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Robust Nonlinear Motion Control of a Helicopter

Alberto Isidori Fellow, IEEE Lorenzo MarconiMember, IEEEand Andrea SerranMember, IEEE

Abstract—We consider the problem of controlling the vertical ~ signals ofunknowrfrequency, amplitude and phase. This situa-
motion of a nonlinear model of a helicopter, while stabilizing the  tion corresponds, for instance, to the case in which a helicopter
lateral and horizontal position and maintaining a constant attitude. is required to landutonomouslpn the deck of a ship subject

The reference to be tracked is given by a sum of a constant and - S . . o
a fixed number of sinusoidal signals, and it is assumed not to be to wave-induced oscillations. The trajectory in question is not

available to the controller. This represents a possible situation in available in real time: rather only the tracking error and its rate

which the controller is required to synchronize the vehicle motion of change are assumed to be available in real time. A similar
with that of an oscillating platform, such as the deck of a ship in  problem has been previously considered and solved for a sim-
high seas. We design a nonlinear controller which combines recent plified model of a VTOL aircraft [9]. With respect to the former

results on nonlinear adaptive output regulations and robust sta- h th ¢ . hall - due to the hiah
bilization of systems in feedforward form by means of saturated owever, the present case IS more challenging, due to the higher

controls. Simulation results show the effectiveness of the method COmplexity of the vehicle dynamics which renders the stabiliza-
and its ability to cope with uncertainties on the plant and actuator tion onto the desired trajectory a difficult task. We propose a so-

model. lution which combines recent results on nonlinear adaptive reg-
Index Terms—Nonlinear systems, output regulation, robust con- ulation and robust stabilization of systems in feedforward form
trol, saturated controls, vertical takeoff and landing. by means of saturated controls. The focus of this paper is mostly

on the stabilization technique. Due to the intrinsic robustness of
the method, we expect the controller to perform satisfactorily
despite the effect of parametric uncertainties and unmodeled dy-
UTOPILOT design for helicopters is a challenging testbegamics. As a matter of fact, we design our controller on the basis
in nonlinear feedback design, due to the nonlinearity @ff a simplified model, and show the effectiveness of our method
the dynamics and the strong coupling between the forces ajifla more complete model by means of computer simulations.
torques produced by the vehicle actuators, as witnessed bg@nplete model and simplified model are precisely those pro-
good deal ofimportant contributions in the last twenty years (sggsed in [2]. Our design techniques assume full availability of
[1]-{8] to mention a few). A helicopter is, in general, an undelz|| state variables in appropriate reference frames; namely ver-
actuated mechanical system, that is, a system possessing miggg, longitudinal, lateral errors (and their rates of change) as
degrees of freedom than independent control inputs. Partial (x| as attitude (and its rate of change). This makes it possible to
input-output) feedback linearization techniques are not suitalgjevelop a semiglobal robust stabilization scheme, thus circum-
for the control of such a system, because the resulting zero-ggnting the problem that, for certain selections of output vari-
namics are only critically stable. Moreover, the model may kgles, the controlled system is nonminumum phase (as shown
affected by large uncertainties and unmodeled dynamics, gAq2]). The paper is organized as follows: in Section Il the ve-
this also renders any design technique based on exact cancelige model is introduced. In Section |1l we describe the design
tion of nonlinear terms poorly suited. In this paper, we addreggoblem, and in Sections IV and V we present the controller de-
the design of an internal-model based autopilot for a helicoptgign. Simulation results are illustrated and briefly discussed in
The control goal is to have the vertical position of the helicopt&ection VI. Finally, we draw some conclusions in Section VII.
tracking an exogenous reference trajectory, while its longitu-
dinal and lateral position, as well as its attitude, are stabilized
to a constant configuration. The reference trajectory which is

to be tracked is a superposition of a finite number of sinusoidal A mathematical model of the helicopter dynamics can be de-
rived from Newton—Euler equations of motion of a rigid body in
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where lM g
0 —I3 ) T fb
S(x)=1| z3 0 -z ). (6) Position
—XT2 Tr1 0
B ]
Moreover v )
— D Attitude

Mi® = — MS(w®)® + f°
Job = — S(wh)Jwb + 7 2

Fig. 1. Model of the approximated system dynamics.

whereF® = (f°,7°) is the external wrench in body-fixed co-
ordinates and// and.J the mass and the inertia tensor of th% : .

. i . . s far as the external torqué is concerned, under the previous
body. We will parametrize the group of rotation matrices bM .

) : 4 ypotheses, it is seen from [2] that
means of unit quaterniong = (qo,q) € IR*, wheregy and
q = (q1,92,q3)T denote respectively the scalar and the vector

b _ o
parts of the quaternion, satisfying the constraint T'(v) = A(Ty)v + B(Tn) v = col(a,b,Tr)  (7)

qg + ||q||§ =1. in which A(T»,) and B(Ty) are, respectively, a matrix and a
) ) o vector of affine functions of the thrugt,;, whose coefficients
Accordingly, the rotation matrix is given as depend on the geometry of the helicopter and on the coefficients

which characterize the aerodynamic forces. A sketch of the po-
sition/attitude dynamics is reported in Fig. 1.
One of the goals of the paper is to design a controller able to
(3) deal with possibly large parameter uncertainties, including the
The second equation in (1) is then replaced by the quaternmﬁlSSZW of the vehicle, its inertia tensof, and the aerodynamic

1-2¢2 —2¢3 2192 — 290q3  2q193 + 2q0g>
R=|2q1q2+2q0qs 1—2q¢7 —2¢3 2q2q3 — 2qoq1
2193 — 2q0q>  2q2q3 + 2q0q1 1 — 2qF — 243

propagation equation coefficients in (7). Collecting all possible parameters subject to
1 uncertainty in a single vectqr, we letuo stand for its nominal
Go = — 5qu” value andia = p— g for the additive uncertainty. Itis assumed

1 thatua € P, a given compact set. Accordingly, we set
q 25[(10[ + 5(q)|w’

. . . . M = Mo+ Ma J=Jo+Ja
while the motion of the center of mass of the rigid body is ex-

pressed in inertial coordinates as and, bearing in mind the fact tha{(7,;) and B(T};) are func-
Mji = Rf". @) tions of Ty,

In the specific case of a helicopter, the wrer{gh, 7*) is pro- A(Tar) =Ao(Tar) + Ax(Thr)

vided by the forces and torques generated by the rotors and the B(Ta) =Bo(Ths) + Ba(Tar) ®)

aerodynamic forces. Following [2], the thrusts generated by the
main rotor and_ the tail rotor are _denotedlm andTr, réspec- yith obvious meaning of the subscripts.
tively. The main rotor shaft is directed along the bodyaxis,
while the tip path plane of the main rotor is tilted by an angle
a around the,® axis and by an anglearound ther® axis. The
overall control input is provided by the vectGFy,, Tr, a, b). The goal of this paper is the design of an autopilot able to
The expressions gf* andr? in terms of the four componentssecure smooth landing of the helicopter on an oscillating plat-
of the control vecto(T;, T, a, b), the mechanical parametersform in uncertain conditions. The considered setup represents a
and the aerodynamic coefficients can be found, for instance passible scenario in which a helicopter is required to perform a
[2]. In particular, following [2], since the tilt anglesandb are smooth landing on a deck of a ship which, due to wave motion, is
small, we let subject to large vertical oscillation. The control objective can be
conveniently divided into two separate tasks: the first is the syn-
chronization of the vertical motion of the helicopter with that of
cos(a) =1 cos(b) = 1. (5) the deck at a given distand&. Once synchronization has been
achieved, the second task is to provide a smooth landing, letting
the vertical offseH decay to zero. Clearly, the crucial part is the
design of a controller to accomplish the first task. The problem
becomes quite challenging if the information available for feed-
back is provided by passive sensors only, yielding the relative
0 0 position between the helicopter and the deck. If this is the case,
b= 0 +RT 0 . (6) the vertical reference trajectory to be tracked by the helicopter
=T My is not available, but must be estimated in real time by processing

lll. PROBLEM STATEMENT

sin(a) ~a sin(b) =~ b

Also, we neglect the contribution @f,; along thez® direction
and we assume that the contribution®f and along the,®
direction is matched by that df,;, thus obtaining the following
simplified model forf?:
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the synchronization error. This trajectory, denoted in what fauch that the tracking objectives
lows by z*(¢), is modeled as the sum of a fixed number of si- . ref
. : . lim |z(t) — 2" (¢)| =0
nusoidal signals ofinknownamplitude, phase and frequency, t—co
namely as lle(t)]] <6 and|lq(t)]| < sforallt > T

N are attained within a semiglobal domain of attraction (that is,

2" (t) = Z A; cos(Qit + ;). (9) frominitial conditions for the plant states in an arbitrarily large
i=1 compact set), for all admissible values of the parameters of the

lant and the exosystem. It is worth noting that the controller is

In this setting, the uncertainty on the reference trajecto .
gowed to process the tracking errerof the center of mass

consists in uncertainty on the exact value of the paramet . o
(Ai, 00, Q) i = 1 N. Consequently, one of the main@nd its derivatives, but notthe statew(t) of the exosystem
19 19 1) - AL ] - 1

goals to be accomplished in the design is to let the centerad}d the vertical posmom(t). Finally, note that the ste_ady-state
%Iue of the main thrust’,; needed to keep the helicopter on

f the helicopt totically track tel . e

:)noa'lssssib(lje thee rgf:ecrza Ceer SXSE ofically track, as accura eyée reference trajectory (10) and (11) is given B (t) =
' M(g — #(w(t))). Since we requird), to be positive, we must
(2™5(t), y™(t), 278 (t)) = (0,0, H + z*(t)).  (10) have

Itis also appropriate to require that the vehicle’s attitude asymp- Fwt)| <g Vt>0 (12)
totically tracks, as accurately as possible, the constant refer-

enceR™(t) = I, which corresponds to the following possiblevhich gives an upper bound to the admissible initial conditions
choice for the quaternian of the exosystem.

(=1 ¢ = (0,007 D

The problem of having(t) to track="™/(#) can be naturally ¢ first step in the regulator design is the computation of

cast in the framework afionlinear adi‘PtiV? output regulation e feedforward control signal that must be imposed to achieve
theory (see [11], [12]), as the signal”(¢) is generated by & ,¢rq error in steady state. In the terminology of output regula-

linear time-invarianexosystem tion theory, this amounts in solving thegulator equationgor

IV. STABILIZATION OF THE VERTICAL ERRORDYNAMICS

Zref(t) =H + r(w) the problem under investigation (see [10], [11]). To this end,
H —0 consider the equation fo(t), readily obtained from (1), (6),
N and (3)
w =S(p)w
s 2 2
in which o = col(Q1,..., Q) Mz = — (1 =247 = 25) Tar + Mg.
S(p) = diag(S1, . .., Sy) To compensate for the nominal value of the gravity force, let us
_ o choose the preliminary control law
with gMo —u
0 Q; TA/[ = 1 t.(2 2 202 (13)
Si:< > i=1,....N — sate(207 + 243)
— 0 where0 < ¢ < 1, the functiorsat.(s) is the standard saturation
andr(w) = Quw, with Q defined in an obvious way. As function

customary, we assume that the values gofange over a
given compact set. Note that the role of the parameters
(A1, 91),..., (AN, pN) Of (9) is played by the initial con- andw is an additional control to be defined. The equation for the
dition w(0) of the exosystem. As far as the tracking goal foyertical dynamics is described by

x(t), y(t), andq(t) is concerned, we seek to obtailtimate .- B

boundednesby arbitrarily small bounds Setting MZ = ¢ (q)u+g[M — Mogz(q)] (14)
where

sat.(s) := sgn(s) min{|s|, c}

e=(x y z—2) é=(i gy z2-7)

1—2¢2 — 243
the design problem can be cast as follows: given any (arbitrarily dZ(q) = T : q; 5 q; 55
small) numbers > 0, design a smooth dynamic controller of — sate (207 + 2¢3)
the form Fromthis, itis concluded that, {f(¢) is small so thapZ (q(t)) =
. . 1, the inputu needed to keep(t) = z"°f(t) is simply (recall that
0 =o(n e 6, q,6") L el ;Ew)) p(t) = 27 (1) ply (
TZM :'I/JTM (77 €, é7 q, wb)

. 2
v =t (1, €, &, 0") Uuss = Mi(w) — gMa = MQS*(p)w — gMAa . (15)
1itis worth stressing that this desired attitude configuration is compatible Willhe Steady state behavws ofuis the superposnpn of aterm
the steady state requirement (10) because we are assuming the simplified mH&%@”t to enforce the vertical _reference 'accelerat|on and a term
(6) for the force generation. In the general case, assuming the force generafit@ant to compensate the residual gravity force.
model as presented in [2], the desired motion (10) is achieved with a steady state
attitude motion different from (11), as described in [10]. 2Note that2¢? + 2¢2 < cimplies¢?(¢) = 1.
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It is clear that, as.,; depends on unknown parameters andnd consider, as an internal model for our problem, the system
on the unmeasurable statethe steady-state control (1s)not

directly implementable as a “feedforward” control. However, it 51 _ (0 Hy &1

. . . - + N(ust7 ez)
can be asymptotically reproduced by means of a linear internal &2 0 Fr+ Gy¥y &2
model, as(w) is alinear function ofv. Accordingly, we choose Ui =E1 + Waby

the control: as the sum of a stabilizing control and the output of

an internal model, i.ey = us; + u;m. The internal model will where

be designed on the basis aflaptive output regulation theory

(se(? [9] anq [12]). In fact, (14) is a two-dimensional system. N(ug, e.) = <(2 ) Uy — (Ijj?) GoMoé.
having relative degree 2. Hence, the hypotheses presented in 2 2

[12] for the design of an adaptive internal model, hold. Define N .

7 The control system is rewritten in the form

0 0 . .
®(0) = <o S(g)) Ile) = (1 TI:(e)) £ =(F + GU)¢ + Guy, — FGMé.
in which u =W + ug (19)
ithd = (1 {y). 1 th taris k , 0, =
Do) = (=02 0 -2 0 ... -2 0) Wi ( 2 ). In case the vectaris known, we set,

¥, ,. Otherwise, we consideifg to be a vector of parameter
and note that, by construction, the map estimates to be adapted, and we choose the update law (see [12])
—gMa @2 = _ng(éz + klez> (20)
m(wm) = 1w
with k; and~ positive design parameters. The control lais

satisfies, for every, andp, theimmersion condition then completed choosing tégh-gainstabilizing feedback
T S(ew =B(e)r(w, ) st = ~ha (6 + kre:) (21)
uss =I'(0)7(w, ). (16)  wherek, > 0 is a design parameter. Changing coordinates as
If the vectorp was known precisely, the matricégo) andI'(p) € x =t — 7p(w, p) — GMé.

could be directly used for the design of the internal model. Con-
versely, ifp is not known, a further step is needed. Fgtbe a
2N x _2N Hurwer matrix andG, be 2N x 1 vector such thgt_ and letting# — (0 W, ), thee., &, ¥, dynamics in the new
the pair(F», G5) is controllable. Then, using standard passwl% .

o . oordinates read as
arguments, it is easy to show that there always exists 2NV
matrix Ho such that the pair

\112 = @2 2:‘1’2 - \112,9 (22)

Mé., =ug + U,x + U,GMé, + Valy + v

y =F FGMaé, + G
F:( 0 H2> G:<0> 17) X=Fx+ Atz +Gu
-Gy Iy Gs Uy = — &l (6, + kre.). (23)

is controllable, and the matrik’ is Hurwitz. From [12], it is
known that, for any vectas € R, there exists a x (1+2N)

row vector¥,, of the form 2i=(e. é. x Up)T (24)

wherev = (1 — ¢Z(q))(gMo — u). This system, setting

To=(1 Ta,) can be rewritten in the form
such that the pair(®(p),I'(0)) is similar to the pair
(F + G¥,,7,). As a consequence, there exists a map
T,(w, n) that satisfies, for every and p, the immersion
condition

z = f(Z,t) —I—g(Z,t)(l - ‘;bf(q)) (25)

Note that the dependence omwf the vector fieldsf(z,¢) and
9(z,t) arises from the dependence bof the term7,(w, p) in
or, _ &(t), inturn induced by the dependencet@f w. Following [9]
ow S(e)w =(F + G¥,)Ty(w, ) and [12], it can be shown that, for a sufficiently ladgg system
Uss =V, To(w, ). (18)

2= f(z,1) (26)
Denote now by, andé. the third components of the vectars
ande, namely (or, what is the same, system (2B))|¢|| is sufficiently small so
that¢?(q) = 1) has a globally asymptotically stable equilibrium
e.i=z—2" e, =z-7 at (e, é.,x, ¥a) = (0,0,0,¥%) for some¥3 which, in turn,
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coincides with the origin in case all the modes of the exosystem
are excited. Without loss of generality, we henceforth assume (25) Y= (30)-(33)
that this is the case.

This result concludes the stabilization of the vertical dy-

namics. In particular, in case the attitude is kept sufficiently 7 (@.20)
close to the desired one so thdt(q) = 1, the(4N + 1)-order q M v
controller (13), (19) and (21) with adaptation law (20) is able to @,@®, 1N =
steer asymptotically the vertical errey to zero. In Sections V

and VI we will show how to design a control law for the input
v to simultaneously achieve the conditigp(q) = 1 in finite Fig- 2. Overall approximated system dynamics.
time, and stabilize the lateral and longitudinal dynamics.

Thez — y dynamics are viewed as a system interconnected to
V. DESIGN OF THESTABILIZER the attitude and vertical dynamics, according to the structure
A. Lateral and Longitudinal Dynamics depicted in Fig. 2. Basically, the choice of the control input
able to stabilize the overall system will rely upon the following
Yonsiderations. We look at the — y subsystem as a system
with “virtual control” ¢ and exogenous input,. The latter, ac-
cording to the results presented in Section IV and by virtue of
(28) and (29), is an asymptotically vanishing sigrabvided
gMy —u = gMy — UE + ky(é. + kyez) that the attit_ude variable is_ kept sufﬁciently smallby means of
the control inputv. In the light of this, the control law will
which, keeping in mind the definition of in (22) and (18), be designed on one hand to forcto assume sufficiently smalll
yields values so thap?(q) = 1 in finite ime and, on the other hand, to
render ther — y subsysteninput-to-state stable (ISSyith re-
spect to the inpug,,. According to classical results about input
to state stability, this will provide asymptotic stability of the lat-
eral and longitudinal dynamics. This task will be accomplished
Y- (2z,w) = UT,(w, ) + (U + W,)(x + GMé.) using apartially saturatedcontrol law, obtained combining a
—ko(é. + kres). (28) h|gh gain controller for the attitude dy_namlcs_anr_jested sa.t—
uration controller for ther — y dynamics. As it will be clari-
Note that, for alkw € R*" fied in Section VI, the presence of the saturation function plays
a crucial role in “decoupling” the attitude from the— y dy-
y(0,w) = 0. (29) namics, in such a way that the two actions can be performed

Bearing in mind (4), (6), we obtain the following expression fopimultaneously.
the longitudinal dynamics:

We start by deriving the expression of the lateral and longit
dinal dynamics resulting from the choice of the main thffigt
performed in Section IV. First, note that the tegi/y, — v =
gMy — u; — ug reads as

gMo —u = gM — Mi(w) — y,(z, w) (27)

where

B. Stabilization of the Attitude Dynamics
.a” =t In this section, we deal with the problem of achieving the
My = —d(t)g2 + m(q,t)q193 + na(q)yz(2z,w) (30) condition$z(¢) = 1 in finite time by a proper design of.

First of all, we use a preliminary control law which is meant to

where . remove the nominal part a8(7,) from (7) and (8), i.e., we
iy — 2gM = Mi(w(t)))go(1) choose
d(t) = : ! (31)
1 —sate (2q1 (1) + 295 (1))
_2(gM — Mi(w(t))) v = Ag(Tar) 'V — Bo(Tr)] (35)
m(q/ f) - 71 _ 2 2
1 — satc(2¢7 + 243) . S . : ) .
20+ a4 2 in which v is an additional control input to be defined. This
na(q) = 7193 + 2qo0q2 32) i on for
x 1~ sat. (242 + 2¢3) yields a new expression f
Note that we have treated the presence of the forcing tefih (V) = L(Ta) v + A(Tar) (36)

as a time-varying entry, whilé(t) plays the role of a bounded
time-varying coefficient. Likewise, the lateral dynamics can b&here
put in the form
. L(Tar) =1 + Z(Tar)
¥y= A(Thrr) =Ba(Tar) — Z(Tar)Bo(Tar).
Mys =d(t)q1 + m(q, t)g2q3 + ny(q)ys(z, w)  (33)
with Z(Tar) := Aa(Tar) Ay " (Tar). The control laww is then

where chosen as

2q2q3 — 2
ny( )_ q293 qoq1 (34)

T 1—sat(2¢2 +2¢3) V=K' — K;K3q + KyKsus (37)
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whereK3; > 0 andK, > 0 are design parameters, angl is Pz
an additional control input which is assumed to be bounded by ]

o . Dy (30)-(33)
a positive numben.,, i.e., g

[[ua(t)|] < A2 forallt > 0. (38) q

The bound (38) will be enforced by choosing as a saturated
function of thex — y states. As it has already been remarked, A(Twr) Ug
the first goal of the control law (37) is to achieve the condition — (40) N
¢Z(q) = 1 in finite time. To this end, we show that this can

be accomplished by a suitable tuning of the design parameters
K3, K, and),. However, since the expression of the torgtie Fig. 3. Overall system dynamics for> T*. The external signalg. , p,, and
in (36) depends off’y; which, according to (13) and (27), is aA(Tw) are bounded withp,, andp, asymptotically vanishing.

function of z andw, we first need to establish a result which

guarantees boundednessTof;. Fix an arbitrary compact set with initial conditions(¢(0), w®(0)) € QxQ andgo(0) >
Z of initial conditions forz and let the initial condition forw 0 are bounded, and satisfy

range in acompact sg¥ such that (12) holds for each trajectory

w(t) originating inW. Pick (zg,wo) € Z x W, and letz(t) Q(t)>e V=0

denote the corresponding integral curve of (26), whichis knownpy ¢=(4(4)) = 1 for all ¢ > T*.
to asymptotically decay to O das— oc. Then, there exists finite : -
numbersT?, and T}, such that (for compactness, we drop the Wi
time t)

Proof: See the Appendix. ]
th the previous results we have been able to show that
tuning the control law (37) wittK3 and K, sufficiently large
—M(#(w) + g) — ya(Z s, w) < 39 gnd V\_/ith./\? su_fficiently sn_’nal_l, thg conditiop?(q) = 1 is ft_JI-
1 — sat, (2¢2 + 2¢2) =M (39) " filled in finite time 7% This, in view of the results established
earlier in Section IV, proves that the suggested control law is

for all (z9,wo) € Z x W, for all ¢ satisfying|l¢| < 1 and aple to yield one of the two main design goals, i.e.,
forall t > 0. These bounds df,; are instrumental in showing

that for any arbitraryI™ a suitable choice o3, K, and A, tli_}lolo |2(t) — 2" ()] = 0.
renders the conditiop? (¢(¢)) = 1 fulfilled for all ¢ > T*. This
is established in the next proposition.

Proposition 5.1: Suppose there exists > 0 such that

Ty <

It remains to show how to fulfill the other goal, which is ulti-
mate boundedness by arbitrarily small bounds of all other posi-
tion and attitude variables. Note that in the interMall™] the

0< 20T < L(Ta) + LT (Tag) Y Tar €T, T, lateral and longitudinal dynamics (30)—(33) behave as chains of
_ integrators driven by bounded signals, therefore do not posses
and letl3, 6* > 0 satisfy finite escape timesThis, indeed, allows us to restrict the anal-

1 1 1 1 1 *
NP NP L quy yS|s_t0 the syst_em sketched in F|g.3(_)n the time intervall™.
AT < BIATI < 87 ¥ Tor € [Tar, Tir] In Fig. 3, the signalg,. andp, are defined as
Choose) < ¢ < 1 arbitrarily, and fix compact set®, 2 of — 110 (Q)ya (7, w) — 1, (@) (7, w)
initial conditions forq(¢) andw®(t), respectively, withQ con- Pe = = Q)Yal2) Py = Ty d/¥a%,

tained in the set and, according to the results established in propositiop5(1)
. andp, (t) asymptotically decay to zero.
{aeR®: gl < v1-<2}. py(t) asymptotically decay
) . C. Stabilization of the Lateral and Longitudinal Dynamics
Then, for anyl™ > 0 there exista numbek'; > 0 and positive ) ) ) - )
numbersi3(K3) and K7 (K3), both depending ok, such The goal is now the design af, in order to stabilize the inter-

that for all K5 > K%, Ay < M5(K3) andK, > Ki(K3), the connected system in Fig. 3, and to provide adequate attenuation
following hold. B B of the external disturbances, p,, A(Th). It should be noted

that, as opposite tp, andp, which are vanishing (7) con-

a) The trajectories of the system ; L ) ; ]
stitutes a nonvanishing perturbation on the attitude dynamics, as

do = — quwb it depends on the main thrug,, which in steady state is dif-
2 ferent from zero. For this reason, in general we cannot expect to
q :%[qOI + 5(q)]w® reject asymptotica]ly the influepce zﬁ(bTM) and achieve con-
" b } vergence of the attitude dynamicgtow”) = (0, 0).4 However,
Jw” = = S(w”)Jw” + L(Tam)v + A(Tar) we are able to show that the effectfcan be renderedrbi-
V=— K’ — K,Ksq+ KysK3us (40) trarily small by a proper choice of the design parameters. The

3Note that, by definitionL(Tw) = I + Aa(Tar)Ag '(Tar). Thus, the 4Note that, although in steady state T, ) is a function ofw, an internal
following requirement onZ(Ty,) + L* (T ) is essentially a restriction on model similar to the one developed in Section IV cannot be employed to asymp-
the relative variation of4(T, ) with respect to its nominal valug, (T, ). It  totically reject the effect ofA(T', ). As a matter of fact, the entries of(T' )
indeed holds ifl A (T ) Ay ' (Thr)|| < m*I for somem* < 1, whichisnot are, in general, rational functions &%, and a linear immersion does not exist
a terribly restrictive assumption. in this case.
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controller will be designed using, andg, as virtual controls In the new coordinate$ = (o, (1, (2, (3, (4)T, the system of
for thez — y dynamics, and then propagating the resulting cofig. 3, augmented with (41) and the contiglprovided by (43),
trol law through the attitude dynamics. Keeping in mind that wean be put in the following form:

need to accomplish this goal using bounded controls, an added

difficulty is given by the presence of an unknown time-varying _ K
coefficientd(t) in (30)~(33). Go==doo {3 0]+
Saturation functions, on which the control law described . K, , [ Ko .
below is based, are functions : R™ — IR" defined in the G =-Xo (A_1C1> + PoGz + Koo (/\—OC0> o
following way. Forn = 1, o(s) is any differentiable function ) . K
satisfying My = — D(t)Pydgo (}\—2(2>
2
do(s) Mo (B ) &+ D
jo'(s)] := | =7~ | < 2forall 5 + MK Pro /\—1C1 G+ D(t)¢s+p
S
: 1
so(s) >0forall s #0,0(0) = 0. € 25[%[ + S(@)](Ca — K3(3) — 12
ols) =sgn(s) for|s| 2 1 Jls=— S(wh)J(C — K3G) — KaI(Tar)Ca
Is| <|o(s)| < 1for|s| < 1. b TKsGs + A (44)
Forn > 1 wherePy = Pf‘
o :col(sy,...,8,) — col(a(sy),...,0(s,)). dct) m(Q)gs(t) 0
D(t) = t —d(t 0
To remove drifts in the lateral and longitudinal position due to ®) m(qz]qg( ) 0( ) M

a constant bias i\, we begin by augmenting the system dy-

namics with the bank of integrators T
andp = (py, p. 0) .
The next proposition is the main result of the paper: it shows

fle =% Ty =Yg = 45 (41) how, for the control law (43), a proper tuning of the parame-
Set now ters/_\?,i =0,1,2, andKj,_j =0,1,2,4 yields input—to-s_,tate
stability for system (44) with respect to the exogenous inputs
10 1 0 0 andA, with a linear gain with respect to the inpfitwhich can
P=(0 1 P, = L 0 —1 0 be rendered arbitrarily small. This means that, sin@symp-
0 0 V3 0o 0 1 totically vanishes and\ is asymptotically bounded by a fixed

quantity, the state of the system is ultimately bounded by a quan-
tity that can be rendered arbitrarily small as well. In looking at
the next result, it is important to notice that the choice of the de-

n y Ko sign parameteK; is dictated by Proposition 5.1 only, and does
on(2) o= () ()

define the following new state variables:

o not play any role in the stabilization procedure. However, since
the value ofK; influences (put it is not influenced bythe other
92 K, design parameters, we assume it fixed once and for all. Further-
(o := + Piho /\—C1
1

xT

T2 more, we make explicitly use of the bounds which, according
la to the definitions in (32)—(34) and the assumption (12), exist for
» the functionsm(q, t), andd(t). In particular, we let/V > 0

and fix, for the control lawus, the following “nested saturated
2 9 andd® be such that

structure
K ~
uy = —Pyhao (A_<> (42) im(@)] < MY, 0<dk<d(t)

whereK; and);, i = 0, 1, 2, represent design parameters. Nofer all t > 0. Without loss of generality, Proposition 5.1 allows
that, by the definition of saturation function, this choiceugf US to assumey(t) > ¢ > 0 forall # > 0. With this in mind, we

renders the constraint (38) fulfilled. Finally, let have the following result.
Proposition 5.2: Let K3 be fixed and letk* and A}, i =
(3= q — s Coi= Wb+ K3(y 0,1, 2, be such that the following inequalities are satisfied:
* *
so that the overall control law (37) can be rewritten in the more 2_11* <A} I/\(_Q; <A} (45)

compact form

~ 51t is not difficult to show that number& *’s andA*’s satisfying the given
v =—Ky(4. (43) inequalities indeed exist (see [13]).
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l p Lemma 5.1: Let K3 be fixed and assume thaf(t) > & > 0
andL(Ty(t)) > Iy, for allt > 0. There exist positive numbers
A5, K3(K3), K5(K3) andryy, ra such that, for al, < A3,
K, < K3(Ks3)andK, > K5 (K3), system (50) is ISS, without
restriction on the inputs, with linear gaifsw,rA/K4). In
C (¢3,¢q) particular, if |[W(-)|lc < o0 and [|A(")]lec < o0, then
3 (C3(t), Ca(t)) exists for allt > 0 and satisfies

(€0, 615 €2)

fA N
. N < VIV (OMlas == A ||a b -
Fig. 4. Closed-loop system as a feedback interconnection. ||(C3( )’ C4( ))” = fnax {TW ” ( )“ Ky “ ( )” }
As for the upper subsystem in Fig. 4, the following result, whose
proof is again given in [14], holds.

12K_5 <1 60 K 1 (46) Lemmab5.2:Let \; andK;, 7 = 0,1, 2, be chosen as in (48)
Ky dt K3 with \* and K7, satisfying the inequalities (45)—(47). Then,
there exist positive*, Ry, 71 andrs such that for alD < € <
and €*, the output (49) and the staté, (1, (2) of system given by
S LN the first three in (44) satisfy an asymptotic bound, with nonzero
MEX3" + 4K A < 2d. (47)  restrictionR,; with respect to the inpyt and restriction\, /2

) N . with respect to the inpufs, with linear gaingry, ) with re-
Then, thgre exist positive numbeks;, ¢, Ry, 7 andya such  gpact to the state and linear gaims, 2 K») with respect to the
that, taking output. In particular, if|p(-)]|ee < Rar and||¢s(-)]|oe < A2/2,
A = €0 andK; = eK?, i=0.1,2 (48) then(¢y(t), (2(t), ¢5(¢)) exists for allt > 0 and satisfies

forall K, > K} and0 < ¢ < ¢*, system (44) is ISS with IW()lla < max{r4|lp()lla; r2 K[ (lla} -
restrictionR s on the inpufp, no restriction on the inpuh and
linear gains(r, ya/K4). In particular, if||p(-)||c < Ry and
IA()|leo < o0, then((t) exists and is bounded for all> 0

The two lemmas contain all that is needed to study the proper-
ties of the interconnection in Fig. 4. According to the small gain
theorem for ISS systems with restrictions given in [15], the re-

and sult of the proposition follows if the restrictigf(s(¢)|| < A2/2
A is satisfied in finite time and the small gain condition
1<l < max{r|p(-)|la, EIIA(-)IIa}- g
rwreKs < 1

Proof: System (44) can be seen as the feedback intercon-

nection of two subsystems, as shown in Fig. 4. The upper sifaids. Without loss of generality, suppose that the numbar

system is a system with stat€, (1, (2) and input(p, (3), dy-  Lemma 5.2 is such that
namics described by the first three equations in (44), and output

W defined as (€)°X5 < A3(Ks) K3 < K3(K3)
W = —iy — K2Q(s (49) where)3(K3), K3(K3) are those defined in lemma 5.1, so that
any choice of\, and K fulfilling (48) with ¢ < ¢* also respects

where the conditions indicated in Lemma5.1. Using (48), it is seen that

1 K. ~ the small gain condition is fulfilled it is sufficiently small so

Q=P (20 ) D). that
M A2
1

The lower subsystem is a system described by the last two equa- €<

_
tions in (44) with—as replaced byK»>Q¢s + W, that is rur2 K

1 As far as the restriction offi(5(¢)|| is concerned, observe that
€ 25[%[ + S(@)](C — K3(G) + K2Q() G + W

. (K - K
I == S(w")J (= K3(s) — KaL(Tar)a W= KyPo ()\_22@) [_MD(t)PZ/\QJ <)\_22<2>

+ JK3(s + A. (50) K\ 1

+ K Pio )\—Cl G+ idE
It will be shown now that the system in Fig. 4 is a feedback in- !
terconnection between ISS systems which satisfy the small gaigt 7+ be such thaflp(t)|| < R forall t > Ty (such aTy
theorem. First, let us turn our attention to the lower subsysteg}ways exist becaugt) as;mptotically dec_ays to zero). Then,
for which the following result, proven in [14], holds. simple computations show th& (¢), for all t > Ty, can be

6The notation||¢(+)|. stands for theasymptotic normof »(-), that is, bounded by a term which depgnds only,\)randKi, i =0,1,

le(la = limsup, _, _ |l«(®)]]. 2 and not on({o, ¢1,¢2)- In particular, ifA; andK;, ¢ = 0, 1,
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2 are chosen as in (48), it is possible to claim the existence of TABLE |
numbers’; > 0 andl’s > 0 such that NOMINAL PARAMETERS OF THEPLANT

Jr =0.142413 J, = 0.271256 J, =0.271492
W) < T1e® + DaRase (51) Tar = —0.015 [ ya =0 har = 0.2943
. . £ = 0.8715 hr =0.1154 M =49
forall t > Ty. SinceA(t) is bounded as well, from Lemma 5.1 o o (o
we see that for any > 1 there exists a timé} > 77 such that Og = 0.004452 Dg = 0.0304 e — 223
2 2141 C< =0.005066 | DY =0.008488 | c% = 25.23
G < W I = AC)]
max <§ ™ w . — -
3 =P W <K, i TABLE I
CONTROLLER PARAMETERS
forall ¢ > 7 and, hence
Vertical
) . k1 =0.1 ko = 45 vy =
A
IGOII < 2prw (T16* + T2Rare) + 207 A0l (52) dynamics
4 dynami fs‘ Ko=0.09 | K3 =0.081 | Ko =0.75
forallt > T5. The restriction fof|(5(t)|| is fulfilled on [T, co :
forall . > 7 (0] (15, 50) Atk | 7 —os % Toco
if dynamics
Saturation
TA /\2 Ao = 2000 A1 =81 A2 =0.295
2prw (F1€® + TaRpse) + 2p7||A(.)||OO <7 69 levels
4

Again, keeping in mind (48), (53) is fulfilled

P “w if the following 45 well. Therefore, we are able to conclude the section stating
three conditions are satisfied:

our final result.
Theorem 5.1:Consider the dynamic controller given by (13),
(36), (19)—(21), and (41)—(43). Let the design parameters be

9, A 1AQ)] <62>\_§ chosen according to Propositions 5.1 and 5.2. Then, for any ini-
", o SE TG tial conditionw(0) € W, z(0) € Z, (x(0), #(0), y(0), §(0)) €
R, (¢(0),w"(0)) € Q x Q, with ¢o(0) > 0, the state trajec-

The first inequality can be fulfilled by a sufficiently smail . : . b .

Oncee has been fixed, the second and the third can be satisffé)criy in the coordlnateée_(t), e(t)7.q(t)’ w"()) is captured b_y a

. . e . neighborhood of the origin, which can be rendered arbitrarily
respectively choosing a sufficiently small value for the restric-

tion R,; and a sufficiently large value dt,. small choosingk, sufficiently large, and in addition

*

A S
2erF163 <62F2 2prw o Ryre < 62F2

u lim |2(t) — 2™ (t)| = 0.
Proposition 5.2 states that there always exists a choice of the t—oo

design parameters such that the system (44) is ISS with respect
to all exogenous inputs, and the gain associated to the ifsput VI. SIMULATION RESULTS
can be rendered arbitrarily small by increasikig. Remark-
ably, this can be done letting the other controller parameters
changed. It is worth noting that the method relieshigh-gain
feedbaclkas far as the(, is concernedlow-gain feedbackor

We present in this section simulation results concerning a
lérﬂ)'ecific model of a small unmanned autonomous helicopter de-
scribed in [6]. The nominal values of the plant parameters are

d d ion f ; h i given in Table I. We assume parametric uncertainties 0%
Ko, Ky and K>, and saturation functions whose amplitilie - ¢ 16 nominal values, therefore we are in presence of a non

can be chosen_arbi_trarily smallviathe scaling pa_ramze&ince vanishing perturbing term (73,). The oscillatory deck mo-

K4 can be arbitrarily large and, can be arbitrarily small, the yjo, js assumed to be generated by a four-dimensional neutrally
results of this proposition match with those of Proposition 5.1;-e exosystem, with parameters: (1, 1.5) and initial con-
which indeed required a large value fat; and a small value ditions w(0) = (3,1,2,3). Following Sections IV and V, the

of A2. As a consequence, the vertical error dynamics is globalyntroller is designed on the basis of the simplified model of
asymptotically stable, which implies thi(-)[| = 0. There- he actuators given by (6) and (7), while simulations are per-

fore, Proposition 5.2 implies that formed on the fully nonlinear actuator model reported in [2]. It
NN should be noted that the presence of unmodeled actuator cou-
16 < —4” (oo plings and parametric uncertainties has the effect of producing

) ) . . a steady-state manifold for the attitude dynamics different from

Recall that| A(-)]| is bounded by a fixed quantity. Since thgpe constant configuratio(q) = I, since it is readily seen
valug of K4 can be increased arbitrarily while the other gaing,, [2] that a time-varying?(q(w(t))) is needed to offset the
K, i =0,...,3 are kept constant, the above result ?olds fQlertical steady-state error (see [10]). On the other hand, the pres-
the system in the original coordinatés(t), é(t). (t).w"(t))  ence of nonlinearities in the mafihs, v) — f* destroys the

TKeeping in mind the expression d/, the bound (51) can be easily Immersion condition (16), and thus exact asymptotic tracking
obtained using the definition of saturation function, thecaling rule in (48)  of 2**f(¢) cannot in principle be achieved foft). Nevertheless,
and observing that the quantify’ (K1(1 /X1)a"(K2(2/X2)C || can be upper thanks to the intrinsic robustness of both stabilization methods
bounded by a linear function of The latter bound can be computed from . . .
the expression of, and¢, in (44) assuming without loss of generality that?@S€d on nonlinear versions of the small-gain theorem for ISS

€| < X\i/K., i =1,2,as otherwise’ (K;(;/\;) = 0. systems and internal model based regulation, we expect to be
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7 T T T T T T T x10° vector part of the quatemion q(t)
: T T T T

x(t)

L L 1 1 1 1
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Fig. 5. Tracking erroe(t) — z™f(¢) + H(t)[m].

1 1 ! L 1 ! !
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scalar part of the quaternion q 01()
1 T —
y(t)
15 T
0.991 H
10 b
0.981
5 i
0.97
ok
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vector part of the quaternion q(t) s
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Fig. 8. Longitudinal and lateral displacemertt), y(t)[m].

Thrust T,

Fig. 6. Quaterniong(#).

201

able to achieve practical regulation, that is, convergence in fi- ° % ¢ %m0 smo w0 w0
nite time to a small neighborhood of the origin for the regulation |, . , _ Tmeh
errore(t), by a suitable choice of the design parameters.

In all simulations, the control parameters have been selected
as in Table 1. The vertical biaH (¢) has been chosen as 1

Ht) = {3 t € [0,250)

1e—0.05(t—250) 4 > 250.

0 5‘0 1(‘)0 1;0 2(‘)0 2;0 3(‘)0 3.;:0 400
Initially, the update law for the adaptive internal model has been
disconnected, with the natural frequencies of the internal moddl
set at a wrong initial guesé = (1.8,2). Then, the adaptive

law has been switched on at time= 120 s. The reported attitude does not converge fo= I, as a result of the model un-
simulation refers to the vehicle initially at rest, with initial at-certainties. As expected, while the attitude dynamics converge
titude and position given bg(0) = (0.98,0.138,0.138,0) and rapidly to the steady state (in about 40 s), the lateral and hori-
(2(0),y(0),2(0)) = (10,10,10) meters respectively. Fig. 5zontal displacements are brought to zero in a slower time scale
shows the vertical error(t) — z**f(¢) + H(t). The vertical po- (see Fig. 8). The separation of the time scale into a faster and
sition reaches, in less than 50 s, a sizable steady-state error,@géower dynamics is a common feature of control laws based
to the initial mismatch of the natural frequencies of the internah a combination of high-gain and low-amplitude control, as in
model with those of the exosystem. After the adaptation law hasr case. Finally, Figs. 9 and 10 show the four control variables
been turned on, the vertical error is regulatedt@), which de- Ty, Tr anda, b respectively. It is easy to see that the controller
creasesto zero after time= 250 s. Fig. 6 shows the time history succeeds in tracking the unknown reference and in stabilizing
of the attitude parameters. Fig. 7 shows the steady-state respdhserehicle configuration, despite the large uncertainties on the
of the attitude parametegst): it is readily seen that the vehicle plant model.

Main rotor and tail rotor thrustB,, (¢), T (¢)[N].



ISIDORI et al. ROBUST NONLINEAR MOTION CONTROL OF A HELICOPTER 423

Tiltangle a,

0 i i . ) . i , more elaborate. In Section V-B a lower bound 65 and K3
and an upper bound foxy have been found (see Proposition
-0401{ T “PW WA A MWW' 5.1) guaranteeing on one hand that the helicopter never reaches
Fﬂ { ‘ Af i "’m'ﬁ M; i the singular configuration (item a) of the proposition) and, on
the other hand, that the conditiabf(¢q) = 1 is achieved in
finite time (item (b)). The latter achievement guarantees that
004y % 10 i 20 o w0 0 40 in finite time the overall system, which is sketched in Fig. 2,
behaves as the cascade of @eymptotically stablesystem
with statez driving the attitute/lateral/longitudinal system with
state(y, y2, T, 72, ¢, w®) (shown in Fig. 3). Finally the system
in Fig. 3 has been shown to be ISS with respect to the input
(py,p) (Which is asymptotically decaying) and with respect
to the inputA (with an asymptotic gain which can be rendered
, , , , , ‘ , arbitrary small by tuning the parametefs,, K; and J\;,
o ® 0 e 2 X0 % w0 1 =0, 1,2). This indeed is the main result of Proposition 5.2.

Fig. 10. Tilt angles:(¢) andb(t) [rad.

Tilt angle b|
T

APPENDIX

A. Proof of Proposition 5.1

VIl. CONCLUSION AND SUMMARY OF THE DESIGN METHOD . L
In order to prove Proposition 5.1, we need the following in-

We have presented an application of nonlinear robust regrmediate result
ulation and nonlinear small-gain methods to the challenginglemma A.1: Fix compact set€, W and let’};, T}, be such
problem of designing an autopilot for helicopters landing undgfat (39) holds for al(zg, wo) € Z x W, for all ¢ satisfying
uncertain conditions. llg]l < 1 and forallt > 0. Letz(¢) denote the integral curve of
In summary, the overall controller is given bywertical (25) passing througheg, wo) € Z x W at timet = 0. Let Ty
regulator yielding the main rotor thrusty; and anatti- be such thak(t) is defined orf0, Tp] for all (zg, wo) € Z x W.
tude/lateral/longitudinal stabilizecomputing the input vector Then, for anys there existI™* < T, such that, ifp?(q(t)) = 1
v = col(a, b, Tr). As far as the vertical regulator is concernedor all ¢t > 7T*, z(t) is defined for allt > 0 and

combining the control laws (13), (19), (20), and (21) yields )
—M (#(w) + 9) — ya(2,w)

L ES . . _ . Tl, _ 5 < < Tu 6 54
;5 =(F +TG\11)5 koG(és + kie.) — FGMyé. M S gt 2 S M +0  (54)
II’ = - .7 k z . .

? 7% (e; e ) for all (zg,wp) € Z x W, for all ¢ satisfying||¢|| < 1 and for
TM :gMO_\II£+k2(ez+klez) all t Z 0.

1 — sate(20f + 2¢3) Proof: Consider the compact sé&. = {z : d(z,2) <
while the attitude/lateral/longitudinal stabilizer, combining}, whered(z, Z) denotes the distance affrom the setZ.
(35), (37) and (41), reads as Then, bearing in mind the definitions af.,, T in (39) and

. . the continuity of the functions involved, one can easily see that
e =TTy =Y Mg = 13 for anyé > 0 there is= > 0 such that
v =Ao(Tn) ' [-Ksw® — K4K3q
—M (i — y,(Zy,
+K4K3uz — Bo(Tar)] T, —6 < (F(w) + 9) = pu(Zs, w) <Ti +6 (55)

1 —sat. (2¢7 + 2¢3)
whereus is the nested saturated control law specified in (42). o
The overall controller depends on 11 design parametgks, for all (zo,wo) € Z. x W, for all ¢ satisfying|lq|| < 1 and
ko, Ki, A\j with @ = 0,...,4,j = 0,1,2. We have shown forall ¢ > 0. Thus, to prove the lemma, it suffices to show that
that, given arbitrary large compact sets of initial conditionghere is atime™ < Ty such that, for allzo € Z

of uncertain model parameters and of data (frequencies,
amplitudes and phases) characterizing the vertical motion of
the landing deck, it is possible to tune the design paramet
in order to achieve the desired control objective. The over 5) is locally Lipschitz and thaf x W is a compact set. m

closed-loop _system has d|men3|m + 4N, whereN is the .. This lemma essentially guarantees that for any 0 there
number of sinusoidal signals which approximate the Vert'CQJ(istT* such that, ifsZ (¢(1)) = 1 forall ¢ > 7*, then the main
motion of the ship V' = 2 in the simulation results). The thrust T, (t) satisfies

tuning of the vertical regulator (namely of the parameters
k1 and k3) has been discussed in Section IV. In particular, T, —§ < Th(t) < Ty —6

while v and k; are arbitrary positive numbers, the value

of ko must be chosen sufficiently large in order to globallyor all ¢ > 0, for all (z(0),w(0)) € Z x W and allq(0) € Q.
asymptotically stabilize system (23) withZ(q) = 1. The Proceeding now with the proof of Proposition 5.1, note that as
tuning of the attitude/lateral/longitudinal stabilizer is indeedy, ¢) and(—qo, ¢) represent the same orientation, without loss

z(t) € 2. forallt € [0,T7].

Swever, this is a simple consequence of the fact that system
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of generality we can always assumg0) > 0 if ¢(0) € Q. while the second reads as
SinceQ is contained in the open ball of radiyél — 2 around

the origin inIR?, it turns out thaty(0) > ¢. Change coordinates M&; =—aTS8(& — K3q)J[@ — K3q]
as ? — K40 L(Typ)@ + Ky K3oT L(Tay)us
@ = w’ + Kaq + @7 A(Twr)
and consider the following Lyapunov function candidate: + %@TJ[(JOI + S(g)][w — Ksq].
V(go, @) = (110__’12 i %QTJ& (56) Rearranging terms, we obtain
Vigo @) = — 5r o Kollal*+

2(qo —€)?
o7 1—c¢
lgol = p = ¢3(q) = 1. 2(qo — )
+&T [K3S(q)J — K4L(Tn)

+ B+ )] @

defined on the se, 1] x R®. Let0 < p < 1 be such that

> K3
51— K35(q)J — 7(IOJ q

Without loss of generality, assume> ¢, and define

1-p
9= .
p—¢ + T A(Tar) + K3 Ka&" L(Tas)us. (58)
Pick0 < iy <If,l2 > 15,6 > 6* and, using lemma 1.1, choose gt ¢, be suchthal < ¢; < 71| < 2. Sincel|S(q)]| = |4l

T* > 0insuch away that, i (q(t)) = 1 forallt > T*, then and||¢|| < 1, the derivative o} along solutions of (40) satisfies

20T SL(Tar (1) + L7 (T (1) Via0,5) <~ Kyl
LT <o AT )] < 6 (@0—2)

+ [2K362 — K4l1]||u~)||2

forallt > 0. Let K3 be a positive number such that 3 5 l-¢ .
+ | 5K5c2 + 50— | @]l
1 2 2(qo —¢)
VO.c0) e (15K ) <0 60) + KKl |zl + 51131

for all (g0, @) € (e,1] x R?. What follows is an extension of

forall¢(0) € Q andw’(0) € Q. The existence ok; satisfying  (he results in [16] and [17]. Consider the compact®et: ;.2 N
(57) is guaranteed by the fact tHat(¢o(0), @(0)) is a polyno- {(q0,@) : @ = 0}, and note that on this set
mial function of K3, and the initial conditions range on a com-

pact set. Fix once and for a3 > K%, and choosg > /4 in . R
such a way that V(qo,®) < —K3

V(o @) (59)

To see that this is indeed the case, it suffices to notice that, on

b ~. ~. 3. ~T 7~ 2
Q= R°: J 21},
(.07 € Qx Q= we{weR e Jo <2} the setSy. 24,2 N {(do,@) : & = 0}

Letc? = max,eo{l — qo/(q0 — €)} and consider the compact o 1—qo
SetsSy.9, S, 42 ANASy 24,2 Where WithSy, ¢, , £> > £1 > V(go, @) R and
0, we denote ] 0 1—¢

Sh,ﬁz = {(q07‘:)) € (571] X ]R3 :gl S V(Q07‘ZJ) S £2} .

and, thus, (59) holds true if
It is not difficult to see that

1-q
- >1-— 60
(qvwb) € Q x 2 = (qﬂvw) € SO,CQ-HJQ' qgo — € o o ( )
Furthermore, if(qo, ©) € So,» which is always satisfied. We prove now that (59) holds every-

where onSy .- ,2. To this end, observe that, by continuity,

1—qo . inequality (59) continues to hold on an open superseétof
do—¢ <V = wzp = (=1 Sy 12 N {(go, @) : @ = 0}. Note thatSy .2 2 /M is com-
pact and let
Let us compute the derivative &f(q, w) along trajectories of
(40). The first term of (56) yields the following expression: ay = min @] a2 = max |||
WESy 24,2 G)GSﬂ‘erﬂtz/M
oV(q,w).  1—¢ 1—¢

Ty 2 a3 = max ———.
¢"® — Ksllq|)?] BT ey a0 2q0 — €)2

dqo a0 2(qo —€)? [
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