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Robust Nonlinear Motion Control of a Helicopter
Alberto Isidori, Fellow, IEEE, Lorenzo Marconi, Member, IEEE, and Andrea Serrani, Member, IEEE

Abstract—We consider the problem of controlling the vertical
motion of a nonlinear model of a helicopter, while stabilizing the
lateral and horizontal position and maintaining a constant attitude.
The reference to be tracked is given by a sum of a constant and
a fixed number of sinusoidal signals, and it is assumed not to be
available to the controller. This represents a possible situation in
which the controller is required to synchronize the vehicle motion
with that of an oscillating platform, such as the deck of a ship in
high seas. We design a nonlinear controller which combines recent
results on nonlinear adaptive output regulations and robust sta-
bilization of systems in feedforward form by means of saturated
controls. Simulation results show the effectiveness of the method
and its ability to cope with uncertainties on the plant and actuator
model.

Index Terms—Nonlinear systems, output regulation, robust con-
trol, saturated controls, vertical takeoff and landing.

I. INTRODUCTION

A UTOPILOT design for helicopters is a challenging testbed
in nonlinear feedback design, due to the nonlinearity of

the dynamics and the strong coupling between the forces and
torques produced by the vehicle actuators, as witnessed by a
good deal of important contributions in the last twenty years (see
[1]–[8] to mention a few). A helicopter is, in general, an under-
actuated mechanical system, that is, a system possessing more
degrees of freedom than independent control inputs. Partial (i.e,
input-output) feedback linearization techniques are not suitable
for the control of such a system, because the resulting zero-dy-
namics are only critically stable. Moreover, the model may be
affected by large uncertainties and unmodeled dynamics, and
this also renders any design technique based on exact cancella-
tion of nonlinear terms poorly suited. In this paper, we address
the design of an internal-model based autopilot for a helicopter.
The control goal is to have the vertical position of the helicopter
tracking an exogenous reference trajectory, while its longitu-
dinal and lateral position, as well as its attitude, are stabilized
to a constant configuration. The reference trajectory which is
to be tracked is a superposition of a finite number of sinusoidal
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signals ofunknownfrequency, amplitude and phase. This situa-
tion corresponds, for instance, to the case in which a helicopter
is required to landautonomouslyon the deck of a ship subject
to wave-induced oscillations. The trajectory in question is not
available in real time: rather only the tracking error and its rate
of change are assumed to be available in real time. A similar
problem has been previously considered and solved for a sim-
plified model of a VTOL aircraft [9]. With respect to the former,
however, the present case is more challenging, due to the higher
complexity of the vehicle dynamics which renders the stabiliza-
tion onto the desired trajectory a difficult task. We propose a so-
lution which combines recent results on nonlinear adaptive reg-
ulation and robust stabilization of systems in feedforward form
by means of saturated controls. The focus of this paper is mostly
on the stabilization technique. Due to the intrinsic robustness of
the method, we expect the controller to perform satisfactorily
despite the effect of parametric uncertainties and unmodeled dy-
namics. As a matter of fact, we design our controller on the basis
of a simplified model, and show the effectiveness of our method
on a more complete model by means of computer simulations.
Complete model and simplified model are precisely those pro-
posed in [2]. Our design techniques assume full availability of
all state variables in appropriate reference frames; namely ver-
tical, longitudinal, lateral errors (and their rates of change) as
well as attitude (and its rate of change). This makes it possible to
develop a semiglobal robust stabilization scheme, thus circum-
venting the problem that, for certain selections of output vari-
ables, the controlled system is nonminumum phase (as shown
in [2]). The paper is organized as follows: in Section II the ve-
hicle model is introduced. In Section III we describe the design
problem, and in Sections IV and V we present the controller de-
sign. Simulation results are illustrated and briefly discussed in
Section VI. Finally, we draw some conclusions in Section VII.

II. HELICOPTERMODEL

A mathematical model of the helicopter dynamics can be de-
rived from Newton–Euler equations of motion of a rigid body in
the configuration space . Fix an inertial
coordinate frame in the euclidean space, and fix a coordi-
nate frame attached to the body. Let
denote the position of the center of mass of the rigid body with
respect to the origin of , and let denote the ro-
tation matrix mapping vectors expressed incoordinates into
vectors expressed in coordinates. The translational velocity

of the center of mass of the body and its angular ve-
locity (both expressed in ) by definition satisfy

(1)
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where

Moreover

(2)

where is the external wrench in body-fixed co-
ordinates and and the mass and the inertia tensor of the
body. We will parametrize the group of rotation matrices by
means of unit quaternions , where and

denote respectively the scalar and the vector
parts of the quaternion, satisfying the constraint

Accordingly, the rotation matrix is given as

(3)
The second equation in (1) is then replaced by the quaternion
propagation equation

while the motion of the center of mass of the rigid body is ex-
pressed in inertial coordinates as

(4)

In the specific case of a helicopter, the wrench is pro-
vided by the forces and torques generated by the rotors and the
aerodynamic forces. Following [2], the thrusts generated by the
main rotor and the tail rotor are denoted by and , respec-
tively. The main rotor shaft is directed along the bodyaxis,
while the tip path plane of the main rotor is tilted by an angle

around the axis and by an anglearound the axis. The
overall control input is provided by the vector .

The expressions of and in terms of the four components
of the control vector , the mechanical parameters
and the aerodynamic coefficients can be found, for instance, in
[2]. In particular, following [2], since the tilt anglesand are
small, we let

(5)

Also, we neglect the contribution of along the direction
and we assume that the contribution of and along the
direction is matched by that of , thus obtaining the following
simplified model for :

(6)

Fig. 1. Model of the approximated system dynamics.

As far as the external torque is concerned, under the previous
hypotheses, it is seen from [2] that

(7)

in which and are, respectively, a matrix and a
vector of affine functions of the thrust , whose coefficients
depend on the geometry of the helicopter and on the coefficients
which characterize the aerodynamic forces. A sketch of the po-
sition/attitude dynamics is reported in Fig. 1.

One of the goals of the paper is to design a controller able to
deal with possibly large parameter uncertainties, including the
mass of the vehicle, its inertia tensor, and the aerodynamic
coefficients in (7). Collecting all possible parameters subject to
uncertainty in a single vector, we let stand for its nominal
value and for the additive uncertainty. It is assumed
that , a given compact set. Accordingly, we set

and, bearing in mind the fact that and are func-
tions of

(8)

with obvious meaning of the subscripts.

III. PROBLEM STATEMENT

The goal of this paper is the design of an autopilot able to
secure smooth landing of the helicopter on an oscillating plat-
form in uncertain conditions. The considered setup represents a
possible scenario in which a helicopter is required to perform a
smooth landing on a deck of a ship which, due to wave motion, is
subject to large vertical oscillation. The control objective can be
conveniently divided into two separate tasks: the first is the syn-
chronization of the vertical motion of the helicopter with that of
the deck at a given distance. Once synchronization has been
achieved, the second task is to provide a smooth landing, letting
the vertical offset decay to zero. Clearly, the crucial part is the
design of a controller to accomplish the first task. The problem
becomes quite challenging if the information available for feed-
back is provided by passive sensors only, yielding the relative
position between the helicopter and the deck. If this is the case,
the vertical reference trajectory to be tracked by the helicopter
is not available, but must be estimated in real time by processing
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the synchronization error. This trajectory, denoted in what fol-
lows by , is modeled as the sum of a fixed number of si-
nusoidal signals ofunknownamplitude, phase and frequency,
namely as

(9)

In this setting, the uncertainty on the reference trajectory
consists in uncertainty on the exact value of the parameters

, . Consequently, one of the main
goals to be accomplished in the design is to let the center of
mass of the helicopter asymptotically track, as accurately as
possible, the reference motion

(10)

It is also appropriate to require that the vehicle’s attitude asymp-
totically tracks, as accurately as possible, the constant refer-
ence , which corresponds to the following possible
choice for the quaternion1

(11)

The problem of having to track can be naturally
cast in the framework ofnonlinear adaptive output regulation
theory (see [11], [12]), as the signal is generated by a
linear time-invariantexosystem

in which

with

and , with defined in an obvious way. As
customary, we assume that the values ofrange over a
given compact set. Note that the role of the parameters

of (9) is played by the initial con-
dition of the exosystem. As far as the tracking goal for

, , and is concerned, we seek to obtainultimate
boundednessby arbitrarily small bounds. Setting

the design problem can be cast as follows: given any (arbitrarily
small) number , design a smooth dynamic controller of
the form

1It is worth stressing that this desired attitude configuration is compatible with
the steady state requirement (10) because we are assuming the simplified model
(6) for the force generation. In the general case, assuming the force generation
model as presented in [2], the desired motion (10) is achieved with a steady state
attitude motion different from (11), as described in [10].

such that the tracking objectives

and for all

are attained within a semiglobal domain of attraction (that is,
from initial conditions for the plant states in an arbitrarily large
compact set), for all admissible values of the parameters of the
plant and the exosystem. It is worth noting that the controller is
allowed to process the tracking errorof the center of mass
and its derivative , but not the state of the exosystem
and the vertical position . Finally, note that the steady-state
value of the main thrust needed to keep the helicopter on
the reference trajectory (10) and (11) is given by

. Since we require to be positive, we must
have

(12)

which gives an upper bound to the admissible initial conditions
of the exosystem.

IV. STABILIZATION OF THE VERTICAL ERRORDYNAMICS

The first step in the regulator design is the computation of
the feedforward control signal that must be imposed to achieve
zero error in steady state. In the terminology of output regula-
tion theory, this amounts in solving theregulator equationsfor
the problem under investigation (see [10], [11]). To this end,
consider the equation for , readily obtained from (1), (6),
and (3)

To compensate for the nominal value of the gravity force, let us
choose the preliminary control law

(13)

where , the function is the standard saturation
function

and is an additional control to be defined. The equation for the
vertical dynamics is described by

(14)

where2

From this, it is concluded that, if is small so that
, the input needed to keep is simply (recall that

)

(15)

The steady-state behavior of is the superposition of a term
meant to enforce the vertical reference acceleration and a term
meant to compensate the residual gravity force.

2Note that2q + 2q � c implies� (q) = 1.
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It is clear that, as depends on unknown parameters and
on the unmeasurable state, the steady-state control (15)is not
directly implementable as a “feedforward” control. However, it
can be asymptotically reproduced by means of a linear internal
model, as is a linear function of . Accordingly, we choose
the control as the sum of a stabilizing control and the output of
an internal model, i.e., . The internal model will
be designed on the basis ofadaptive output regulation theory
(see [9] and [12]). In fact, (14) is a two-dimensional system
having relative degree 2. Hence, the hypotheses presented in
[12] for the design of an adaptive internal model, hold. Define
the observable pair as

in which

and note that, by construction, the map

satisfies, for every and , theimmersion condition

(16)

If the vector was known precisely, the matrices and
could be directly used for the design of the internal model. Con-
versely, if is not known, a further step is needed. Letbe a

Hurwitz matrix and be vector such that
the pair is controllable. Then, using standard passivity
arguments, it is easy to show that there always exists a
matrix such that the pair

(17)

is controllable, and the matrix is Hurwitz. From [12], it is
known that, for any vector , there exists a
row vector , of the form

such that the pair is similar to the pair
. As a consequence, there exists a map

that satisfies, for every and , the immersion
condition

(18)

Denote now by and the third components of the vectors
and , namely

and consider, as an internal model for our problem, the system

where

in which , and is a row vector.
The control system is rewritten in the form

(19)

with . In case the vector is known, we set
. Otherwise, we consider to be a vector of parameter

estimates to be adapted, and we choose the update law (see [12])

(20)

with and positive design parameters. The control lawis
then completed choosing thehigh-gainstabilizing feedback

(21)

where is a design parameter. Changing coordinates as

(22)

and letting , the , , dynamics in the new
coordinates read as

(23)

where . This system, setting

(24)

can be rewritten in the form

(25)

Note that the dependence onof the vector fields and
arises from the dependence onof the term in

, in turn induced by the dependence onof . Following [9]
and [12], it can be shown that, for a sufficiently large, system

(26)

(or, what is the same, system (23),if is sufficiently small so
that ) has a globally asymptotically stable equilibrium
at for some which, in turn,
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coincides with the origin in case all the modes of the exosystem
are excited. Without loss of generality, we henceforth assume
that this is the case.

This result concludes the stabilization of the vertical dy-
namics. In particular, in case the attitude is kept sufficiently
close to the desired one so that , the -order
controller (13), (19) and (21) with adaptation law (20) is able to
steer asymptotically the vertical error to zero. In Sections V
and VI we will show how to design a control law for the input

to simultaneously achieve the condition in finite
time, and stabilize the lateral and longitudinal dynamics.

V. DESIGN OF THESTABILIZER

A. Lateral and Longitudinal Dynamics

We start by deriving the expression of the lateral and longitu-
dinal dynamics resulting from the choice of the main thrust
performed in Section IV. First, note that the term

reads as

which, keeping in mind the definition of in (22) and (18),
yields

(27)

where

(28)

Note that, for all

(29)

Bearing in mind (4), (6), we obtain the following expression for
the longitudinal dynamics:

(30)

where

(31)

(32)

Note that we have treated the presence of the forcing term
as a time-varying entry, while plays the role of a bounded
time-varying coefficient. Likewise, the lateral dynamics can be
put in the form

(33)

where

sat
(34)

Fig. 2. Overall approximated system dynamics.

The dynamics are viewed as a system interconnected to
the attitude and vertical dynamics, according to the structure
depicted in Fig. 2. Basically, the choice of the control input
able to stabilize the overall system will rely upon the following
considerations. We look at the subsystem as a system
with “virtual control” and exogenous input . The latter, ac-
cording to the results presented in Section IV and by virtue of
(28) and (29), is an asymptotically vanishing signal,provided
that the attitude variable is kept sufficiently smallby means of
the control input . In the light of this, the control law will
be designed on one hand to forceto assume sufficiently small
values so that in finite time and, on the other hand, to
render the subsysteminput-to-state stable (ISS)with re-
spect to the input . According to classical results about input
to state stability, this will provide asymptotic stability of the lat-
eral and longitudinal dynamics. This task will be accomplished
using apartially saturatedcontrol law, obtained combining a
high gain controller for the attitude dynamics and anested sat-
uration controller for the dynamics. As it will be clari-
fied in Section VI, the presence of the saturation function plays
a crucial role in “decoupling” the attitude from the dy-
namics, in such a way that the two actions can be performed
simultaneously.

B. Stabilization of the Attitude Dynamics

In this section, we deal with the problem of achieving the
condition in finite time by a proper design of .
First of all, we use a preliminary control law which is meant to
remove the nominal part of from (7) and (8), i.e., we
choose

(35)

in which is an additional control input to be defined. This
yields a new expression for

(36)

where

with . The control law is then
chosen as

(37)
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where and are design parameters, and is
an additional control input which is assumed to be bounded by
a positive number , i.e.,

for all (38)

The bound (38) will be enforced by choosing as a saturated
function of the states. As it has already been remarked,
the first goal of the control law (37) is to achieve the condition

in finite time. To this end, we show that this can
be accomplished by a suitable tuning of the design parameters

, and . However, since the expression of the torque
in (36) depends on which, according to (13) and (27), is a
function of and , we first need to establish a result which
guarantees boundedness of . Fix an arbitrary compact set

of initial conditions for and let the initial condition for
range in a compact set such that (12) holds for each trajectory

originating in . Pick , and let
denote the corresponding integral curve of (26), which is known
to asymptotically decay to 0 as . Then, there exists finite
numbers and such that (for compactness, we drop the
time )

(39)

for all , for all satisfying and
for all . These bounds on are instrumental in showing
that for any arbitrary a suitable choice of , and
renders the condition fulfilled for all . This
is established in the next proposition.

Proposition 5.1: Suppose there exists such that3

and let , satisfy

Choose arbitrarily, and fix compact sets , of
initial conditions for and , respectively, with con-
tained in the set

Then, for any there exist a number and positive
numbers and , both depending on , such
that for all , and , the
following hold.

a) The trajectories of the system

(40)

3Note that, by definition,L(T ) = I + A (T )A (T ). Thus, the
following requirement onL(T ) + L (T ) is essentially a restriction on
the relative variation ofA(T ) with respect to its nominal valueA (T ). It
indeed holds ifkA (T )A (T )k � m I for somem < 1, which is not
a terribly restrictive assumption.

Fig. 3. Overall system dynamics fort � T . The external signalsp , p and
�(T ) are bounded withp andp asymptotically vanishing.

with initial conditions and
are bounded, and satisfy

b) for all .
Proof: See the Appendix.

With the previous results we have been able to show that
tuning the control law (37) with and sufficiently large
and with sufficiently small, the condition is ful-
filled in finite time . This, in view of the results established
earlier in Section IV, proves that the suggested control law is
able to yield one of the two main design goals, i.e.,

It remains to show how to fulfill the other goal, which is ulti-
mate boundedness by arbitrarily small bounds of all other posi-
tion and attitude variables. Note that in the interval the
lateral and longitudinal dynamics (30)–(33) behave as chains of
integrators driven by bounded signals, therefore do not posses
finite escape times. This, indeed, allows us to restrict the anal-
ysis to the system sketched in Fig. 3 on the time interval .
In Fig. 3, the signals and are defined as

and, according to the results established in proposition 5.1,
and asymptotically decay to zero.

C. Stabilization of the Lateral and Longitudinal Dynamics

The goal is now the design of in order to stabilize the inter-
connected system in Fig. 3, and to provide adequate attenuation
of the external disturbances, , . It should be noted
that, as opposite to and which are vanishing, con-
stitutes a nonvanishing perturbation on the attitude dynamics, as
it depends on the main thrust , which in steady state is dif-
ferent from zero. For this reason, in general we cannot expect to
reject asymptotically the influence of and achieve con-
vergence of the attitude dynamics to .4 However,
we are able to show that the effect ofcan be renderedarbi-
trarily small by a proper choice of the design parameters. The

4Note that, although in steady state�(T ) is a function ofw, an internal
model similar to the one developed in Section IV cannot be employed to asymp-
totically reject the effect of�(T ). As a matter of fact, the entries of�(T )
are, in general, rational functions ofT and a linear immersion does not exist
in this case.
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controller will be designed using and as virtual controls
for the dynamics, and then propagating the resulting con-
trol law through the attitude dynamics. Keeping in mind that we
need to accomplish this goal using bounded controls, an added
difficulty is given by the presence of an unknown time-varying
coefficient in (30)–(33).

Saturation functions, on which the control law described
below is based, are functions defined in the
following way. For , is any differentiable function
satisfying

for all

for all

for

for

For

To remove drifts in the lateral and longitudinal position due to
a constant bias in , we begin by augmenting the system dy-
namics with the bank of integrators

(41)

Set now

define the following new state variables:

and fix, for the control law , the following “nested saturated”
structure

(42)

where and , , 1, 2, represent design parameters. Note
that, by the definition of saturation function, this choice of
renders the constraint (38) fulfilled. Finally, let

so that the overall control law (37) can be rewritten in the more
compact form

(43)

In the new coordinates , the system of
Fig. 3, augmented with (41) and the controlprovided by (43),
can be put in the following form:

(44)

where

and .
The next proposition is the main result of the paper: it shows

how, for the control law (43), a proper tuning of the parame-
ters , , and , yields input-to-state
stability for system (44) with respect to the exogenous inputs
and , with a linear gain with respect to the inputwhich can
be rendered arbitrarily small. This means that, sinceasymp-
totically vanishes and is asymptotically bounded by a fixed
quantity, the state of the system is ultimately bounded by a quan-
tity that can be rendered arbitrarily small as well. In looking at
the next result, it is important to notice that the choice of the de-
sign parameter is dictated by Proposition 5.1 only, and does
not play any role in the stabilization procedure. However, since
the value of influences (but it is not influenced by) the other
design parameters, we assume it fixed once and for all. Further-
more, we make explicitly use of the bounds which, according
to the definitions in (32)–(34) and the assumption (12), exist for
the functions , and . In particular, we let
and be such that

for all . Without loss of generality, Proposition 5.1 allows
us to assume for all . With this in mind, we
have the following result.

Proposition 5.2: Let be fixed and let and ,
, be such that the following inequalities are satisfied:5

(45)

5It is not difficult to show that numbersK ’s and� ’s satisfying the given
inequalities indeed exist (see [13]).
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Fig. 4. Closed-loop system as a feedback interconnection.

(46)

and

(47)

Then, there exist positive numbers , , , and such
that, taking

and (48)

for all and , system (44) is ISS with
restriction on the input , no restriction on the input and
linear gains . In particular, if and

, then exists and is bounded for all
and6

Proof: System (44) can be seen as the feedback intercon-
nection of two subsystems, as shown in Fig. 4. The upper sub-
system is a system with state and input , dy-
namics described by the first three equations in (44), and output

defined as

(49)

where

The lower subsystem is a system described by the last two equa-
tions in (44) with replaced by , that is

(50)

It will be shown now that the system in Fig. 4 is a feedback in-
terconnection between ISS systems which satisfy the small gain
theorem. First, let us turn our attention to the lower subsystem,
for which the following result, proven in [14], holds.

6The notationk'(�)k stands for theasymptotic normof '(�), that is,
k'(�)k := lim sup k'(t)k.

Lemma 5.1:Let be fixed and assume that
and , for all . There exist positive numbers

, , and , such that, for all ,
and , system (50) is ISS, without

restriction on the inputs, with linear gains . In
particular, if and , then

exists for all and satisfies

As for the upper subsystem in Fig. 4, the following result, whose
proof is again given in [14], holds.

Lemma 5.2:Let and , , be chosen as in (48)
with and , satisfying the inequalities (45)–(47). Then,
there exist positive , , and such that for all

, the output (49) and the state of system given by
the first three in (44) satisfy an asymptotic bound, with nonzero
restriction with respect to the input and restriction
with respect to the input , with linear gains with re-
spect to the state and linear gains with respect to the
output. In particular, if and ,
then exists for all and satisfies

The two lemmas contain all that is needed to study the proper-
ties of the interconnection in Fig. 4. According to the small gain
theorem for ISS systems with restrictions given in [15], the re-
sult of the proposition follows if the restriction
is satisfied in finite time and the small gain condition

holds. Without loss of generality, suppose that the numberin
Lemma 5.2 is such that

where are those defined in lemma 5.1, so that
any choice of and fulfilling (48) with also respects
the conditions indicated in Lemma 5.1. Using (48), it is seen that
the small gain condition is fulfilled if is sufficiently small so
that

As far as the restriction on is concerned, observe that

Let be such that for all (such a
always exist because asymptotically decays to zero). Then,
simple computations show that , for all , can be
bounded by a term which depends only onand , , 1,
2 and not on . In particular, if and , , 1,
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2 are chosen as in (48), it is possible to claim the existence of
numbers and such that7

(51)

for all . Since is bounded as well, from Lemma 5.1
we see that for any there exists a time such that

for all and, hence

(52)

for all . The restriction for is fulfilled on
if

(53)

Again, keeping in mind (48), (53) is fulfilled if the following
three conditions are satisfied:

The first inequality can be fulfilled by a sufficiently small.
Once has been fixed, the second and the third can be satisfied
respectively choosing a sufficiently small value for the restric-
tion and a sufficiently large value of .

Proposition 5.2 states that there always exists a choice of the
design parameters such that the system (44) is ISS with respect
to all exogenous inputs, and the gain associated to the input
can be rendered arbitrarily small by increasing. Remark-
ably, this can be done letting the other controller parameters un-
changed. It is worth noting that the method relies onhigh-gain
feedbackas far as the is concerned,low-gain feedbackfor

, and , and saturation functions whose amplitude
can be chosen arbitrarily small via the scaling parameter. Since

can be arbitrarily large and can be arbitrarily small, the
results of this proposition match with those of Proposition 5.1,
which indeed required a large value for and a small value
of . As a consequence, the vertical error dynamics is globally
asymptotically stable, which implies that . There-
fore, Proposition 5.2 implies that

Recall that is bounded by a fixed quantity. Since the
value of can be increased arbitrarily while the other gains

, are kept constant, the above result holds for
the system in the original coordinates

7Keeping in mind the expression ofW , the bound (51) can be easily
obtained using the definition of saturation function, the�-scaling rule in (48)
and observing that the quantityk� (K � =� )� (K � =� ) _� k can be upper
bounded by a linear function of�. The latter bound can be computed from
the expression of_� and _� in (44) assuming without loss of generality that
j� j < � =K , i = 1, 2, as otherwise� (K � =� ) = 0.

TABLE I
NOMINAL PARAMETERS OF THEPLANT

TABLE II
CONTROLLER PARAMETERS

as well. Therefore, we are able to conclude the section stating
our final result.

Theorem 5.1:Consider the dynamic controller given by (13),
(36), (19)–(21), and (41)–(43). Let the design parameters be
chosen according to Propositions 5.1 and 5.2. Then, for any ini-
tial condition , ,

, , with , the state trajec-
tory in the coordinates is captured by a
neighborhood of the origin, which can be rendered arbitrarily
small choosing sufficiently large, and in addition

VI. SIMULATION RESULTS

We present in this section simulation results concerning a
specific model of a small unmanned autonomous helicopter de-
scribed in [6]. The nominal values of the plant parameters are
given in Table I. We assume parametric uncertainties up to
of the nominal values, therefore we are in presence of a non
vanishing perturbing term . The oscillatory deck mo-
tion is assumed to be generated by a four-dimensional neutrally
stable exosystem, with parameters and initial con-
ditions . Following Sections IV and V, the
controller is designed on the basis of the simplified model of
the actuators given by (6) and (7), while simulations are per-
formed on the fully nonlinear actuator model reported in [2]. It
should be noted that the presence of unmodeled actuator cou-
plings and parametric uncertainties has the effect of producing
a steady-state manifold for the attitude dynamics different from
the constant configuration , since it is readily seen
from [2] that a time-varying is needed to offset the
vertical steady-state error (see [10]). On the other hand, the pres-
ence of nonlinearities in the map destroys the
immersion condition (16), and thus exact asymptotic tracking
of cannot in principle be achieved for . Nevertheless,
thanks to the intrinsic robustness of both stabilization methods
based on nonlinear versions of the small-gain theorem for ISS
systems and internal model based regulation, we expect to be
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Fig. 5. Tracking errorz(t) � z (t) +H(t)[m].

Fig. 6. Quaternionsq(t).

able to achieve practical regulation, that is, convergence in fi-
nite time to a small neighborhood of the origin for the regulation
error , by a suitable choice of the design parameters.

In all simulations, the control parameters have been selected
as in Table II. The vertical bias has been chosen as

Initially, the update law for the adaptive internal model has been
disconnected, with the natural frequencies of the internal model
set at a wrong initial guess . Then, the adaptive
law has been switched on at time s. The reported
simulation refers to the vehicle initially at rest, with initial at-
titude and position given by and

meters respectively. Fig. 5
shows the vertical error . The vertical po-
sition reaches, in less than 50 s, a sizable steady-state error, due
to the initial mismatch of the natural frequencies of the internal
model with those of the exosystem. After the adaptation law has
been turned on, the vertical error is regulated to , which de-
creases to zero after time s. Fig. 6 shows the time history
of the attitude parameters. Fig. 7 shows the steady-state response
of the attitude parameters : it is readily seen that the vehicle

Fig. 7. Steady–state forq(t).

Fig. 8. Longitudinal and lateral displacementx(t), y(t)[m].

Fig. 9. Main rotor and tail rotor thrustsT (t), T (t)[N ].

attitude does not converge to , as a result of the model un-
certainties. As expected, while the attitude dynamics converge
rapidly to the steady state (in about 40 s), the lateral and hori-
zontal displacements are brought to zero in a slower time scale
(see Fig. 8). The separation of the time scale into a faster and
a slower dynamics is a common feature of control laws based
on a combination of high-gain and low-amplitude control, as in
our case. Finally, Figs. 9 and 10 show the four control variables

, and , respectively. It is easy to see that the controller
succeeds in tracking the unknown reference and in stabilizing
the vehicle configuration, despite the large uncertainties on the
plant model.
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Fig. 10. Tilt anglesa(t) andb(t) [rad].

VII. CONCLUSION AND SUMMARY OF THE DESIGNMETHOD

We have presented an application of nonlinear robust reg-
ulation and nonlinear small-gain methods to the challenging
problem of designing an autopilot for helicopters landing under
uncertain conditions.

In summary, the overall controller is given by avertical
regulator yielding the main rotor thrust and an atti-
tude/lateral/longitudinal stabilizercomputing the input vector

col . As far as the vertical regulator is concerned,
combining the control laws (13), (19), (20), and (21) yields

while the attitude/lateral/longitudinal stabilizer, combining
(35), (37) and (41), reads as

where is the nested saturated control law specified in (42).
The overall controller depends on 11 design parameters, ,

, , with , . We have shown
that, given arbitrary large compact sets of initial conditions,
of uncertain model parameters and of data (frequencies,
amplitudes and phases) characterizing the vertical motion of
the landing deck, it is possible to tune the design parameters
in order to achieve the desired control objective. The overall
closed-loop system has dimension , where is the
number of sinusoidal signals which approximate the vertical
motion of the ship ( in the simulation results). The
tuning of the vertical regulator (namely of the parameters,

and ) has been discussed in Section IV. In particular,
while and are arbitrary positive numbers, the value
of must be chosen sufficiently large in order to globally
asymptotically stabilize system (23) with . The
tuning of the attitude/lateral/longitudinal stabilizer is indeed

more elaborate. In Section V-B a lower bound for and
and an upper bound for have been found (see Proposition
5.1 ) guaranteeing on one hand that the helicopter never reaches
the singular configuration (item a) of the proposition) and, on
the other hand, that the condition is achieved in
finite time (item (b)). The latter achievement guarantees that
in finite time the overall system, which is sketched in Fig. 2,
behaves as the cascade of theasymptotically stablesystem
with state driving the attitute/lateral/longitudinal system with
state (shown in Fig. 3). Finally the system
in Fig. 3 has been shown to be ISS with respect to the input

(which is asymptotically decaying) and with respect
to the input (with an asymptotic gain which can be rendered
arbitrary small by tuning the parameters , and ,

). This indeed is the main result of Proposition 5.2.

APPENDIX

A. Proof of Proposition 5.1

In order to prove Proposition 5.1, we need the following in-
termediate result

Lemma A.1:Fix compact sets , and let be such
that (39) holds for all , for all satisfying

and for all . Let denote the integral curve of
(25) passing through at time . Let
be such that is defined on for all .
Then, for any there exist such that, if
for all , is defined for all and

(54)

for all , for all satisfying and for
all .

Proof: Consider the compact set
, where denotes the distance of from the set .

Then, bearing in mind the definitions of in (39) and
the continuity of the functions involved, one can easily see that
for any there is such that

(55)

for all , for all satisfying and
for all . Thus, to prove the lemma, it suffices to show that
there is a time such that, for all

for all

However, this is a simple consequence of the fact that system
(25) is locally Lipschitz and that is a compact set.

This lemma essentially guarantees that for any there
exist such that, if for all , then the main
thrust satisfies

for all , for all and all .
Proceeding now with the proof of Proposition 5.1, note that as

and represent the same orientation, without loss
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of generality we can always assume if .
Since is contained in the open ball of radius around
the origin in , it turns out that . Change coordinates
as

and consider the following Lyapunov function candidate:

(56)

defined on the set . Let be such that

Without loss of generality, assume , and define

Pick , , and, using lemma 1.1, choose
in such a way that, if for all , then

for all . Let be a positive number such that

(57)

for all and . The existence of satisfying
(57) is guaranteed by the fact that is a polyno-
mial function of , and the initial conditions range on a com-
pact set. Fix once and for all , and choose in
such a way that

Let and consider the compact
sets , and where with ,
, we denote

It is not difficult to see that

Furthermore, if

Let us compute the derivative of along trajectories of
(40). The first term of (56) yields the following expression:

while the second reads as

Rearranging terms, we obtain

(58)

Let , be such that . Since
and , the derivative of along solutions of (40) satisfies

for all . What follows is an extension of
the results in [16] and [17]. Consider the compact set

, and note that on this set

(59)

To see that this is indeed the case, it suffices to notice that, on
the set

and

and, thus, (59) holds true if

(60)

which is always satisfied. We prove now that (59) holds every-
where on . To this end, observe that, by continuity,
inequality (59) continues to hold on an open supersetof

. Note that is com-
pact and let
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Needless to say, . Keeping in mind that ,
we get

(61)

for all . It is easy to prove that there
exists a choice of and for which the inequality

(62)

holds true for all . In fact (62) holds on
if

where which can be satisfied choosing

and

where and

The previous choices for and ensures that

for all . Moreover, using (60), it is easy to
see that

from which we conclude that (59) holds for all and,
hence, everywhere on . This result shows that every
trajectory originated within is such that
the corresponding trajectory is confined inside the
positively invariant set , and this proves claim a) of the
lemma. To prove claim b), observe that by definition of, we
have and that also is positively
invariant. Since on , the result follows.
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