning the relation-
ship between stresses and plastic strain rates (Drucker
1954). In much of the work, the emphasis has been on
the forward problem: given a known sliding motion, find
the resulting friction force and moment. Liu and Paul
(1989) provide a summary of integration methods for
computing the force and moment for various pressure dis-
tributions over the contact area and provide plots of force
and moment as a function of the instantaneous ratio of
translational to rotational sliding. Goyal (1989) and Goyal
et al. (1991) extend the analysis and provide useful tools
for characterizing the motion-force relationship. Jameson
(1985) considered the inverse problem for axisymmetric
contacts in the context of grasp planning, with a goal of
preventing unwanted slips.

2.1. Kinematics of Sliding

In the following description we will draw primarily on
the concept of the limit surface, as developed in Goyal
(1989) and Goyal et al. (1991). Construction of the limit
surface requires a detailed analysis involving the pres-
sure distribution at each point across the contact and the
contribution of each point to the total frictional force
and moment. Although the limit surface is constructed
by solving the forward problem (computing forces and
moments for each possible translational and rotational
motion), it provides a mapping between applied forces
and resulting motions that may be used to solve the in-
verse problem as well.
The basic assumptions in this analysis are (1) a body

undergoes fully developed sliding on a locally planar

surface~; (2) the distribution of normal force (or pressure)
across the contact is known; and (3) the friction force

depends only on the local normal force and direction of
slip, and not on the magnitude of the slip velocity or the
slip history. The fully developed sliding criteria require
that the relative velocity field across the contact area
corresponds to a unique center of rotation, as explained
below. This is always true for a rigid body and applies
to deformable bodies such as soft fingertips to the extent
that deformations of the contact area are slow compared
to the sliding speed. Further restrictions on the form of
the friction force are also required; see Goyal (1989) and
Goyal et al. (1991) for details. Coulomb friction satisfies
all of the specified restrictions, and variation of friction
coefficient with normal force or with location across the

contact area is acceptable.
The Coulomb friction model (also called Amonton, da

Vinci, or dry friction) specifies that for a body in sliding
motion, the tangential frictional force is proportional to
the normal force and opposed to the direction of sliding.
The one-dimensional force constraint is usually written as

where ft is the translational force (tangent to the sur-
face), f n is the local normal force (perpendicular to the
surface), sgn(v) is the sign of the sliding velocity at the
contact, and p is the coefficient of friction, assumed to
have no dependence on velocity or normal force. The in-
equality applies before sliding initiates, and the equality
applies during sliding.

In two dimensions the situation is more complicated,
as the direction of motion at each point on the slider’s
surface must be determined to find the direction of the

friction force. Kinematically, the instantaneous motion
of a rigid body in the plane can always be described
as a pure rotation (consistently specified as clockwise
or counterclockwise) about some point, referred to as
the center of rotation (COR). The relationship between
sliding motion and total frictional force and moment for
the sliding body may be calculated by assuming a known
COR location and then summing up the contribution of
the frictional force at each point across the contact.

Figure 1 shows the situation in the sliding plane. We
assume that a rectilinear coordinate system is fixed in
the plane, with the origin located at the friction-weighted
center of pressure, (x,, Y,):

1. Extensions to three-dimensional problems are addressed in Section 4.4.
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Fig. 1. A contact in the sliding plane. The corctact is
rotating clockwise about the instantaneous center of rota-
tion (COR), with resulting velocity v at the infinitesimal
contact area dA.

The vector from the origin to an element of the contact
area is r = ( x y ]~’, the vector from the origin to the
instantaneous COR is RCOR, and the vector from the COR
to the point of interest is d(~, y) _ [ d~, d.~ ]T , so d =
r - rcOR- We have assumed that friction is independent
of sliding speed, so the velocity can be represented by the
unit vector vex, y) - vex, y)/~v(x, y)~. Since the contact
is instantaneously rotating about the COR, this velocity
vector is perpendicular to d, and

At any point in the contact area the local normal force
is given by df~ -- pdA, where p(x, y) is the local value
of the pressure distribution, and dA is the infinitesimal
area at (x, y). The magnitude of the tangential frictional
force vector at this point is dft = p, p dA, where I-t(x, y)
is the local coefficient of friction. The direction of this
force will be opposed to the velocity at the point, so the
local frictional force vector is dft = - f.1 p vdA. The
total frictional force is then found by integrating over the
contact

The contribution to the frictional moment (resolved to the
origin) is given by the cross-product of the vector r and

the local frictional force. Since the location and velocity
vectors are coplanar, the moment is always perpendicular
to the plane, and we can treat it as a scalar. The total
moment m. is the integral of this quantity

With these equations we can find the total frictional
force and moment corresponding to any motion (de-
scribed by the COR location rcoR) for a given pressure
distribution p(x, y) and coefficient of friction p(z, y).
By performing this calculation for a number of COR
locations, we can build up a picture of the relationship
between sliding motion and force-moment. Unfortunately,
the integrals depend on the details of the pressure dis-
tribution, and except for a few special cases, analytic
solutions do not exist. To understand the nature of the

force-motion relationship, we next consider the case of
axisymmetric pressure distributions.

2.2. Axisymmetric Contacts and Limit Curves

Axisymmetric pressure distributions are of practical
value for approximating the contact pressure between a
rounded, elastic fingertip and a hard object. In addition,
as we will see below, the limit surface for other pressure
distributions is often close enough to the axisymmetric
case that the same limit curves can be used.

For axisymmetric contacts, we can without loss of
generality orient the x-axis so that it passes through the
COR, with the origin located at the centroid of the con-
tact region. We can then write the vector between the
origin and the COR as RCOR = [ c 0]~, where c is
the distance from the origin to the COR. For this choice
of coordinates, the frictional force component in the x
direction, fx, is always zero, since the integral of this
component over the upper half-plane cancels the integral
over the lower half. For this case, equations (4) and (5),
written in terms of polar coordinates (r, 0), become

Here R is the radius of the contact area. These are elliptic
integrals; analytic solutions exist for special cases of the
pressure distribution and COR location.

It is evident from equations (6) and (7) that fy and m
vary as a function of the COR distance, c. For example,
Figure 2b plots m as a function of fly for the case of a
circular contact with uniform pressure. The result is an

approximately elliptical shape called the limit curve for
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Fig. 2. Relationship between sliding motion and frictional force and moment for a circular contact area with uniform
pressure distribution. (A), Locations of the COR in sliding plane. (B), Corresponding force and moment combinations
on the limit curve in the force-moment plane.

the contact. The limit curve explicitly demonstrates the
coupling of forces and moments in sliding: the magnitude
of the force required for sliding decreases as the applied
moment increases, and vice versa. Note that the figure
shows only one quadrant of the limit curve; reversing the
sign of the moment and/or the force reflects the curves
across the appropriate axes. This corresponds to a change
in the direction of rotation, or changing the COR from
the positive to negative x-axis. Also note that if u is
assumed constant, it can be taken outside the integral
and the entire curve simply scales with changes in the
coefficient of friction.

The foregoing kinematic arguments and equations (6)
and (7) provide a means for finding the forces that corre-
spond to a given motion. This is useful for planning and
control of manipulation, where we need to find the forces
to be applied to produce some desired motion. However,
the limit curve is useful in several other contexts as well.

One is in tasks where it is important to avoid slips. Here
the limit curve provides a means to determine whether
sliding will result from a given combination of applied
force and moment. This is accomplished by locating the
point corresponding to the given force and moment on
the limit curve plot: if the point is inside the curve (closer
to the origin), no sliding will occur; if the point is on the
curve, steady sliding will result; and if the point is out-
side the curve, then the contact will slide and accelerate,
since the applied force and moment exceed the frictional
forces for steady-state sliding. It can be shown (Goyal
1989) that friction limit curves and surfaces are always

convex; therefore, it is easy to determine whether a force-
moment combination lies inside the curve.

The limit curve can also be used to reverse the calcu-

lation from which it was constructed: to find the motion,
both translational and rotational, tha~ results from a given
applied force and moment. This is important for dynamic
simulation of manipulation tasks and for planning and
controlling contact tasks where forces may be generated
by the task. For any combination of force and moment on
the curve, we can (with appropriate interpolation) read off
the value of c, which tells us the location of the COR and

thus specifies the instantaneous motion of the contact. We
will further discuss uses of the limit curve in Section 4.3.

2.3. Effect of Pressure Distributiort Variation

We may gain insight into the role of pressure distribution
in determining sliding behavior by evaluating equations
(6) and (7) for three cases that span the range of pressure
distributions expected with soft fingertips on a robotic
or human hand. These pressure distributions vary from

a Hertzian distribution concentrated at the center (John-
son 1985) through a uniform distribution to a thin ring
concentrated at the periphery (as in grasping the end of
a tube). To isolate the effects of changing the pressure
distribution, we will use the same radius for each con-
tact and the same normal force In = f p(~, y) dA. We

coNTAc’

also assume that the coefficient of friction J1 is constant

and identical in all three cases. Consequently, the max-
imum tangential force is the same in all cases, although
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Table 1. Summary of Pressure Distributions and Maximum Moments for Three Axisymmetric Pressure
Distributions.

the maximum moment varies significantly, as shown in
Table 1.

However, the shape of the limit curve is little changed
by the variation in maximum moment. Figure 3 shows
the limit curves for the three cases with the moment val-
ues normalized by dividing by the maximum moment for
each case. A quarter ellipse is also drawn in the figure,
scaled with the principal axes coincident with the max-
imum force and moment; this analytic curve lies near
the limit curves for all three pressure distributions. This

suggests that it may be possible to construct a single ap-
proximate limit curve, which can be scaled as appropriate
for the details of a particular pressure distribution. We
will return to this idea below.

2.4. Noncircularly Symmetric Contacts: Limit Surfaces

For applicability to a broader range of contacts, we must
relax the assumption of circular symmetry so the pressure
can vary as a function of both planar coordinates, p(x, y)
or p(r, 0). Equations (4) and (5) remain the principal
tools, but we are no longer free to orient the x-axis in an
arbitrary direction. We must then consider COR locations
throughout the plane. A further implication is that the
frictional force in the x direction, fx, may be nonzero,
so we must consider the direction of the frictional force
as well as its magnitude. For each COR location, equa-
tions (4) and (5) are evaluated to find the corresponding
values for the friction force components fx and fy and
moment m. Thus, we can construct a three-dimensional
limit Surface (LS) in a space parameterized by (fx, fy,m).
Figure 4 shows an example of a limit surface, with the
force components forming the horizontal plane and the

moment the vertical axis. In analogy with the circular
contact case above, we will see that in many instances an

ellipsoid is a reasonable approximation to the exact limit
surface.

One important feature of the LS is that the frictional
force always lies within a circular region on the (ix. fy)
plane. In pure translation, all points of the contact are
moving in the same direction (perpendicular to the direc-
tion to the COR, which is located at an infinite distance
from the contact). The local unit velocity vector -v can
then be taken out of the integral in equation (4)

In this case it is clear that the direction of the friction

force is given by -v and the magnitude is given by the
scalar quantity inside the integral, which does not de-
pend on the direction of motion. Thus, for any pressure
distribution in pure translational sliding, the locus of the
frictional force in the (fix, fy) plane is a circle of radius

ft = f ~ + f ~ . If the coefficient of friction is constant,
then the radius is simply ft = pfn.
Now we examine the frictional moment m. If the ori-

gin of the coordinate system is at the center of pressure,
then m = 0 for pure translation. This is because the mo-

ment generated by the frictional force on the side of the
contact closest to the COR is balanced by the contribu-
tion from the other side. As in the circularly symmetric
case, the maximum moment occurs when the COR is at

the origin (Goyal 1989); here all local velocity vectors
are perpendicular to lines radiating from the origin and
thus contribute fully to the moment. For many pressure
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Fig. 3. Limit curves for the three circular pressure distributions. Each curve has been normalized by dividing by the
maximum shear force and maximum moment for that pressure distribution. A true ellipse is plotted for comparison.
For the annular pressure distribution, s = 0.9 , (i.e., the inner radius is 0.9 of the outer radius).

distributions, this COR location will also result in zero

tangential force so that the LS peaks at f~ = fv = 0.
In general, the LS is most symmetric if the origin of

coordinate system is located at the center of pressure
(equation (2)). Under this condition, the peak value of
the moment will be associated with zero tangential force
if the pressure distribution displays periodic rotational
symmetry (i.e., if the pressure distribution repeats itself in
a revolution about the center of pressure). This obviously
includes circularly symmetric distributions, as well as
rectangles, equilateral triangles, etc.

Figure 4 also reveals a characteristic flattening of the
LS for certain pressure distributions. Like the contact

itself, the LS has two axes of symmetry. The extreme
cross sections are plotted in Figure 5. We observe that
COR locations on the y-axis (the minor axis of the pres-
sure distribution) correspond to a cross section through
the { f~, m) plane of the LS. This produces a limit curve
that is more convex than an approximating ellipse. Con-
versely, the cross section in the ( fy, m) plane produces a
flattened cross section within the ellipse, which begins to
approach a straight line for COR locations greater than
about one unit from the origin. The case illustrated in
Figures 4 and 5 is for a rectangle with a 10:1 1 ratio of side

lengths; further increases in the aspect ratio have little
effect. In general, as a contact patch becomes narrow in
any direction, there is a corresponding flattening of the
limit surface in the orthogonal direction.

As with the limit curves for circularly symmetric con-
tacts, the sliding direction corresponding to any force-
moment combination on the LS is given by the vector
fi = [n fy n f~ n.,,.L]T normal to the surface at that point
(Goyal 1989). In Figure 5, normal vectors are drawn for
several COR locations. The ratio of the translational to

rotational velocities is given by the ratio of the compo-
nent in the moment direction, n7&dquo;,, to the component in
the force direction, n f = ~n~x 2 + nf,, 1]1/2. On an LS
with normalized axes, the slopes of the normal vectors
are scaled by the same ratio, mmax / fi max, used to normal-
ize the rest of the plot, so that they remain perpendicular
to the curves. Therefore, the ratio of angular to linear
velocity is given by

This ratio is equal to the magnitude of RCOR. The direc-
tion of the translational velocity v is antiparallel to the
force components of the normal vector, so

2.5. Point Contacts and Limit Surface Facets

The final feature of the LS we must consider is the ap-

pearance of facets when the pressure distribution is
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Fig. 5. Cross sections in the ( f~., m) and (fy, ~r~) planes through the limit surface for a rectangular contact with a 10: 1
ratio of side lengths. An ellipse is also drawn for comparison. Axes have been normalized by dividing by the maximum
values of moment or tangential force.

composed of discrete points of contact. In manipula-
tion, this can be a useful approximation when a relatively
large object is grasped by several fingertips, where the
diameter of each contact is substantially smaller than
the distance between the contacts. Another common ap-
plication is holding a part in fixtures and strap clamps
with relatively small areas of contact (Lee and Cutkosky
1991).

Figure 6 shows the LS for three equidistant contact
points. Each facet appears when the COR is located be-
neath one of the points of support. When the COR is
immediately beneath a contact point, the point is not slid-
ing, and the friction force is not completely defined-we
know only that 0 < fti < ~l, f ni, where ft and f ni are
the tangential and normal forces at the point i. Con-
sequently, there is a range of possible values for the
total frictional force and moment, obtained by sum-
ming the contributions of all contact points. In terms
of the LS, this means that there is a range of possible
forces and moments corresponding to a single COR lo-

cation (i.e., a single orientation of the LS normal). The
result is a flat region corresponding to each discrete
point of support. This indeterminacy occurs only if the
COR is immediately beneath a point of support; if the
COR moves even infinitesimally away, the point begins
to slide, and the friction force is immediately given as
~,f~.i .

For larger numbers of contact points, the contribution
of each point to the total force-moment balance becomes
smaller, and the facet associated with each point shrinks.
If the contact points are replaced by continuous pressure
distributions, the facets vanish. However, the transition
from faceted to continuous limit surfaces is gradual. For
situations involving several small but extended regions
of support, the LS develops flattened patches that, in
the limit, would produce facets. For example, the LS in
Figure 4 has flattened areas corresponding to locating the
COR along the major axis of the thin rectangular contact.
If the pressure distribution were approximated by a row
of points, facets would appear on the LS.
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Fig. 6. Top, pressure distribution consisting of three iso-
lated contact points. Bottom, Corresponding limit surface
showittg fcacets. (From Lee j1991 ]).

The gradual transition from flattened to faceted limit
surfaces suggests an approximation technique. Because
limit surfaces are always convex (Drucker 1954; Goyal
1989), it can be proven (Lee 1991) that approximating
a set of small regions of pressure with points of support
that satisfy the same equilibrium conditions leads to a
conservative approximating LS. Moreover, if the distances
between the regions of support are greater than the aver-
age region diameter, the resulting approximation will be
close to the exact result. A procedure for rapidly creating
an approximating limit surface and then removing facets
is provided in Section 4.2.

3. Experiments
The above analysis establishes a theoretical force-motion
relation for sliding. However, it is based on problematic
assumptions (such as velocity independence of the coef-
ficient of friction and rigid-body motion at the contact),
and requires knowledge of the pressure distribution and
coefficient of friction across the contact. Even for hard

materials, for which the Coulomb friction model is fre-

quently accurate, there may be local variations in the
pressure distribution and, if dirt and moisture are present,
in the friction coefficient. Given these complicating fac-
tors, it is important to examine how well the limit surface
predicts the onset of sliding in realistic circumstances. In
this section we describe two sets of experiments on the
onset of sliding.
The first experiments involve metallic contacts, as

when a metal workpiece is held by fixturing elements
or the fingers of an industrial gripper. Figure 7 shows a
typical result for a rectangular part clamped in a vise. In
such clamping arrangements, the details of the pressure
distribution are not generally known; uniform pressure
was assumed. The total normal force and the applied
tangential force and moment were measured with load
cells while the onset of sliding was recorded.
The plot in Figure 7 is a cross section of the limit sur-

face in the ( f y, m) plane, corresponding to COR locations
along the major axis of the contact. The &dquo;approximation&dquo;
curve is an ellipse fit to the values of maximum moment
and maximum tangential force. For the most part, the
values agree with the theoretical limit curve, especially
considering the unknown pressure distribution. Results
for other fixturing arrangements can be found in Lee
(1991). In general they agree with theoretical predictions,
the closeness of the match depending on how well the
pressure distribution can be estimated.

In another set of experiments, rubber &dquo;fingertips&dquo; of
different shapes were pressed against a smooth glass sur-
face ; then a torsion load was applied, and the shear force
was increased until the contact began to slip. The up-
per set of points in Figure 8 presents the measured slip
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Fig. 7. Experimentally measured friction limits for a rectangular metallic contact. An ellipse fitted to the maximum
moment artd force is also slzown. Error boxes surrounding empirical points reflect uncertainty in the load cell measure-
ments and in determining when the workpiece first slipped. (From Lee [19911).

values for a flat circular fingertip made of a relatively
hard silicone rubber. The dashed line is the theoretical

limit curve for a uniform pressure distribution, cal-
culated from equations (6) and (7). The value for the
coefficient of friction was inferred from the pure trans-

lation data. The data show general agreement with the
calculated slipping points, particularly near the pure ro-
tation extreme. At intermediate values, however, slipping
commenced at lighter loads than predicted. This will
obviously lead to difficulties if the theoretical curves
are used to plan manipulation tasks where slip is to be
avoided.

The lower set of points in Figure 8 is for a hemispher-
ical fingertip made of a soft natural rubber, while the
dotted line represents the calculated limit curve for a
Hertzian pressure distribution fitted to the maximum shear

force data. In general, the measured slip points trace

out a flattened elliptical curve similar to the flat finger-
tip. These measured points fall on the calculated limit
curve for small moments, but measured points are well
above the curve for large moments. This deviation can
be explained by the frictional properties of elastomers,
which can vary greatly with sliding speed and normal
force (Schallamach 1957), contrary to the assumptions
of the theoretical development. In particular, for many
rubbers the coefficient of friction decreases at low sliding
speeds, which can cause &dquo;creep&dquo; even when the applied
shear load is less than the apparent friction limit. In addi-

tion, the effective coefficient of friction increases as local

pressure decreases for many rubbers. Rubber fingertips
can also deform across the contact area, violating the as-
sumption of fully developed sliding at the contact. All of
these effects are, in general, more pronounced for softer
elastomer compounds.
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Fig. 8. Experimentally measured friction limits for two rubber fingertips. Calculated limit curves are also shown. Error
bars near 2N data points indicate typical moment measurement uncertainty.

From our rubber fingertip experiments, we observe that
the shape of the measured limit curve is often a flattened
ellipse, significantly below the theoretical limit curve for
the middle ranges of loading. Also, the hemispherical
fingertip results suggest that it can be difficult to estimate
the size of the limit surface from a single slip measure-
ment. However, the reasonable agreement with theory for
the flat contact measurements shows that these difficulties
can be minimized if an appropriate elastomer is selected
(Cutkosky and Wright 1986).

4. Practical Methods of Computing the Force-
Motion Relationship

The basic method of constructing a limit surface de-
scribed above consists of selecting a reasonably dense
set of COR locations, applying equations (4) and (5) at
each point to find the corresponding force-moment com-
binations, and then plotting the results in force-moment
space-a potentially time-consuming operation requir-
ing detailed knowledge of the pressure distribution. A
number of other methods have been devised for finding
the force-velocity relationship; none, however, summa-
rizes the entire relationship for the contact as directly and
succinctly as the limit surface. In this section we review
other methods and then propose approximations to the
limit surface that are particularly fast to compute. We
also discuss applications of these approximations in grasp

and motion planning and extensions to three-dimensional
problems.

4.1. ~’omparison of Methods

In an approach related to the construction of limit sur-
faces, Mason (1986) examines the motion of an object
pushed across a flat surface by a fence or &dquo;pusher.&dquo; The
pressure distribution between the object and the surface
is assumed unknown, but the contact between the pusher
and the object provides an applied force of known mag-
nitude, due to the friction between them. The resulting
equilibrium equations contain the location of the COR
implicitly. Mason examines all possible directions for
the velocity of the contact point that satisfy geometric
and equilibrium constraints and are consistent with the
pusher velocity. In other words, he first plots a COR
locus and then finds the correct location along the locus
by requiring the contact forces to match the actual value.
Peshkin ( 1986), Brost (1991), and Alexander and Mad-
docks (1993) provide extensions to the sliding analysis,
all of which maintain the assumption that the contact
pressure distribution is not known.

Other approaches directly exploit the convexity of the
limit surface, which derives from the &dquo;maximum work

inequality&dquo; of Coulomb friction (Drucker 1954). This
condition prescribes that, given a direction of sliding
motion, the actual friction force-moment will maximize
the work done in sliding (i.e., the dot product of force
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and velocity) while also satisfying equation (1) for each
element of the contact. For the trivial case of a single
point of contact, the maximum dot product clearly obtains
if the friction force is parallel to the direction of sliding.
A consequence of the convexity of limit surfaces is that
the limit surface for a collection of points or pressure
distributions can be obtained by Minkowski summation
of the individual surfaces for each element. Typically,
however, this approach is more time consuming than
computing the limit surface directly using equations (4)
and (5).

For fixturing applications involving small regions or
discrete points of support as in Section 2.5, Sakurai
(1990) uses a &dquo;maximum force method&dquo; to compute
the COR location for an applied force and moment by
maximizing the inner product of a vector of the applied
forces and moments with a vector of the friction forces.
The maximum is found subject to equilibrium equations,
to the known magnitudes of the friction forces at each
contact point, and to the known direction of the exter-
nally applied tangential force. Because the direction of
the applied force is known, a limit surface is not needed.
In terms of limit surfaces, this is equivalent to solving
for the intersection of a line representing fixed ratios of
/a-/m and fy/m with the limit surface. Other optimiza-
tion methods have been applied to three-dimensional
problems involving point contacts with friction by Trinkle
and Zeng (1994). Such methods are faster than construct-
ing a limit surface. However, the main time saving is due
to the assumption that the direction of the loading force is
known.

Another solution method is possible if the applied
tangential force and the pressure distribution over the
contact are known. Bicchi et al. (1988) consider the case
of a block squeezed between two flat fingers of a parallel-
jaw gripper. The resultant friction forces fx and fy are
assumed known (perhaps measured by strain gauges in
the gripper jaws), along with the pressure distribution
over the contact area (perhaps measured by a tactile array
sensor). They obtain the location of the COR by solving
two simultaneous nonlinear equations of equilibrium in
the x and y directions:

where n is the number of pressure sensing array elements
and pi is the measured normal force at element location

(xi, y2)~ Since fx and fy are also measured directly, there
are just two unknowns, XCOR and YCOR. This method is
also applicable to situations such as those examined by

Sakurai involving discrete points of support, but requires
more measurements than the other methods.

4.2. Practical Approximate Solutions

In this section we consider practical approximations to
the limit surface that can be used for grasp and motion

planning. As seen in Section 3, the theoretical limit sur-
face is in reasonable agreement with the experimental
results to the extent that the coefficient of friction and the

pressure distribution are accurately known. Consequently,
there arises a tradeoff between desired limit surface ac-

curacy and computational effort. For practical purposes,
we seek an approximation whose deviation from the ex-
act limit surface is no worse than typical errors caused
by uncertainties in the coefficient of friction and pressure
distribution.

As Figures 2 through 8 reveal, the obvious approxima-
tion for most limit surfaces is an ellipsoid. For circularly
symmetric pressure distributions, the limit surface is
axisymmetric, and for noncircular distributions, a typi-
cal limit surface will be considerably more axisymmetric
than the pressure distribution itself (e.g., Figure 4). The
reasons for this effect are: first, that all pressure distribu-
tions result in a circular cross section in the (fx, fy) plane
due to the assumed isotropy of friction; and second, that
the forces and moment in equations (4) and (5) are com-
puted as integrals over the pressure distribution so that
they tend to smooth local variations in the pressure and
friction coefficient.

Consequently, an ellipse fit to the maximum moment
and maximum tangential force provides a good ap-
proximation in most cases. For asymmetric pressure
distributions (where fx and fy are not zero when m is
maximum), an ellipsoid with a tilted major axis can be
constructed, and for a pressure distribution with discrete

points of support, facets can be removed; this procedure
is outlined in Table 2. In each case the ellipse or ellip-
soid is easy to construct. Because an analytic surface
is obtained, it is also easy to find the normal vector for

any point on the surface and to determine whether any
combination of force and moment lies inside the surface.
One shortcoming of this approximation is the potential

for a relatively large error in the surface normal direction.
Figure 3 shows that the ellipse lies reasonably close to
the actual normalized limit curve despite variation in the
pressure distribution. Close examination, however, reveals

significant differences in the surface normal direction at
neighboring points on the various curves, particularly at
force-moment combinations near the center of the range.
This implies that the ellipse approximation is relatively
accurate in determining whether a given combination of
force and moment will slip, and less accurate in relating
force-moment combinations to the sliding velocity.
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Table 2. Summary of Procedures for Constructing Approximating Ellipses and Ellipsoids for Limit Surfaces.

1. Characterize contact.
-Determine the pressure distribution: estimate (e.g., assume Hertzian contact for round fingertip) or measure (e.g.,
with tactile array sensor).

·Place the origin of the sliding coordinate frame at the center of pressure using equation (2).
·Determine the coefficient of friction: estimate or measure (e.g., take ratio of actual forces while sliding fingertip
(Bicchi et al. 1991) or use an incipient slip sensor (Tremblay and Cutkosky 1993; Son et al. 1994).

2. Find approximating ellipse.
·Find the maximum frictional force ftma~: calculate (equation (1)) or measure (in pure translational sliding).
·Find the maximum frictional moment and corresponding forces (fxo fyo mmax): calculate (equation (5) with COR at
origin) or measure (while rotating about center of pressure).

-This force-moment combination defines the end point and tilt angles of the ellipsoid major axis:
-If fz.o and fya are small, assume the major axis is vertical. Then the ellipsoid is circularly symmetric, and the

problem reduces to fitting an ellipse to ?r~ax and ftt&dquo;ax.
-If the ellipsoid is tilted due to a highly asymmetric pressure distribution, it may be necessary to define a new

coordinate frame (lx, ly, in) aligned with the major axis of the ellipsoid and to transform the points of maximum
tangential force into this new coordinate frame. For details see Lee (1991) and Lee and Cutkosky (1991).

3. Normalize ellipse.
-To normalize the ellipse, scale each point (f,m) such that (f’,m’) = (f/ft m~;, m~m~,ax). In this case the ellipse is
simply a circle. Note that this circular limit curve scales with increasing normal force (which just proportionately
increases mmaX and ftmax). &dquo;

4. Add facets/flattening.
·If the pressure distribution is dominated by a few discrete and widely separated points or regions of contact, it may
be desirable to remove the facets that correspond to them. For each such point r, = [rx, ry]T of contact, a plane
can be constructed corresponding to locating the COR at that point. This defines a normal, ni = ray, 1]T,
in the force-moment space of the limit surface. The distance from the origin to the plane is then defined by pick-
ing any point on the facet. Recall that the friction force at a discrete point of support is not uniquely defined. One
valid solution is zero force, which defines a point on the plane and thereby uniquely defines the plane in (ix, f y, m)
space.

5. Relate sliding motion to force-moment combination.
·If the limit surface is approximated with an ellipse, the translational sliding direction is parallel to the tangential
force.

-The ratio of translational to rotational velocities is given by the horizontal and vertical components, n f and n&dquo;.,, of
the normal to the limit curve at (f, m). For an ellipse it is straightforward to show that

If the ellipse is normalized as in step 3, the relationship becomes
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In general, the best method of accurately relating force-
moment to velocity is to find a number of points on the
limit surface using equations (4) and (5). This requires
choosing an appropriate set of sample COR locations and
calculating the corresponding forces and moments. Since
the COR uniquely specifies the velocity, these values may
then form a look-up table.

For certain applications such as real-time control, a
faster approximation may be needed, especially if there
are discrete points of support for which it is necessary to
first construct an ellipsoid and then remove facets. Also,
as seen in Figure 5, the ellipsoidal approximation is not
conservative; it can overestimate the friction limit for
contacts that are not circularly symmetric. Thus, a fast
and conservative approximation is a cone with its apex
at mmax and a base circle of radius it max. Because limit
surfaces are convex, the cone is strictly conservative. In
analogy with a circularly symmetric ellipsoid, the cone
can be reduced to a straight line for many cases. Figure 8
shows that a straight line may be a better approximation
than an ellipse for soft rubber fingertips. One drawback to
this approximation is that the correspondence between the
normal vectors and the ratio of rotational to translational

sliding is lost.
Finally, for some analyses (e.g., grasp planning or op-

timal control via linear programming) it is useful to have
a linear constraint function for friction. For example, the
limit surface may be approximated as a set of inequalities
representing a pyramid (Kerr and Roth 1986)

However, as with the conical limit surface approximation,
the relationship between the normal to the limit surface
and the direction of sliding motion is lost.

4.3. Uses: Planning, Simulation, and Control

As we have seen, the LS provides essential information
for sliding manipulation. To determine whether a contact
will slip, the load (ix, fy, m) is plotted in force-moment
space and compared to the LS. If the vector lies on the
surface, steady sliding will result; if it lies outside, the
applied force exceeds the friction limit, and the contact
will probably accelerate; if it lies inside, the distance
from the tip of the load vector to the surface provides a
safety margin against sliding.
As discussed earlier, the LS also relates applied forces

and moments to the direction of motion. One example
of using the LS for sliding manipulation starts with the
desired velocity vector. Then the point on the LS normal
to this vector is located. The values of the force and

moment at that point are the loads that should be applied
to produce the desired motion. Alternatively, given a
history or sequence of task-related forces and moments,
the instantaneous motion directions obtained from the

LS can be integrated to obtain sliding trajectories (Kao
and Cutkosky 1993; Sun and Shi 1995). Even for static
applications, knowing the direction of sliding is useful for
reconfiguring a grasp to minimize the likelihood of slips.
When compared with other methods for determining

when sliding will occur, the LS has the advantage of
being computed just once for a contact arrangement. This
is particularly useful for grasp and fixture planning where
the LS is constructed once and then tested against any
combination or sequence of applied forces and moments.
Moreover, the surface scales linearly with changes in the
coefficient of friction and, for cases of uniform pressure,
with changes in the normal force.
One difficulty encountered during manipulation is that

the apparent coefficient of friction varies in time with a
number of factors (e.g., surface cleanliness, temperature,
etc.). Thus, it is desirable to perform active slip detec-
tion and to update the LS. One approach is to measure
the onset of slip using dynamic tactile sensors (Tremblay
and Cutkosky 1993; Son et al. 1994) and to measure the
contact forces and moment using fingertip force sensors
whenever the onset of sliding is detected. With these
measurements it is possible to adaptively update the es-
timate of the friction coefficient and maximum force and
moment. It is then easy to scale the LS as these values

change. There is evidence that people unconsciously use
a similar strategy, detecting the onset of sliding with
cutaneous mechanoreceptors to maintain a grasp force
sufficient to avoid dropping objects while minimizing
effort (Johansson and Westling 1987).

4.4. Three-Dimensional Applications

Thus far we have only considered sliding on a (locally)
planar surface. However, the basic approach embod-
ied in limit surfaces can be extended to applications in
which a set of contacts is rigidly connected but not con-
fined to a plane-for example, a part clamped in fixtures
with contacts on orthogonal faces. A detailed treatment
of such applications is beyond the scope of this article,
but the basic approach is as follows (Lee and Cutkosky
1991 ):

1. For each contact, construct a LS in the local coordi-
nate system for feasible combinations of translation
and rotation (analogous to COR locations).

2. Express the limit surfaces of all contacts in a com-
mon force-moment coordinate system and add them

by Minkowski summation. During this step, a limit
surface with up to six dimensions (three moment
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and three force components) may result; however,
only the projections on subspaces for which sliding
motion is kinematically possible need be considered.
Although this step is potentially time consuming
and could lead to limit surfaces of more than three

dimensions, in practice this is unlikely because a
good grasp or fixturing arrangement will only have
two or three degrees of freedom for which sliding is
possible.

This approach works for cases such as a part clamped
in fixtures, for which the contacts are all rigidly con-
nected. If the contacts are connected by compliant mem-
bers, such as the fingers of a robot hand, it is necessary
to consider each contact separately to see if it will slide
and, if so, in which direction. However, by modeling the
grasp compliance, it is possible to compute the normal
and tangential forces at each fingertip as a function of
external loading on the grasped object and subsequently
to compute sliding motions of a grasped object (Kao and
Cutkosky 1992; Sun and Shi 1995).

5. Conclusions

Sliding manipulation requires appropriate models of the
relationship between frictional forces and sliding mo-
tion. When both rotational and translational sliding are
involved, the familiar Coulomb friction law is replaced
with a limit surface that represents a mapping between
applied forces and moments and resulting motions. The
complete mapping can be time consuming to construct,
as it involves numerical integration for each point on
the surface. However, approximate solutions can be used
that provide errors no worse than those caused by typical
uncertainties in contact pressure distributions or friction
coefficients. Depending on the geometry of the contact
and the desired accuracy, the most appropriate approxi-
mation may be an ellipsoid (perhaps with facets), a cone
or a pyramid in three-dimensional force-moment space. In
many cases the surface is nearly axisymmetric, in which
case the ellipsoid and cone can be replaced by an ellipse
and a straight line, respectively, in a two-dimensional plot
of moment versus tangential force.
Once constructed, the limit surface is useful for a vari-

ety of grasp and motion planning applications. Any series
of anticipated forces and moments can be tested against
the surface-those that fall inside are &dquo;safe,&dquo; and those
that lie on or outside the surface will produce sliding. The
surface also relates forces and moments to the direction
of sliding. For each point on the surface, the direction
cosines of the normal vector at that point are proportional
to the relative magnitudes of rotational and translational
motion. We note that friction coefficient and pressure dis-
tributions are likely to change over time as functions of

loading and surface conditions, and the detection of the
onset of sliding permits the limit surface to be updated
dynamically.
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