REAL-TIME OBSTACLE AVOIDANCE FOR MANIPULATORS AND MOBILE ROBOTS

O. Khatib
Artificial Intelligence Laboratory
Stanford University, Stanford, CA 94305

Abstract

Abstarct This paper presents a unique real-time obstacle avoidance approach for manipulators and mobilc robots based on the "artificial potential field" concept. In this approach, collision avoidance, traditionally considered a high level plan,ning problem, can be effectively distributed between different levels of control, allowing real-time robot operations in a complex environment. We have applied this obstacle avoidance scheme to robot arm using a new approach to the general problem of real-time manipulator controi. We reformulated the manipulator control problem as direct control of manipulator motion in operational space-the space in which the task is originally described-rather than as control oj the task's corresponding joint space motion obtained onty after geometric and kincmatic trans formation. This method has been implemented in the COSMOS system for a IUMA 5GO robot. Using visual scnsing, real-time collision avoidance diemonstrations on moving obstacles have been per formed.

Introduction

In previous research, robot collision avoidance has been a component of higher levels of control in hierarchical robot control systems. It has been trealed as a planning problem, and research in this area has locused on the development ol collision-free path planning algorithms 1,5,14,12. These algorithms aim at providing the low level control with a path that will enable the robot to accomplish its assigned task free from any risk of collision.

Jrom this perspective, the function of low level control is limited to the execution ol elementary operations for which the paths have been precisely specilied. The robot's interaction with its environment is then paced by the time-cycle of high level control, which is generally several orders of magnilude slower than The response time of a lypical robot. This places limits on the robot's real-time capabilities lor precise, fast, and highly interactive operations in a eloticred and evolving environment. We will show, however, that it is possible to greatly extend the lunction of low level control and to carry out more complex operations by coupling environment sensing leedback with the lowest level of control.

Increasing the capability of low level control has been the impetus for the work on real-time obstacle avoidance that we discuss here. Collision avoidance at the low level of control is not intended to replace high level lunctions or to solve planaing
probloms. The purpose here is to make better use of low level control capabitities in performing real-time operations. At this low level of control, the degree or level of competence ${ }^{2}$ will remain less than that of higher level control.

The operational space formutation is the basis for the application of the potential fied approth to robot maniputators. This formulation has its roots in the work on ent-cffector motion control and obstacle avoidanee ${ }^{6,7}$ that, we implemented for an MA23 manipulator at the Laboratoire d'Automatique de Montpellier in 1978 . The operational space approach has been formalized by construeting its basic tool, the equations of motion in the operational space of the manipulator end-effector. Details of this work have been published elsewhere ${ }^{8,9}$; we will brielly review the fundanentals of the operational space formulation.

Operational Space Formulation

An operational coordinate system is a set x of m_{0} independent parameters describing the manipulator end-effector position and orientation in a lrame of reference R_{0}. For a non-redundant manipulator, these parameters form a set of configuration parameters in a domain of the operational space ${ }^{9}$ and constitute, therefore, a system of gencratized coordinates. The kinetic energy of the holonomie articulated mechanism is a quadratic form of the generalized volocitios:

$$
\begin{equation*}
T(x, \dot{x})=\frac{1}{2} \dot{x}^{T} \Lambda(x) \dot{x} \tag{1}
\end{equation*}
$$

where $\lambda(x)$ designates the symmetric matrix of the quadratic form, i.c. the kinelie energy matrix. Using the lagrangian formalism, the end-effector equations of motion are given by:

$$
\begin{equation*}
\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{x}}\right)-\frac{\partial L}{\partial x}=\boldsymbol{F} ; \tag{2}
\end{equation*}
$$

where the Iagrangian $L(x, \dot{x})$ is:

$$
\begin{equation*}
L(x, \dot{x})=T(x, \dot{x})-U(x) \tag{3}
\end{equation*}
$$

and $U(x)$ represents the potential energy of the gravily. F is the operational force vector. These equations can be developed ${ }^{8,9}$ and written in the form:

$$
\begin{equation*}
\Lambda(x) \ddot{x}+\mu(x, \dot{x})+p(x)=F \tag{4}
\end{equation*}
$$

where $\mu(x, \dot{x})$ represents the centrilugal and Coriolis forees, $p(x)$ the gravity forces.

Control of the manipulator in operational space is based on the selection of \boldsymbol{F} as a command vector. In order to produce this command vector, specific forecs Γ must be applied with joint-based actuators. The relationship between F and the joint forces Γ is given by:

$$
\begin{equation*}
\Gamma=J^{T}(q) \boldsymbol{F} ; \tag{5}
\end{equation*}
$$

where q is the vector of the n joint coordinates, and $J(q)$ the Jacobian malrix.

The decoupting of the end-effector motion in operational space is achicved by using the following structure of control:

$$
\begin{equation*}
F=\Lambda(x) F^{*}+\mu(x, \dot{x})+p(x) ; \tag{6}
\end{equation*}
$$

where \boldsymbol{F}^{*} represents the command vector of the decoupled endeflector which becomes equivalent to a single unit mass.

The extension of the operational space approach to redundant manipulator control is discussed in $[8,9]$.

The Artificial Potential Field Approach

We present this method in the context of manipulator collision avoidance. Its application to mobile robots is straightforward. The philosophy of the artificial potential field approach can be schematically described as Jollows.

The manipulator moves in a ficld of forces. The position to be reached is an attractive pole for the end-e $\iint 0$ octor, and obstacles are repulsione sur faces for the manipulator perts.

Let us first consider the collision avoidance problem of a manipulator end-effector with a single obstacle 0 . If x_{d} designates the goal position, the control of the manipulator endeffector with respeet to the obstacle O can be achieved by subjecting it to the artificial potential field:

$$
\begin{equation*}
U_{a r t}(x)=U_{x_{d}}(x)+U_{O}(x) . \tag{7}
\end{equation*}
$$

This leads to the following expression of the potential energy in the Lagrangian (3):

$$
\begin{equation*}
U(x)=U_{a r t}(x)+U_{g}(x) ; \tag{8}
\end{equation*}
$$

where $U_{g}(x)$ represents the gravity potential encrgy. Using lagrange's equations (2), and taking into account the ondeffector dynamic decoupling (6), the command vector \boldsymbol{F}^{*} of the decoupled end-effector that corresponds to applying the artificial potential field $U_{a r t}(7)$ can be written as:

$$
\begin{equation*}
\boldsymbol{F}^{*}=\boldsymbol{F}_{x_{d}}^{*}+\boldsymbol{F}_{o}^{*} \tag{9}
\end{equation*}
$$

with:

$$
\begin{align*}
\boldsymbol{F}_{x_{d}}^{*} & =-\boldsymbol{g r a d}\left[U_{x_{d}}(x)\right] ; \tag{10}\\
\boldsymbol{F}_{o}^{*} & =-\operatorname{grad}\left[U_{0}(x)\right] ;
\end{align*}
$$

$\boldsymbol{F}_{\boldsymbol{x}_{d}}^{*}$ is an attractive force allowing the point \boldsymbol{x} of the endeffector to reach the goal position x_{d}, and $\boldsymbol{F}_{\mathcal{O}}^{*}$ represents a Force Inducing an Artificial Repulsion from the Surface of the obstacle (FIRAS, from the French), crealed by the potential field $U_{O}(x)$. $F_{x_{d}}^{*}$ corresponds to the proportional term, i.e. $-k\left(\boldsymbol{x}-\boldsymbol{x}_{d}\right)$, in a conventional PID servo, where k is the position gain. The attractive potential field $U_{x_{d}}(x)$ is simply:

$$
\begin{equation*}
U_{x_{d}}(x)=\frac{1}{2} k\left(x-x_{d}\right)^{2} \tag{11}
\end{equation*}
$$

$U_{O}(x)$ is selected such that the ardificial potential field $U_{a r t}(x)$ is a positive continuous and differentiable function which altains its zero minimum when $x=x_{d}$. The articulated mechanical system subjected to $U_{\text {art }}(x)$ is stable. Asymplotic stabilization of the system is achieved by adding dissipative forecs proportional to \dot{x}. Let ξ be the velocily gain; the forees contributing to the end-effector motion and stabilization are of the form:

$$
\begin{equation*}
\boldsymbol{F}_{\boldsymbol{x}_{d}}^{*}=-k\left(\boldsymbol{x}-\boldsymbol{x}_{d}\right)-\xi \dot{\boldsymbol{x}} . \tag{12}
\end{equation*}
$$

This command veetor is inadequate to control the manipulator for tasks that involve large end-effector motion toward a goal position without path specification. For such a task, it is better for the endeffector to move in a straight line, with an upper speed limit.

Rewriting equation (12) leads to the lollowing expression, which can be interpreted as specifing a desired velocity vector in a pure velocily servo-control.

$$
\begin{equation*}
\dot{x}_{d}=\frac{k}{\xi}\left(x_{d}-x\right) \tag{13}
\end{equation*}
$$

Let $V_{\text {max }}$ designate the assigned speed limil. The limitation of the end-effector velocity magnitude can then be obtained ${ }^{6}$ by:

$$
\begin{equation*}
\boldsymbol{F}_{x_{d}}^{*}=-\xi\left(\dot{x}-\nu \dot{x}_{d}\right) ; \tag{14}
\end{equation*}
$$

where:

$$
\begin{equation*}
\nu=\min \left(1, \frac{V_{\max }}{\sqrt{\dot{x}_{d}^{T} \dot{x}_{d}}}\right) . \tag{15}
\end{equation*}
$$

With this scheme, shown in Fiqure 1, the velocity vector \dot{x} is controlled to be pointed toward the goal position while its magnitude is limited to $V_{m a x}$. The end-effector will then travel at that speed, in a straight line, except during the acceleration and deceleration segments or when it is inside the repulsive potential lield regions of influence.

Figure 1. End-cffector Control for a Goal losition

FIRAS Function

The arlificial potential field $U_{O}(x)$ should be designed to meet the manipulator stability condition and to create at each point on the obstacle's surlace a potential barrier which becomes negligible beyond that surface. Specifically, $U_{O}(x)$ should be a non-negative continuous and differentiable function whose value tends to infinily as the end-effector approaches the obstacke's surface. In order to avoid undesirable perturbing lorces beyond the obstacle's vicinity, the influence of this potential field must be limited to a given region surrounding the obstacle.

Using amalytic equations $f(x)=0$ for obstacle description, the lirst arificial potential field function we used ${ }^{7}$ was based on the values of the function $f(x)$:

$$
U_{0}(x)= \begin{cases}\frac{1}{2} \eta\left(\frac{1}{f(x)}-\frac{1}{f\left(x_{0}\right)}\right)^{2}, & \text { if } f(x) \leq f\left(x_{0}\right) ; \tag{16}\\ 0, & \text { if } f(x)>f\left(x_{0}\right) .\end{cases}
$$

The region of influence of this potential field is bounded by the surfaces $f(x)=0$ and $f(x)=f\left(x_{0}\right)$, where x_{0} is a given point in the vicinity of the obstacle and η a comstant gain. This potential function can be oblained very simply in reat-lime since it does not require any distance caleubtations. However, this potential is dillicull to use for asymmetric obstacles, where the separation belween an obstacte's surface and equipolential surfaces can vary widely.
Using the shortest distance to an obstaele \mathcal{O}, we have proposed ${ }^{8}$ the following arlificial potential fich:

$$
U_{0}(x)= \begin{cases}\frac{1}{2} \eta\left(\frac{1}{\rho}-\frac{i}{\rho_{0}}\right)^{2}, & \text { if } \rho \leq \rho_{0} \tag{17}\\ 0, & \text { if } \rho>\rho_{0}\end{cases}
$$

where ρ_{0} represents the limil distance of the potential fied intluenee and ρ, the shortest distance to the obstacte 0 .
Any point of the robot can be subjected to the artificial potential lield. A Foint Subjected to the Potential is called a PSP. The control of a PSP with respect to an obstacle O is achieved using the FIRAS function:

$$
F_{(0, p s p)}^{*}= \begin{cases}\eta\left(\frac{1}{\rho}-\frac{1}{\rho_{0}}\right) \frac{1}{\rho^{2}} \frac{\partial \rho}{\partial x}, & \text { if } \rho \leq \rho_{0} \tag{18}\\ 0, & \text { if } \rho>\rho_{0}\end{cases}
$$

where $\frac{\partial \rho}{\partial x}$ denotes the partial derivative vector of the distance from the PSP to the obstacle:

$$
\begin{equation*}
\frac{\partial \rho}{\partial x}=\left[\frac{\partial \rho}{\partial x} \frac{\partial \rho}{\partial y} \frac{\partial \rho}{\partial z}\right]^{T} \tag{19}
\end{equation*}
$$

Obscrving (6) and (9), the joint forces corresponding to $\overline{P^{*}}{ }^{*}(0$, psp $)$ are obtained using the Jacobian matrix associated with this PSP. These forces are given by:

$$
\begin{equation*}
\Gamma_{(0, p s p)}^{\prime}=J_{p s p}^{T}(q) \Lambda(x) F_{(0, p s p)}^{*} \tag{20}
\end{equation*}
$$

Obstacle Geometric Modelling

Obstacles are described by the composition of primitives. A typical goometric model base includes primitives such as a point, line, plane, ellipsoid, parallelepiped, cone, and cylinder. The firsh artificial potential field (16) requires analytic equations for the description of obstacles. For primitives such as a parablelepiped, finite cylinder, and cone, we have developed analytic equations representing envelopes which best approximate the primitives' shapes. The surface, termed an n-cllipsoid, is represented by the equation:

$$
\begin{equation*}
\left(\frac{x}{a}\right)^{2 n}+\left(\frac{y}{b}\right)^{2 n}+\left(\frac{z}{c}\right)^{2 n}=1 ; \tag{21}
\end{equation*}
$$

and tends to a parallelepiped of dimensions (a,b,e) as n tends to infinity. A good approximation is obtained with $n=1$, as shown in Figure 2.
A cylinder of elliphical cross seetion (e, h) and of length 20 can be approximated by the so-called n-cylinder cquation:

$$
\begin{equation*}
\left(\frac{x}{a}\right)^{2}+\left(\frac{z}{b}\right)^{2}+\left(\frac{z}{c}\right)^{2 n}=1 \tag{22}
\end{equation*}
$$

The analytic deseription of primitives is nol necessary for the artilicial potential lield (17), since the continuity and differentiablity requirement is on fhe shortest distance to the obstacle. The primitives above, and more generally all convex

Figure 2. An n-cllipsoid with $n=$ =
primitives, comply with this requirement.
Determining the orthogonal distance to an n-ellipsoid or to an n-cylinder requires the solution of a complieated system of equations. To avoid this costly computian, a variational procedure for the distance cvaluation has been developed. The distance expressions for other primitives are presented in Appendices 1 through III.

Robot Obstacle Avoidance

An obstacle O_{i} is described by a set of primitives $\left\{P_{p}\right\}$. The superposition property (additivity) of potential fields enables the control of a given point of the manipulator with respeet to this obstacle by using the sum of the relevant gradients:

$$
\begin{equation*}
F_{\sigma_{i, p s p}}^{*}=\sum_{p} F_{\left(P_{p}, p s p\right)}^{*} \tag{23}
\end{equation*}
$$

Control of this point for several obstaeles is obtained using:

$$
\begin{equation*}
\boldsymbol{F}_{p s p}^{*}=\sum_{i} \vec{F}_{\left(o_{i}, p s p\right)}^{*} \tag{24}
\end{equation*}
$$

It is also feasible to have different points on the manipulator conirolled with respect to different obstacles. The resulting joint force vector is given by:

$$
\begin{equation*}
\Gamma_{\text {obstacles }}=\sum_{j} J_{p s p_{j}}^{T}(q) \Lambda(x) F_{p s p_{j}}^{*} \tag{25}
\end{equation*}
$$

Specifying an adequate number of PSP's enables the protection of all of the maniputator's parts. An example of a dynamic simulation for a redundant 4 dof manipulator operating in the phane ${ }^{7}$ is shown in the display of figure 3 . The artificial potendial fied approach can be extended to moving obstacles, since stability of the mechanism persists with a continuously limevarying potential liold.

The mampulator obstacle avoidane problen has been formulated in terms of collision nowitance of links, rather than

Figure 3. Displacernent of a 人 dof Manipulator Inside an Enctosure
points. Link collision avoidance is achieved by condinuously controlling the link's closest point to the obstade. $\Lambda 1$, most, n I'SI's then have to be considered. Additional links can be artilicially intoduced or the length of the last link can be extended to account for the manipulator tool or load. In an articulated chain, a link can be represented as the line segment defined by the Cartesian positions of its two neighboring joints. In a Prame of relerence R, a point $m(x, y, z)$ of the link bounded by $m_{1}\left(x_{1}, y_{1}, z_{1}\right)$ and $m_{2}\left(x_{1}, y_{1}, z_{1}\right)$ is described by the parametric equations:

$$
\begin{align*}
& x=x_{1}+\lambda\left(x_{2}-x_{1}\right) ; \\
& y=y_{1}+\lambda\left(y_{2}-y_{1}\right) ; \tag{26}\\
& z=z_{1}+\lambda\left(z_{2}-z_{1}\right)
\end{align*}
$$

The problem of obtaining the link's shortest distance to a parallelepiped can be reduced to that of finding the link's closest point to a vertex, edge, or face. The analytic expressions of the link's elosest point, the distance, and ils partial derivatives are given in $\Lambda_{\text {ppendix 1. In }}$ Appendices II and III these expressions are given for a cylinder and a cone, respectively.

Joint Limit Avoidance

The potertial field approach can be used to satisfy the manipulator internal joint constraints. Let q_{i} and \bar{q}_{i} be respectively the minimal and maximal bounds of the $i^{t h}$ joint coordinate $q_{i} . q_{i}$ can be kept within these boundarics by creating barricrs of potential at each of the hyperplanes $\left(q_{i}=q_{i}\right)$ and ($q_{i}=\bar{q}_{i}$). The corresponding joint torces are:

$$
\Gamma_{\underline{q}_{i}}= \begin{cases}\eta\left(\frac{1}{\rho_{i}}-\frac{1}{\rho_{i(0)}}\right) \frac{1}{\underline{\rho}_{i}^{2}}, & \text { if } \underline{\rho}_{i} \leq \underline{\rho}_{i(0)} \tag{27}\\ 0, & \text { if } \underline{\rho}_{i}>\underline{\rho}_{i(0)}\end{cases}
$$

and:

$$
\mathrm{I}_{\bar{q}_{i}}= \begin{cases}-\eta\left(\frac{1}{\bar{\rho}_{i}}-\frac{1}{\bar{\rho}_{i(0)}}\right) \frac{1}{\bar{\rho}_{i}^{2}}, & \text { if } \bar{\rho}_{i} \leq \bar{\rho}_{i(0)} ; \tag{28}\\ 0, & \text { if } \bar{\rho}_{i}>\bar{\rho}_{i(0)} ;\end{cases}
$$

where $\underline{\rho}_{i(0)}$ and $\bar{p}_{i(0)}$ represent the distance limit of the potential field influence. The distances ρ_{i} and $\bar{\rho}_{i}$ are defined by:

$$
\begin{align*}
& \underline{\rho}_{i}=q_{i}-q_{i} ; \tag{29}\\
& \overline{\bar{\rho}}_{i}=\bar{q}_{i}-q_{i}
\end{align*}
$$

Level of Competence

The complexity of tasks that can be achieved with this collision avoidance approach is limited. In a clutiered enviromment, local minima can occur in the resultant potential lietd. This can lead to a stable positioning of the robol before reaching its goal. White local procedures can be designed to exit from such configurations, limitations for complex lasks will remain. This is because the approach has a local perspective of the robot environment.

Nevertheless, the resulting potential field does provide the global information neecssary, and a collision-free path, if athainable, can be lound by linking the absolute minima of the potential. Linking these minima requires, however, a computationally expensive exploration of the potential field. This goes beyond the real-time control we are concerned with here, but can be considered as an integrated part of higher level control. Work on high level collision-free path planning based on the potential field concept has been investigated by C. Buckley ${ }^{4}$.

Real-Time Implementation

Finally, the global control system integrating the potential field concept with the operational space approach has the following structure:

$$
\begin{equation*}
\Gamma=\Gamma_{\text {motion }}+\Gamma_{\text {obstacles }}+\Gamma_{\text {joint-limit }} ; \tag{30}
\end{equation*}
$$

where $\boldsymbol{\Gamma}_{\text {motion }}$ can be developed [Khatib 1983] in the form:

$$
\begin{equation*}
\Gamma_{m o t i o n}=J^{T}(q) \Lambda(q) F_{x_{d}}^{*}+\tilde{l}(q)[\dot{q} \dot{q}]+\tilde{C}(q)\left[\dot{q}^{2}\right]-g(q) \tag{31}
\end{equation*}
$$

the matrices $\tilde{B}(q), \tilde{C}(q)$, and $g(q)$ of the Coriolis, centrifugal and gravity forees have the dimensions $n \times n(n-1) / 2, n \times n$, and $n \times 1$, respectively. $[\dot{q} \dot{q}]$ and $\left[\dot{q}^{2}\right]$ are defined by:

$$
\begin{align*}
& {[\dot{q} \dot{q}]=\left[\dot{q}_{1} \dot{q}_{2} \dot{q}_{1} \dot{q}_{3} \ldots \dot{q}_{n-1} \dot{q}_{n}\right]^{T} ;} \tag{32}\\
& {\left[\dot{q}^{2}\right]=\left[\dot{\dot{q}}_{1}^{2} \dot{q}_{2}^{2} \ldots \dot{q}_{n}^{2}\right]^{T} .}
\end{align*}
$$

In this control structure, dynamic decoupling of the end-effector is obtained using the end-eflector dynamic parameters (ELDP) $\Lambda(q), \tilde{B}(q), \widetilde{O}(q)$ and $g(q)$, which are conliguration dependent. in real time, these parameters can be computed at a lower rate than that of the servo control. In addition, the integration of an operational position and velocity estimator atlows a reduction in the rate of end-effector position computation, which involves evaluations of the manipulator geometric model. This leads to a two-level conitrol system arehitecture ${ }^{10}$:

- a low rate parameler combuation leoed: updating the BEDP', the dacobian matrix and the geometric model;
- a high rate servo control lewel: computing the command vector using the estimator and the updated dynamic parameters.

The conlrol system architecture is shown in Figure 4 where $n p$ represents the number of PSI's. The Jacobian matrices $J_{p s p}^{T}$ have common factors with the end-effector Jacobian matrix J^{T}. Thus, their evaluation does nol require significant additional

Applications

An experimental manipulator programming system COSMOS (Control in Operational Space of a Manipulator-with-Obstacles System), has been designed at the Stanford Artificial Intelligence

Figure 4. Operational Space Control System Architccture

Laboralory for implementation of the operational space control approach for the Unimation PUMA 560 arms. For these manipulators, the ability to control joint torque is considerably restricted by the nonlincarities and friction inherent, in their joint actuator/transmission systems. Therefore, the centrifugal and Coriolis forces have been ignored in the PUMA end-effector dynamic model.

The COSMOS system is implemented on a PIDP $11 / 15$ interfaced to a PUMA 560. The PDP' $11 / 23$ and VAL are disconnected, and only the joint, microprocessors in the PUMA controller are used for motor current control. The PUMA is equipped with a six degree of freedom force wrist that is interfaced to the PDP $11 / 45$ via an Λ / D converter. The l'UM Λ is also interfaced to a Machine Intelligence Corporation vision module.

In the current COSMOS implementation, the rate of the servo control level is 125 Hz white the parameter evaluation level runs at 40 Lz . With the new multiprocessor implementation (PDP $11 / 45$ and PDP' $11 / 60$), COSMOS is expected to achieve a dynamic and kinemalic update rate of 100 Ilz and a servo control rate of 300 It .

We have demonstrated reat-time end-effector motions both free and constraned, with the COSMOS system. These include contact, slide, insertion, and compliance operations, as well as real-time collision avoidanee wilh links and moving obstacles ${ }^{3}$.

Summary and Discussion

We have described the formulation and the implementation of a reat-time obstacle avoidance approach based on the artificial potential field concept, using analytic primitives for obstacle geometric modelling. In this approach, collision ayoidance, generally treated as high level planning, has been demonstrated
to be an effective component of low level reat-time control. liurther, we have briefly presented our operational space formulation of manipulator control which provides the basis for this obstacle avoidance approach, and have deseribed the twolevel arehitecture designed to increase the real-time performance of the control system.
The integration of this low level control approach with a high level planning system seems to be one of the more promising solutions to the obstacle avoidance problem in robot control. With this approach, the problem may be treated in two stages:

- at high level control, generating a global strategy for the manipulator's path in terms of intermediate goals (rather than finding an accurate collision-free path);
- at the low level, producing the appropriate commands to attain each of these goals, taking into account the detailed geometry and motion of manipulator and obstacle, and making use of real-time obstacle sensing (low level vision and proximity sensors).

By extending low level control capabilities and reducing the high level path planning burden, the integration of this collision avoidance approach into a multi-level robot control structure will improve the real-time performance of the overall robot control systern. Potential applications of this control approach include moving obstacle avoidance, grasping collision avoidance, and obstacle avoidance problems involving multi-manipulators with multi-fingered hands.

Appendix I: Link Distance to a Parallelepiped

The axes of the frame of reforence R are chosen to be the parallelepiped axes of symmetry. l is the link's length and (.) designates the dol product.

Distance to a Vertex

The elosest point m of the line (26) to the verlex v is such that:

$$
\lambda=\frac{\left(v m_{1}\right) \cdot\left(m_{1} m_{2}\right)}{l^{2}} . \quad(A 1-1)
$$

The link's closest point, m is identical to m_{1} if $\lambda \leq 0$; it is identical to m_{2} if $\lambda \geq 1$ and it is given by (26) otherwise. The shortest distance is therfore:

$$
\rho= \begin{cases}\left.\mid \rho_{1}^{2}-\lambda^{2} l^{2}\right]^{1 / 2}, & \text { ir } 0 \leq \lambda \leq 1 ; \\ \rho_{1}, & \text { if } \lambda<0 ; \\ \rho_{2}, & \text { if } \lambda>1 ;\end{cases}
$$

where ρ_{1} and ρ_{2} are the distance to the verlex from m_{1} and m_{2}, respectively. The distance partial derivalives are:

$$
\begin{equation*}
\frac{\partial \rho}{\partial x}=\left[\frac{x}{\rho} \frac{y}{\rho} \frac{z}{\rho}\right]^{T} \tag{11-3}
\end{equation*}
$$

Distance to an Edge

By a projection in the plane perpendicular to the considered cdge (xoy, yoz, or $z o x$), this problem can be reduced to that of finding the distance to a vertex in the planc. This leads to expressions similar to those of ($(1-1)$)-($(11-3)$ with a zero partial derivative of the distance w.r.t. the axis parallel to the edge.

Distance to a Face

In this case, the distance can be directly obtained by comparing the absolute values of the coordinates of m_{1} and m_{2} along the axis perpendicular to the face. The partial derivative vector is identical to the unit normal vector of this face.

Appendix II: Link Distance to a Cylinder

The frame of reference R is chosen such that its z-axis is the cylinder axis of symmetry and its origin is the cylinder center of mass. r and h designate, respectively, the cylinder radius and height.

Distance to the Circular Surface

The closest point of the link (27) to the circular surface of the cylinder can be deduced l'rom the distance to a vertex considered in the xoy plane and by allowing for the radius r.

Distance to the Circular Edges

The elosest distance to the cylinder circular edge can be obtained from that of the circular surface by taking into account the relative z-coordinate ol' m to the circular edge i.e. $(z+h / 2)$ for the base and $(z-h / 2)$ for the top. The distance partial derivative vector results from the torus equation:

$$
\left[x^{2}+y^{2}+(z \pm h / 2)^{2}-r^{2}-\rho^{2}\right]^{2}=1 r^{2}\left[\rho^{2}-(z \pm h / 2)^{2}\right]
$$

($12-1$)
This vector is:

$$
\begin{equation*}
\frac{\partial \rho}{\partial x}=\left[\varsigma \frac{x}{\rho} \varsigma \frac{y}{\rho} \frac{z \pm h / 2}{\rho}\right]^{T} \tag{A2-2}
\end{equation*}
$$

with:

$$
\begin{equation*}
\varsigma=\frac{x^{2}+y^{2}+(z \pm h / 2)^{2}-r^{2}-\rho^{2}}{x^{2}+y^{2}+(z \pm h / 2)^{2}+r^{2}-\rho^{2}} \tag{A2-3}
\end{equation*}
$$

The distance to the planar surfaces is straightforward and can be simply oblained as in Appendix I.

Appendix III: Link Distance to a Cone

In this case, the frame of reference R is chosen such that its z-axis is the cone axis of symmetry and its origin is the center of the cone circular base. r, h, and β represent, respectively, the cone base radius, height and half angle.

Distance to the Cone-Shaped Surface

The problem of locating $m(x, y, z)$ is identical to that for the cylinder casc. The distance can be written as:

$$
\begin{equation*}
\rho=z \sin (\beta)+\left(\sqrt{x^{2}+y^{2}}-r\right) \cos (\beta) \tag{A3-1}
\end{equation*}
$$

The partial derivatives come from the equation:

$$
\begin{equation*}
x^{2}+y^{2}=r_{z}^{2} \tag{A3-2}
\end{equation*}
$$

where:

$$
\begin{equation*}
r_{z}=\tan (\beta)[h+\rho \sin (\beta)-z] . \tag{A3-3}
\end{equation*}
$$

They are:

$$
\begin{equation*}
\frac{\partial \rho}{\partial x}=\left[\frac{x}{r_{z} \tan (\beta)} \frac{y}{r_{z} \tan (\beta)} \frac{1}{\sin (\beta)}\right]^{T} \tag{A3-4}
\end{equation*}
$$

The problem of the distance to the cone circular edge is identical to that of the cylinder circular edge in Appendix IL. The distance to the cone vertex is solved as in Appendix I.

Acknowledgments

Tom Binford and Bernie Roth have encouraged and yiven support for the continuation of this rescarch at Stanjord University. Many thanks to llarlyr Maker, Peter Blicher, and Jeff Kerr for their help in the preparation of this manuscript.

Refercnces

[1] Brooks, R. 1983. Solving the Find-Path Problem by Good Representation of Free Space. EBEE Systems, Man and Cybernelics. SMC-13:190-197.
[2] Brooks, R. 1981 (Aug. 20-23). Aspects of Mobile Robot Visual Map Making. Socond International Symposium of Robotics Research. Kyoto, Japan.
[3] Brooks: K. and Khatib, O. 1984 (June). Robotics in Threc Acts (Pitin). Stanford University.
[1] Buekley, C. 1985. The Application of Contimum Methods to Path Plamning. Ph.D. Thesis (in progress). Stanford University. Department of Mechanical lingineering.
[5] Chatila, R. 1981 . Système de Navigation pour un Robot Mobile Autonome: Modélisation et Processus Décisionnels. Thése de Docteur-Ingénicur. Université Paul Sabatier. Toulouse, Prance.
[6] Khatit, O., Llibre, M. and Mampey, R. 1978. Fonction DecisionCommande d'un Robot Manipulateur. Rapport No. $2 / 7156$. Toulouse, France. DBRA/CBRT.
[7] Khatik, O. and Le Maitre, J.l': 1978 (Sep. 12-15). Dynamic Control of Manipulators Operating in a Complex Environment. $3^{r d}$ CISM-IliToMM. Udine, Italy.
[8] Khatib, O. 1980. Commande Dyramique dans l'Espace Opérationnel des Robots Manipulateurs en Présence d'Obstacles. Thése de Docteur-Ingénicur. Beole Nationale Supérieure de PAéromatique de de l'Lispace (bNSNE). Toulouse, Prance.
[9] Khatib, O. 1983 (Sop 15-20). Dynamic Control of Manipulators in Operational Space Sixll (1SM-If ToMM Congress on Theory of Michines and Mech:mismas. New Delhi, ladia.
[10] Khatib, 0. $1981($ Oct. 13). Reab-Time Control of Manipulators in Operational Space 28 h Annual Stanford Conference of the American Sociely for Quality Control. Slanford.
[11] 「ozano-Peres, T' 1980 Spatial Plaming: A Configuration Space Approach. A! Memo 605. Gambridge, Mass. MI'T Artificial Intelligence Laboratory.
[12] Moravee, IIP. 1980. Obstacle Avoidance and Navigation in the Real World by a Secing Robot Rover. Ph.D. Thesis. Stanford University. Artiticial Intelligence I, aboratory.

