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Stable Pushing:
Mechanics,
Controllability, and
Planning

Kevin M. Lynch 
Matthew T. Mason
The Robotics Institute

Carnegie Mellon University
Pittsburgh, Pennsylvania 15213

Abstract 

We would like to give robots the ability to position and orient
parts in the plane by pushing, particularly when the parts are
too large or heavy to be grasped and lifted. Unfortunately, the
motion of a pushed object is generally unpredictable due to
unknown support friction forces. With multiple pushing contact
points, however, it is possible to find pushing directions that
cause the object to remain fixed to the manipulator. These are
called stable pushing directions. In this article we consider
the problem of planning pushing paths using stable pushes.
Pushing imposes a set of nonholonomic velocity constraints
on the motion of the object, and we study the issues of local
and global controllability during pushing with point contact or
stable line contact. We describe a planner for finding stable
pushing paths among obstacles, and the planner is demon-
strated on several manipulation tasks.

1. Introduction

One of the most basic tasks for a robotic manipulator is
to move an object from one place to another. A common
solution is to equip the manipulator with a gripper and
adopt the pick-and-place approach. By designing the
grasp to resist all forces that could reasonably act on
the object during the motion, grasp planning and path
planning can be decoupled.

If the object is too large to be grasped or too heavy to
be carried, however, this approach fails. It underutilizes
the resources available to the robot, as it uses only the
control forces that can be statically applied at the gripper.
In general, the manipulator can apply forces through any

of the frictional kinematic constraints that comprise it.
Other useful sources of control forces include gravity, the
frictional kinematic constraints (floor, walls, obstacles)
making up the robot’s environment, and dynamic forces.
If the robot can reason about these forces, it can use a
richer set of manipulation primitives, including pushing,
throwing, and striking. One emphasis of our research is to
study how the set of achievable tasks grows as we give
the robot a better understanding of mechanics.

In this article we examine pushing, which provides
a simple and practical solution to the problem of posi-
tioning and orienting objects in the plane, particularly
when the manipulator lacks the size, strength, or dexterity
to grasp and lift them. Because the object is not firmly
grasped, however, the forces that can be applied are lim-
ited, and therefore the possible motions of the object
are limited. Unlike pick and place, the &dquo;grasp&dquo; (pushing
contact) and manipulator path cannot be decoupled. By
modeling the support friction forces, however, we can
simultaneously design the pushing contact and manipula-
tor path such that the contact resists all expected forces
during the motion.

This problem is made difficult by the indeterminacy
of the distribution of support forces of the pushed ob-
ject. The precise motion of a pushed object is usually
unpredictable. If there are two or more pushing points,
however, there may exist a space of pushing directions
that admit only a single solution to the motion of the
object: the motion that causes the object to maintain its
configuration relative to the pusher. The object is ef-
fectively rigidly attached to the pusher, and the push is
called a stable push (Lynch 1992). A pushing path is
formed by stringing together stable pushes, as in Figure 1.
Our goal is to develop algorithms to automatically find

pushing plans to position and orient parts in the plane.
Toward this end, in this article we study the following
three issues in pushing:

1. Mechanics. How does an object move when it is
pushed? We describe a procedure that identifies a set

An earlier version of this article was presented at the First Workshop
on the Algorithmic Foundations of Robotics (WAFR), 1994, and
portions of this material appeared in the Proceedings of the 1995
IEEE International Conference on Robotics and Automation.
Kevin Lynch is currently located at: Biorobotics Division, Mechanical
Engineering Laboratory, Natniki 1-2, Tsukuba, Ibaraki 305 Japan.
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Fig. 1. A mobile robot pushing a box using stable pushes
with line contact.

of stable pushing directions when the pusher makes
line contact with the object.

2. Controllability. The directions an object can move
during pushing are limited due to the limited set
of forces that can be applied by the pusher. Given
these limitations, our study of controllability is mo-
tivated by questions of whether or not it is possible
to push the object to the goal configuration, with
and without obstacles. We examine the local and

global controllability of objects pushed with either
point contact or stable line contact.

3. Planning. Pushing paths consist of sequences of
stable pushes, and the space of stable pushing di-
rections imposes nonholonomic constraints on the
motion of the object. We draw on work on path
planning for nonholonomic mobile robots by Bar-
raquand and Latombe (1993) to construct a planner
to find stable pushing paths among obstacles.

related Work

1.1.1. Pushing

Mason (1986) identified pushing as an important manip-
ulation process for manipulating several objects at once,
for reducing uncertainty in part orientation, and as a pre-
cursor to grasping. Building on early work by Prescott

(1923) and MacMillan (1936), Mason implemented a
numerical routine to find the motion of an object with
a known support distribution being pushed at a single
point of contact. Recognizing that the support distribu-
tion is usually unknown, Mason derived a simple rule for
determining the rotation sense of the pushed object that
depends only on the center of mass of the object. Mason
and Brost (1986) and Peshkin and Sanderson (1988b) fol-
lowed this work by finding bounds on the rotation rate
of the pushed object. Goyal, Ruina, and Papadopoulos
( 1991 a,b) studied the relationship between the motion of
the sliding object and the associated support friction when
the support distribution is completely specified. Alexander
and Maddocks (1993) considered the other extreme, when
only the geometric extent of the support area is known,
and described techniques to bound the possible motions
of the pushed object.

These results have been used to plan manipulator push-
ing and grasping operations. Mason (1986) used pushing
and grasping to reduce uncertainty. Mani and Wilson
(1985) built a system for orienting a part in an initially
unknown orientation by executing a series of linear
pushes with a fence. Peshkin and Sanderson (1988a)
and Brokowski et al. (1993) considered a similar problem
where the part is carried on a conveyor belt and reori-
ented by interactions with fences suspended above the
belt. Brost (1988) developed algorithms to identify stable
parallel-jaw grasping motions for polygonal objects in
the presence of uncertainty, and Goldberg (1993) devel-
oped a planner to find a sequence of parallel-jaw grasps
to orient a polygonal part. Brost (1992) has also shown
how to find the linear pushing motions resulting in a de-
sired pusher/object equilibrium configuration. This is like
&dquo;catching&dquo; the object by pushing it. Balorda ( 1990; 1993)
has investigated catching by pushing with two points of
contact. Mason (1989) has shown how to synthesize robot
pushing motions to slide a block along a wall, a prob-
lem later studied by Mayeda and Wakatsuki (1991), who
considered pushing forces out of the plane.

Feedback control of the motion of an object pushed
with a single point of contact has been studied by many
researchers, including Inaba and Inoue (1989), Gandolfo
et al. (1991), Lynch et al. (1992), Okawa and Yokoyama
(1992), and Salganicoff et al. (1993a). A control strategy
for pushing by two cooperating mobile robots is described
by Donald et al. (1993). Learning (Miura 1989; Zrimec
1990; Salganicoff et al. 1993b) and friction parameter
estimation (Yoshikawa and Kurisu 1991; Lynch 1993)
have also been proposed to improve control.

Particularly relevant to the topic of this article is work
by Akella and Mason (1992), Narasimhan (1995), and
Kurisu and Yoshikawa (1994). Akella and Mason have
considered the problem of planning pushing sequences
to reconfigure polygonal parts in the obstacle-free plane.
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Each pusher motion is a linear motion, and the object can
rotate without slipping on the straight edge of the pusher.
The precise motion of the object during the push is un-
known, but at the end of each push, a known edge of the
object will be aligned with the pusher. Between pushes,
the pusher breaks contact and recontacts the object. The
approach is guaranteed to find an open-loop plan for any
polygonal object and any initial and goal configuration.

Narasimhan (1995) and Kurisu and Yoshikawa (1994)
have studied the problem of moving an object among
obstacles by pushing with point contact. In Narasimhan’s
work, a holonomic path is found connecting the start and
goal configurations, and at each step the robot chooses
the push that will most likely keep the object close to
the path. This choice is based on a model built from
simulated or experimental data. Kurisu and Yoshikawa
use optimal control techniques to solve for the entire
manipulator trajectory in advance, using an estimate of
the object’s support distribution.

1.1.2. Nonprehensile Manipulation

Pushing is a type of graspless or nonprehensile manipula-
tion. Nonprehensile manipulation exploits the mechanics
of the task to achieve a goal state without grasping, al-
lowing simple mechanisms to accomplish complex tasks.
Other examples of nonprehensile manipulation include
tumbling (Sawasaki et al. 1989) and pivoting (Aiyama
et al. 1993) objects on a support surface; whole-arm
manipulation (Salisbury et al. 1987; Trinkle et al. 1993);
and positioning planar parts by tray-tilting (Erdmann and
Mason 1988; Christiansen 1995), moving frictionless
pins (Abell and Erdmann 1995), and striking (Higuchi
1985; Huang et al. 1995). Striking uses dynamic forces to
achieve the goal; other examples of dynamic nonprehen-
sile manipulation include juggling (Rizzi and Koditschek
1993; Schaal and Atkeson 1993; Zumel and Erdmann
1994), throwing (Mason and Lynch 1993; Lynch and Ma-
son 1996), and rolling (Arai and Khatib 1994; Lynch and
Mason 1996). See Mason and Lynch (1993) for other
references.

1.1.3. Sufficiency Results in Manipulation

One of the primary contributions of this article is a char-
acterization of the sufficiency of pushing for repositioning
parts in the plane. Related results in manipulation are
bounds on the number of point fingers necessary for
grasping (Mishra et al. 1987; Markenscoff et al. 1990),
the demonstration of the controllability of a ball rolling
on a plane or another ball (Li and Canny 1990), and the
classification of orientable parts by sensorless parallel-jaw
grasping sequences (Goldberg 1993). Goldberg (1995)

provides an interesting discussion on sufficiency and com-
pleteness results in robot motion planning. The results in
the present article draw on ideas of controllability from
nonlinear control theory; a good introduction is given by
Nijmeijer and van der Schaft (1990).

1.2. Assumptions

1. Friction is assumed to conform to Coulomb’s law.

The frictional force at a sliding contact opposes
the motion with magnitude Ilkin, where fn is the
magnitude of the normal contact force and xk is
the kinetic coefficient of friction. At a sticking con-
tact, the frictional force can act in any tangential
direction with any magnitude less than or equal to
Ilin, where tt is the static coefficient of friction. For
simplicity, we will assume that the static and kinetic
coefficients of friction are equal.

2. All pushing forces lie in the horizontal support
plane, and gravity acts along the vertical.

3. The pusher and slider move in the horizontal plane.
4. Friction properties are uniform over the support

plane.
5. Pushing motions are slow enough that inertial forces

are negligible. This is the quasistatic assumption.
Pushing forces are always balanced by the support
frictional forces acting on the object.

1.3. Definition

The slider S is a rigid object in the plane W = R 2
and its configuration space C is R2 x ,S’1. The slider is

pushed by a rigid pusher 7~ at a point or set of points
on a closed, piecewise smooth curve r, which typically
forms the perimeter of the slider ~S. A world frame 0w
with origin Or is fixed in the plane, and a slider frame
.~S with origin Os is attached to the center of friction of
the slider S. (For a uniform coefficient of support friction,
the center of friction of the slider is the point in the sup-
port plane beneath the center of mass [MacMillan 1936].)
Configurations measured in the slider frame 0s have co-
ordinates (z, y, 01’~. The configuration q = (Xu&dquo; Yw, 8,16’~
describes the position and orientation of the slider frame
j~s relative to the world frame 0w (Fig. 2).

Generalized forces f (wrenches) and velocities v

(twists) are always defined with respect to the slider
frame .~5. A force f E R3 is given by its force and
moment components (ix’ fy, M)T . A nonzero force f is
the product of its magnitude f and its direction f . A force
direction is a three-dimensional unit vector and may be

represented as a point on the unit sphere (f E S2). The
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Fig. 2. The world frame 0w and the slider frame Fs.

sphere of force directions is called the force sphere. Simi-
larly, a nonzero velocity v = (ur, vy, c.~)T is given by the
product of its magnitude v and direction v, and the sphere
of velocity directions is called the velocity sphere. We
will sometimes represent a velocity direction by its center
of rotation in .~’s. The mapping COR(-) maps velocity
directions to rotation centers in the .slider frame sis, such
that COR(v) returns the point about which the velocity
direction v is a pure rotation, along with the sense of
rotation. The domain of the function COR(-) is the ve-
locity sphere, and the range consists of two copies of the
plane, one for each rotation sense, and a line at infinity
for translations. Figure 3 illustrates the mapping from
velocity directions to rotation centers.

For the quasistatic pushing problem, we are concerned
only with force and velocity directions, not with their
magnitudes. We assume only that the manipulator is
strong enough to move the slider, and that it moves
slowly enough to satisfy the quasistatic assumption. A
pushing plan generated by the planner in Section 4 may
be properly thought of as a pushing path, not a trajectory.
To generate a manipulator trajectory from this path, times
must be assigned to each point along the path such that
the quasistatic assumption is satisfied.

~.4. Overview

In the next section we define the pushing control system,
some basic definitions of controllability, and their appli-
cation to the pushing control system. Armed with these
tools, in Section 3 we study the mechanics of pushing

Fig. 3. The mapping COR(.) from velocity directions on
the unit sphere to rotation centers in the slider frame 0s.

and the controllability of objects pushed with either point
contact or stable line contact. Finally, Section 4 demon-
strates a planning algorithm for repositioning objects
among obstacles using stable pushes.

2. Controllability with Velocity Constraints
The set of velocity directions that the slider can follow
during pushing is limited due to the limited set of force
directions that can be applied by the pusher. These lim-
itations constitute a set of nonholonomic constraints:

constraints on the velocity of the slider that cannot be
integrated to give configuration constraints. For exam-
ple, a slider that can be pushed in one direction cannot
be pulled in the opposite direction by simply reversing
the motion of the pusher. Despite these constraints on the
motion, we know by experience that it is often possible to
move objects to desired configurations by pushing. In this
section we formalize these ideas using tools from nonlin-
ear control theory. We defer the problem of determining
the motion of a pushed object to Section 3.

.~.1. The Pushing Control System

The pushing control system can be described abstractly
by the autonomous nonlinear control system q = F(q, c),
where c is the control input describing the pushing con-
tact configuration and the velocity of the pusher in the
slider frame 0s . The motion of the slider in the world
frame Fw is a function F of the control input and the
configuration of the slider. For the rest of this article, we
will use the following more concrete description of the
control system E:
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A nonzero u chooses one of n distinct combinations

of contact configurations and pushing velocities in the
slider frame sis . Associated with each control cu is a
vector field Xu describing the motion of the slider in
the world frame Fw. The tangent vector X,(q) is the
(unit) velocity of the slider in the world frame JF~, and
Vu is the (unit) velocity of the slider in the slider frame
.~5. The set of nonzero vector fields Xu is denoted X,
and the set of nonzero velocity directions v u in the slider
frame Ts is 1>. Each of the n nonzero controls results in

a distinct velocity direction.
Three aspects of the control system E bear mentioning:

1. The absence of a drift vector field (a vector field
that is only a function of the state of the slider)
implies that the slider will not move when it is
not pushed (~c = 0). This is a consequence of the
quasistatic assumption: the slider’s kinetic energy
is instantly dissipated by support friction, and the
slider’s state is merely its configuration.

2. For any constant control, the slider’s velocity direc-
tion is constant in the slider frame ~~.

3. The control system is not necessarily symmetric. In
general, it is not possible to follow a vector field
Xu backward. This is due to the unilateral nature of
frictional contact: pushing forces must have a non-
negative component in the direction of the contact
normal.

2.2. De, finitions of Controllability

The pushing control system E, or equivalently the config-
uration of the slider S, is controllable from q if, starting
from q, the slider can reach any point in the configuration
space C. The slider is small-time locally controllable from
q if, for any neighborhood U of q, the set of reachable
configurations without leaving U contains a neighbor-
hood of q. The slider is accessible from q if the set of
reachable configurations from q has nonempty interior in
C. The slider is small-time accessible from q if, for any
neighborhood U of q, the set of reachable configurations
without leaving U has nonempty interior. For autonomous
linear systems, all of these concepts are equivalent (Her-
mann and Krener 1977).

(Although the phrase &dquo;small-time&dquo; appears in these

terms, time does not appear in their definitions as they

are applied in this article. Other controllability definitions
are given by Haynes and Hermes [1970], Sussmann and
Jurdjevic [1972], Hermann and Krener [1977], Sussmann
[1978; 1983], and Nijmeijer and van der Schaft [1990].
These definitions are not always consistent with each
other. Sussmann [ 1983] provides the most complete set of
definitions.)

If a controllability property holds for all q E C, the

phrase &dquo;from q&dquo; can be omitted. For the control system
E, any property that holds for any q E C holds for all

q E C. Similarly, any property that does not hold for
some q E C does not hold for any q E C.

By definition, controllability implies accessibility, and
small-time local controllability implies small-time acces-
sibility. By the connectivity of the configuration space
C, small-time local controllability implies controllability.
Small-time local controllability ensures that the slider can
follow any free path arbitrarily closely.

Of these properties, small-time accessibility can be
established by an algebraic test on the set of vector fields
X. The Lie algebra L(X) of the vector fields X is the

space of linear combinations of these vector fields and the

vector fields created by repeated Lie bracket operations.
The Lie bracket of the vector fields X and Y is denoted

[X,Y]. Defining Bo(X) = X and Bk+1(X) = Bk(X) U
~[X,Y] for all X,Y E Bk (X) 1, the Lie algebra L(X) is
spanned by vector fields in Boo(X). A control system is
small-time accessible from q if it satisfies the Lie Algebra
Rank Condition, which states that the tangent vectors at q
of vector fields in L(X ) must span the tangent space at q.
The Lie bracket [X, Ij] of the vector fields X and Y in

local coordinates is

(Nijmeijer and van der Schaft [1990] provide a deriva-
tion.) For the pushing control system E, <9X(q)/9q is

given by

Using the definition of Xu from Section 2.1, c7X.~(q)/r~q
evaluates simply to

For the control system E, the Lie algebra L(X) is
spanned by vector fields in B] (X):. the distribution de-
fined by B, (X) is involutive. We need only look at the
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vector fields x and their Lie brackets to decide small-
time accessibility.

If the control system is symmetric (all vector fields
can be followed forward and backward), then small-time
accessibility implies small-time local controllability. Suss-
mann (1987) proves this and other sufficient conditions
for small-time local controllability.

2.3. Controllability of the Pushing Control System

If n = 1 for the control system E, then the slider is
confined to a one-dimensional integral curve of Xl, and
the control system E is not accessible. If n = 2, the Lie

algebra L(x) is spanned by X~ , X2, and X3 = [Xi, X2],
where

The dimension of L(x) is given by rank(Xl X2 X3). If
the determinant of this matrix is nonzero, then its rank is
3. A simple calculation yields

The determinant is zero only if (1) 151 = W2 = 0 or (2)
Vt and ~2 are multiples of each other. (Since VI and V2
are distinct unit vectors, this condition is equivalent to
-~l = -~2-) If condition (1) holds, the slider cannot rotate.
If condition (2) holds, the slider is confined to a one-
dimensional curve of the configuration space C. If neither
of these conditions hold, the Lie bracket operation has es-
sentially created a new linearly independent control vector
field and the Lie Algebra Rank Condition is satisfied.

PROPOSITION 1. The control system E is small-time
accessible if and only if the set of velocity directions
~ contains two velocity directions, VI and ’~2, such that
they are not both translations (15j fl 0 or W2 :,4 0) and
~] 7~ -V2.

Remark: As noted earlier, small-time accessibility implies
accessibility on the configuration space C. Here we note
that any control system E that is accessible must also be
small-time accessible. Thus, the conditions of Proposi-
tion 1 are also necessary and sufficient for accessibility.

Proposition 1 is a straightforward generalization of a
result due to Barraquand and Latombe (1993) that states
that the Lie Algebra Rank Condition is satisfied for any

car-like mobile robot that can take at least two steering
angles. A car-like mobile robot can drive both forward
and backward, and this symmetry, coupled with small-
time accessibility, implies small-time local controllability.
As we have already noted, the pushing control system E
may not be symmetric, so small-time local controllability
does not follow from small-time accessibility.

For some systems, however, accessibility may imply
controllability even when the system is not small-time
locally controllable (Jurdjevic 1972; Jurdjevic and Suss-
mann 1972; Sussmann 1983). Consider the task of setting
the minute hand of a watch if it can be rotated only in a
clockwise direction. The configuration of the minute hand
is not small-time locally controllable, but the topology of
its configuration manifold S1 renders the minute hand’s
configuration controllable.

For control systems E, it is easily shown that accessi-
bility implies controllability on the configuration space C,
and the conditions of Proposition I are also necessary and

sufficient for controllability.

PROPOSITION 2. For the control system E, accessibil-

ity implies controllability. The slider s may be moved
from any configuration to any other configuration in the
obstacle-free plane if and only if the set of velocity direc-
tions V contains two velocity directions, vl and V2, such
that they are not both translations (W 1 ~ 0 or h2 ~ 0) and
V) 7~ -V2.

Proof : Accessibility is a necessary condition for con-
trollability. The following argument shows that it is also
sufficient. First consider the case hi fl 0, W2 = 0.

The slider may reach any configuration q~oc~ from any
other configuration qinit by following Xl, then X2, then
X~. The rotation center COR(VI) is located at a point
Rt = (-Vly/Wl, f, I.,~ /c~ 1) in the Slider frame sis. We de-
fine a new frame 5i£ with its origin at Ri. The frame 5i#
is aligned with and fixed in the slider frame sis . In the
frame 5i#, the two velocity directions are a pure rotation
W§ = (0, 0, sgn(c:~~ ))T and a pure translation ~’ = v2,
and the problem is to transfer the frame 5i§ from q2nit to
qg~~l. This is achieved by simply rotating the frame 0§
in place, translating it to the final position, and rotating
it to the final orientation. Any of these steps could have
zero length. An example is shown in Figure 4.

If both v and ~2 have nonzero angular components,
with rotation centers at R1 and R2 in the slider frame
sis, respectively, controllability can be demonstrated by
showing that the slider can always translate to a configu-
ration from which it can rotate to the goal. A translation
is obtained by following X, and X2 such that the total
rotation is an integral multiple of 2~r. The set of paths
that follow X, and then X2 and satisfy this condition
defines a circle of final positions of the origin Os of the
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Fig. 4. An example path using one rotational and one
translational velocity direction. The frames sis and 5i§
are drawn at the initial and final locations.

Fig. 5. The locus of points to which the slider frame T’s
can translate, using one cotitrol change and rotation
centers R, and R2 in the slider frame Fs. The left circle
results from rotating about R, and then R2 in the slider
frame 0s, and the right circle is obtained by reversing
the order.

slider frame Ts. The radius r of the circle is the dis-
tance between R, and R2, and the center of the circle is
a distance r from Os on a ray from Os parallel to the
ray from R~ through R1. Translations consisting of paths
following X2 and then Il define a similar circle (Fig. 5).
The locus of points to which the slider frame 0s can
translate with only a single control change is given by
these two circles. Each point on the locus is the origin
of a similar, translated locus, and the slider frame 7s
can translate to any point in the plane by concatenating
translations with one control change. D

Corollary I follows immediately.

COROLLARY 1. The number of distinct combinations n
of pushing contact configurations and pushing directions
must be at least two for the configuration of the slider S
to be controllable by pushing. From any set of controls
yielding controllability, no more than two are needed.

For a controllable system £ with two velocity direc-
tions (n = 2), the slider may have to travel a long
distance to reach nearby configurations. Thus, the con-
ditions of Proposition 2 are not sufficient for small-time
local controllability. Before addressing the conditions for
small-time local controllability, we establish the following
fact.

PROPOSITION 3. Consider a set of velocity directions V
and its convex hull CHS2(i)) on the velocity sphere. Any
path from q] to q2 using velocity directions in (7.0~2 (T)
can be followed arbitrarily closely by another path, also
from q, to q2, using only velocity directions in V.

Proof : Proposition 5 in Appendix B of Barraquand and
Latombe (1993) proves the case when V consists of two
velocity directions. The result for any number of velocity
directions follows by induction. 0

On any open set of the configuration space C, Propo-
sition 3 says that we can consider the available velocity
directions to be the convex hull of the velocity direc-
tion set V. Therefore, if the set of velocity directions
V contains four velocity directions that positively span
the velocity sphere, the configuration of the slider S is
small-time locally controllable. This also follows from the
following theorem: -

THEOREM 1. (Sussmann 1978) Let X be a finite set of
vector fields on an open set of the state manifold contain-

ing q. The set of nonzero tangent vectors at q is denoted
X(q). Then:

1. If 0 is in the interior of the convex hull of ~{q},
the system is small-time locally controllable from q.

2. If 0 does not belong to the convex hull of X(q), the
system is not small-time locally controllable from q.
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Fig. 6. The convex hull of three velocity directions, represented in the rotation center space and on the velocity sphere.

To apply this theorem, we define the convex hull in R~ 3

of a set of unit velocities X(q) to be CHR3(X(q)) with
boundary aCHR3(X(q)).

The first half of Theorem I indicates that if the veloc-

ity directions V of the control system E positively span
the velocity sphere, the control system E is small-time
locally controllable. The second half of the theorem says
that if the velocity directions V are contained in any open
hemisphere of the velocity sphere, then E is not small-
time locally controllable. Theorem 1 does not completely
answer the question of small-time local controllability at
q, however, as it does not address the case when 0 lies in

aCHR3(X(q». To resolve this case, we must consider the
derivatives of X(q} (Sussmann 1978).

If 0 lies in aCHR3(X(q)), then there is a unique linear
subspace Z of maximum dimension such that 0 lies in the
interior of aCHR3(X(q)) in this space Z. The set Xz is
the subset of vector fields X E X such that the tangent
vector X(q) lies in the subspace Z. The dimension of the
subspace Z is 1 if the portion of 8CHR3(X(q» through
0 is a line segment, and Xz consists of two opposite
vector fields. The dimension of the subspace Z is 2 if the
portion of 8C H R3 (X (q» through 0 is a planar region,
and X~ consists of at least three vector fields such that
the associated velocity directions span a great circle of
the velocity sphere.
The set of all vector fields [X , Y] such that X , Y E Xz

is denoted X.1 - Applying Sussmann’s (1978) sufficient
condition for small-time local controllability, the control
system E is small-time locally controllable if the convex
hull of X(q) and Xz(q) contains 0 in its interior. For the
control system E, Sussmann’s sufficient condition is also

necessary.
When the dimension of Z is 1, the set of vector fields

Xz consists of two opposite vector fields. The Lie bracket
of opposite vector fields is zero, so XZI consists of the
zero vector field. The convex hull of X(q) and Xz(q)
does not contain 0 in its interior, so the control system
is not small-time locally controllable.
Now consider the case where the dimension of the

subspace Z is 2. In this case, the velocity directions cor-
responding to Xz positively span a great circle of the

velocity sphere. Provided that this great circle does not lie
in they = 0 plane, the control system E is small-time
locally controllable. To see this, recall that two nonop-
posite velocity directions that are not both translations
are sufficient for small-time accessibility. If both velocity
directions can be reversed (a total of four velocity direc-
tions), then the system is small-time locally controllable.
These velocity directions positively span a great circle of
the velocity sphere such that Lu is not identically zero. By
Proposition 3, on any open set of the configuration space
C, any set of velocity directions that positively span the
same great circle is equivalent.

PROPOSITION 4. The control system E is small-time

locally controllable if and only if the set of velocity di-
rections V positively spans a great circle of the velocity
sphere that does not lie in they = 0 plane.

This result is stated in terms of velocity directions on
the velocity sphere, but it can just as easily be stated
in terms of rotation centers. The positive span of two
rotation centers of the same sense is given by the line
segment of rotation centers of the same sense between the

points. The positive span of rotation centers of opposite
senses is given by all points on the line through the two
rotation centers but not between them. The sense of the
rotation centers changes at infinity, which corresponds
to a translation (Fig. 6). A great circle on the velocity
sphere is equivalent to a line of rotation centers with both
rotation senses. Figure 7 gives examples of rotation center
sets that yield small-time local controllability.

COROLLARY 2. The number of distinct combinations n

of pushing contact configurations and pushing directions
must be at least three for the configuration of the slider
S to be small-time locally controllable by pushing. From
any set of controls yielding small-time local controllabil-
ity, no more than four are needed.

The second half of Corollary 2 follows from Proposi-
tion 4 by Carath6odory’s Theorem (Grünbaum 1967).
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3. Mechanics and Controllability of Pushed
Objects

In this section we study the mechanics problem of deter-
mining the motion of a pushed object. Using these results
and those of the previous section, we elucidate the con-
trollability properties of objects pushed with either point
contact or stable line contact.

3.1. Mechanics of Pushing

During quasistatic pushing, the force f applied by the
pusher is equal to the frictional force that the slider ap-
plies to the support plane. The frictional force f that the
slider applies to the support plane when moving with
velocity v will be expressed in terms of the following:

x = point of contact (x, ~, 0)T between the
slider s and the support surface in
the slider reference frame ,~’s

dx = differential element of support area

p(x) = support pressure at x

!-ts(x) = support friction coefficient at x

s(x) = the product of p(x) and !-tAx), referred to
as the support friction distribution

v(x) = the linear velocity of x, given by
(vx - wy, vy + wx, O)T, where the slider
velocity v is (vx, vy, W)T

fxy = the linear components (f x, fy, O)T of f

The origin Os of the slider frame 0s is located at the
center of friction of the slider, which is the unique point
of the slider such that fs xs(x)dx = 0. When /L,(x) is
constant, O,s is located directly beneath the center of
mass (MacMillan 1936). All forces and velocities are
expressed with respect to the slider frame 0s.
The force fxy and moment m components of the force

f applied to the support plane by a slider ~S are given by
Mason (1986):

where k is the unit vector (0, 0, 1)T. These expressions
simply state that the differential frictional force applied
by the slider at each support point x acts in the direction
of the velocity of x with magnitude s(x).

Fig. 7. Examples of rotation center sets that yield small-
time local controllability. A, These three rotation centers
positively span a great circle of the velocity sphere. B,
These four rotation centers positively span a great circle
of the velacity sphere. C, These four rotation centers pos-
itively span a closed hemisphere of the velocity sphere.
D, These four rotation centers positively span the velocity
sphere.

3.1.1. The Limit Surface

As the slider’s velocity direction v moves over the ve-
locity sphere, the force f moves on a two-dimensional
surface in the three-dimensional force space. This closed

convex surface is called the limit surface by Goyal et al.
( 1991 a). The limit surface encloses the set of all forces
that can be statically applied to the slider, and during
quasistatic motion the applied force lies on the limit sur-
face. The slider’s velocity direction vector v is normal
to the limit surface at the force f. If the force f lies on

the limit surface with an associated velocity direction v,
then the force -f also lies on the limit surface with an

associated velocity direction -v (Fig. 8).
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Fig. 8. Mapping a force f through a limit surface to a
velocity direction v.

If the support friction distribution s(x) is finite every-
where, the limit surface is smooth and strictly convex,
defining a continuous one-to-one mapping from the set of
force directions f E S2 to the set of velocity directions
v C ~‘2. If the applied force has zero moment about the
center of friction, the resulting slider velocity is transla-
tional and parallel to the applied force.

If any single point xo supports a finite force with a
nonzero coefficient of friction p,(xo), however, the map-
ping is no longer one-to-one. The support pressure p(xo)
and support friction s(xo) is infinite, and the integral
of s(xo) over the point xo is nonzero. The limit surface
therefore contains flat facets mapping sets of force direc-
tions to the same velocity direction: rotation about xo.

If the support friction distribution set) is infinite only
at points on a line, and s(x) integrates to zero over the
rest of the support surface, then the limit surface contains
vertices. The normals to the limit surface at these vertices
are not uniquely defined: the same force maps to a set of
possible velocity directions.

Goyal et al. (1991a,b) provide more details on the
properties of the limit surface.

3.1.2. Solving for the Motion of a Pushed Object

Each contact point between the pusher and the slider may
be sticking, breaking free, or sliding to the left or right.
The contact mode describes the qualitative behavior of
each contact point between the pusher and the slider. For
each possible contact mode i, there is a space of possible
slider velocities Vk,i that are kinematically consistent
with that contact mode and the known pusher velocity
(Lynch 1992). By Coulomb’s law, each contact mode also
specifies a polyhedral cone of possible pushing forces
in the three-dimensional force space. This cone is the
convex hull of the individual friction cones at the sticking
contacts and the friction cone edges at the sliding contacts
(Erdmann 1984, 1994). This composite friction cone
is intersected with the limit surface to find a cone of

possible velocities V f,2 (Fig. 9). If Vk,i n V f,i = 0,

Fig. 9. A, The forces that the pusher can apply to the
slider during sticking contact are represented by the
trvo friction cones. B, The convex hull of these friction
cones in the three-dimensional force space. The result is
a composite friction cone of possible pushing forces. C,
Mapping these forces through the limit surface for the
slider. D, The slider velocity directions corresponding to
forces inside the composite friction cone.

contact mode c cannot occur; otherwise, contact mode 2
is feasible and any of the velocities in the intersection set

is a possible solution to the motion of the slider. There
may be more than one solution under Coulomb’s law of

friction.

3.2. Pushing with Point Contact

3.2.1. Mechanics of Pushing with Point Contact

When the slider is pushed at a single point of contact,
there are only three possible contact modes: sticking
contact, left sliding, and right sliding. Mason (1986)
developed search procedures to find the slider motion
resulting in force/moment balance (for a known support
friction distribution s(x)) for sticking and sliding con-
tact. The actual motion is given by the contact mode that
is consistent with all kinematic and force constraints.
Peshkin and Sanderson (1988b) and Alexander and Mad-
docks (1993) derived similar search procedures that find
the slider motion by minimizing the power loss due to
frictional sliding. Peshkin and Sanderson (1989) proved
that the power minimization approach is equivalent to the
force/moment balance approach.

 at TU Muenchen on February 16, 2012ijr.sagepub.comDownloaded from 

http://ijr.sagepub.com/


543

In general, the support friction distribution s(x) is
indeterminate. For this reason, several authors have

investigated the use of weaker models of the support
friction distribution (Mason 1986; Mason and Brost 1986;
Peshkin and Sanderson 1988b; Alexander and Maddocks

1993). With these weaker models, it is usually impossible
to find the exact motion of the slider. We do not need
to be able to determine the motion of a pushed object
to prove controllability results, however; we only need
general properties of the limit surface and the available
pushing contacts.

3.2.2. Controllability by Pushing with Point Contact

Open-loop pushing with point contact is inherently unsta-
ble, and many researchers have constructed point contact
pushing control systems using visual (Inaba and Inoue
1989; Gandolfo et al. 1991; Salganicoff et al. 1993a;
Narasimhan 1995), and tactile feedback (Okawa and
Yokoyama 1992; Lynch et al. 1992). Here we examine
the controllability of such a system.

PROPOSITION 5. The configuration of a slider s with a
bounded support friction distribution s(x) is controllable
by pushing if and only if the pusher can apply two push-
ing force directions, ii and f2, such that they do not both
pass through the center of friction (mj # 0 or m2 i- 0)
and ii # -f2 .

Proof : Because the support friction distribution s(x) is
bounded, the limit surface has no facets, and therefore
the two force directions map through the limit surface
to two distinct velocity directions. At least one of the
force directions has nonzero moment, so at least one of
the velocity directions has a nonzero angular component.
Because the two force directions are not opposite, the two
velocity directions are also not opposite. Therefore, by
Proposition 2, the slider is controllable. 0

A slider that is uncontrollable by pushing is a disk
centered at its center of friction with a pushing friction
coefficient of zero. All pushing forces pass through the
center of friction, creating zero moment about the center
of friction. The slider cannot be rotated (except nondeter-
ministically if its limit surface contains vertices).
Theorem 2 is a direct application of Proposition 5 to

polygonal sliders.

THEOREM 2. The configuration of a polygonal slider
<S with a bounded support friction distribution s(x) is
controllable by pushing with point contact on any edge.
It is also controllable from any vertex that has nonzero
friction and is not at the center of friction.

A slider that is controllable by pushing may have to be
pushed a long distance to reach nearby configurations. If

the object is small-time locally controllable, however, it

can follow any path arbitrarily closely. To find conditions
for small-time local controllability of a slider, first recall
that the set of available pushing contacts is given by T,
a closed, piecewise smooth curve. At each point of F
that is not a vertex, the curve h has a unique inwardly
pointing contact normal. At a vertex, we assume that
the contact normal can take any direction in the range

specified by the contact normals adjacent to the vertex.
Each contact point and contact normal specifies a pushing
force direction that can be applied to the slider ~, and
the curve of all such force directions is denoted f(),).
Because I’ is a closed curve, f(T) is a (possibly self-
intersecting) closed curve of force directions on the force
sphere.

THEOREM 3. The configuration of any slider S with
a closed, piecewise smooth curve T of available push-
ing contact points is small-time locally controllable by
pushing with point contact, unless the pushing contact is
frictionless and r is a circle centered at the slider’s center

of friction (a frictionless disk).

Proof : Case 1: I’ not a circle. Following the argument
of Hong et al. (1990), fer) must contain at least two pairs
of opposite force directions. By the limit surface map-
ping, these forces yield two pairs of opposite velocity
directions that span a great circle of the velocity sphere.
By Proposition 4, the slider is small-time locally control-
lable, unless this great circle lies in then = 0 plane.
In this case we use the result of Mishra et al. (1987),
which states that I(I’) positively spans the force sphere.
Therefore, f(T) contains forces with positive and neg-
ative moment, and the slider can be rotated clockwise

or counterclockwise. The u = 0 great circle and any
clockwise and counterclockwise directions positively span
the velocity sphere, and the slider is small-time locally
controllable.

Case 2: I-’ a circle. Every pair of diametrically opposed
points on r gives rise to a pair of opposite velocity di-
rections. If the center of friction is offset from the center

of the circle, then only one pair lies in the w = 0 plane,
and therefore any two pairs of opposite velocity direc-
tions yield small-time local controllability. If the center of
friction is at the center of the circle and there is nonzero

friction at the pushing contact, the slider can be trans-
lated in any direction and rotated using frictional forces to
create moment about the center of friction. The slider is

small-time locally controllable. If the contact is friction-
less, however, the object cannot be rotated. A frictionless
disk centered at its center of friction is the only type of
slider that is not small-time locally controllable by point
contact pushing. (If the slider’s limit surface contains
vertices, it may rotate nondeterministically.) 0
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Fig. 10. Examples of line contact,

Theorem 3 implies that a two-degree-of-freedom robot
(a point translating in the plane) can push any object
(other than a frictionless disk) to follow any planar path
arbitrarily closely.

3.3. Stable Pushing with Line Contact

3.3.1. Mechanics of Stable Pushing with Line Contact

In the previous section we examined the controllability
of sliders pushed with point contact, but we would also
like to synthesize pushing controllers. Unfortunately, the
motion of a slider pushed with a single point of contact is
usually unpredictable, because it depends on the unknown
and generally indeterminate support friction distribu-
tion s(x). If there are two or more simultaneous pushing
contacts, however, there may exist a space of pushing
directions that, despite some uncertainty in the support
friction distribution s(x), result in a predictable motion of
the slider: sticking at all contact points. We call such a
push a stable push, and we will use these stable pushes to
execute open-loop pushing plans.

In this section we focus on stable pushing with line
contact: all contacts between the pusher and the slider
are collinear with contact normals perpendicular to the
line (Fig. 10). A line contact is equivalent to two contact
points at the ends of the line segment. We also assume
that the friction coefficient at all pushing contacts is the
same.

For a given line contact, we use the following defini-
tions :

~ Vst~bte: The set of pushing directions such that the
slider remains fixed to the pusher during the motion.

~ VF: The set of pushing directions such that one
solution to the motion of the slider is to remain

fixed to the pusher. This set of velocity directions
is found by intersecting the composite friction cone
T from the line contact with the limit surface (see
Fig. 9).

If a velocity direction v is in Vstable, then it is also in
9z, but the converse is not necessarily true. Although
stable contact is always a possible solution if the pushing
direction v is in ~, there may be other solutions. It is
necessary to prove all other contact modes inconsistent.
In this section we describe the procedure STABLE for

Fig. 11. Illustration of the procedure STABLE. A, Rotation
centers that can be achieved by forces inside the friction
cone angular limits. The friction coefficient is 0.5. B,
Rotation centers that can be achieved by forces passing
between the line contact end points. C, The intersection
of the closed regions found in A and B correspond to
rotation centers that can be achieved by forces inside the
composite friction cone ,~ defined by the line contact.

finding a subset of 9z and provide a theorem stating that
this subset also belongs to V stable’ ·

Usually the support friction distribution s(x) is un-
known, and therefore we cannot determine V~ exactly.
Instead, we assume that the center of friction and the

shape of the slider are known. Lynch (1992) presented
an algorithm for finding an approximation to 9x for a
slider with a known center of friction. This algorithm uti-
lizes results due to Peshkin and Sanderson (1988b) on the
possible support friction distributions of a disk slider.

Here we describe the simpler procedure STABLE for
finding a conservative approximation to 9x. We will
illustrate the procedure in the rotation center space. With-
out loss of generality, assume that the line contact is
horizontal on the page with an upward pointing contact
normal, as in Figure 11.
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Procedure STABILE

1. The coefficient of friction defines two friction cone

edges at angles tan -1 J1. to the contact normal, where
p is the coefficient of friction. For each edge of the
friction cone, draw two lines perpendicular to the
friction cone edge such that the entire slider is con-
tained between the two lines. For an applied force
at an edge of the friction cone, the resulting rota-
tion center must lie in its respective band (Mason
and Brost 1986; Alexander and Maddocks 1993).
Counterclockwise (respectively clockwise) rotation
centers between the two bands and to the left (resp.
right) of the slider correspond to force angles inside
the angular limits of the friction cone (see Fig. 11A).

2. For each end point of the line contact, draw two
lines perpendicular to the line through the center
of friction and the end point. One of these lines
is the perpendicular bisector between the contact
point and the center of friction (Mason and Brost
1986). The other is a distance r2 /p from the center
of friction and on the opposite side from the end
point, where p is the distance from the end point
to the center of friction and r is the distance from

the center of friction to the most distant support
point of the slider. (This &dquo;tip line&dquo; should actually
be slightly more distant from the center of friction
[Peshkin and Sanderson 1988by.) The rotation center
from a force through this end point must lie in the
band between these two lines (Mason and Brost
1986). All rotation centers between the two bands
correspond to forces that pass between the two end
points (see Fig. 11B).

3. The intersection of the closed regions found in (1)
and (2) yield a set of rotation centers corresponding
to forces that are guaranteed to lie on or inside the
composite friction cone T from the line pushing
contact. This is a conservative approximation to 9x
(see Fig. 11C).

STABLE misses some tight turning rotation centers
but finds all translations belonging to 9z. If the com-
posite friction cone contains any pure force (zero
moment about the center of friction) in its interior,
STABLE will find a closed, convex polygon of veloc-
ity directions with nonempty interior and a range of
translation directions. If the composite friction cone J
contains only a single pure force direction, necessar-
ily on the boundary of .~, STABLE finds only a single
translation in the direction of this pure force. If the com-

posite friction cone If does not contain a pure force,
STABLE finds no velocity directions belonging to &copy;z.
In fact, with no information about the support fric-
tion distribution s(x) other than the center of friction,

no velocity direction is guaranteed to be in Vy if the
line contact cannot apply a force through the center of
friction.

PROPOSITION 6. If the pusher 7~ makes line contact with
the slider) with a composite friction cone .~’ that does
not include a force through the center of friction, then, in
the absence of any other information about the support
friction distribution s(x), no single velocity direction is
guaranteed to be achievable by a force in .~.

Proof: With no information about the support friction
distribution s(x), we can always choose the support fric-
tion distribution to be concentrated arbitrarily close to
the center of friction. In this case, all rotation centers not

located at the center of friction correspond to pushing
forces passing through or arbitrarily close to the center
of friction, which are not included in the composite fric-
tion cone .~‘. If the rotation center is located at the center

of friction, any support friction distribution s(x) that is

symmetric about the center of friction corresponds to a
pushing force that is a pure moment. A pure moment
cannot be applied by line contact with a finite object. 11

Proving that a pushing direction in the set found by
STABLE belongs to Vstdbce requires proving all other con-
tact modes inconsistent. Here we state the relevant result,
omitting the proof by case analysis.

THEOREM 4. Given a pusher in line contact with a slider
~ with a bounded support friction distribution s(x), let

9z be the set of rotation centers resulting from forces in
the composite friction cone .~. Draw two lines perpen-
dicular to the line contact such that the entire slider S is

contained between the two lines. All rotation centers in

VF and outside the two lines are guaranteed to belong to
the set of stable pushing directions ~<iMe- Therefore, all

velocity directions found by STABLE belong to V~t~ble·

3.3.2. Controllability by Stable Pushing with Line Con-
tact

If the composite friction cone .~’ from the line pushing
contact contains a pure force in its interior, then STABLE
finds a convex set of velocity directions 9z with non-
empty interior (including a range of translations). By
Proposition 2, we get the following.

THEOREM 5. If a slider S is pushed with line contact
with a composite friction cone JF such that .~’ contains
a pure force (zero moment about the center of friction
of the slider) in its interior, then the configuration of
the slider is controllable by the stable pushes found by
STABLE.
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If Theorem 5 is satisfied, the slider can be pushed to
any configuration in the obstacle-free plane using the
stable pushes found by STABLE. We can apply Theorem 5
to prove the following result regarding polygonal sliders.

THEOREM 6. For a polygonal slider S and a sufficiently
long straight-edge pusher P, any edge of the convex
hull off can be used as the line pushing contact. If the
center of friction offs does not lie on a vertex of the
convex hull, and there is nonzero friction at the line con-
tacts, then there is at least one line contact from which
the slider is controllable by the stable pushes found by
STABLE.

Proof: The center of friction only lies on a vertex of
the convex hull if the support friction distribution s(x)
integrates to zero everywhere else. Otherwise, there is at
least one normal to the interior of an edge of the convex
hull that passes through the center of friction. A force
f along that normal is in the interior of the composite
friction cone for that edge. By Theorem 5, the slider
is controllable from that edge by the stable pushes of
STABLE. D

It is intuitively clear that a slider is not small-time
locally controllable by pushing a single edge. It is impos-
sible to &dquo;pull&dquo; the slider backward, and therefore it cannot

follow all paths arbitrarily closely. If we allow the pusher
to change contact configurations, however, in some cases
the configuration of the slider may be made small-time
locally controllable by stable pushes with line contact.
The following theorem gives a sufficient condition for a
slider to be small-time locally controllable by line contact
pushing.

THEOREM 7. Given a set of line pushing contacts with
composite friction cones .~2, find the set of all pure forces
(zero moment about the center of friction of the slider)
interior to at least one of the composite friction cones
.~2. If these pure forces positively span the plane of pure
forces, then the configuration of the slider ~S is small-time
locally controllable by the stable pushes found by STABLE.

Proof: If the conditions of Theorem 7 are satisfied,
then STABLE will find a set of translation directions that

positively spans the w = 0 great circle. Because each of
these translation directions has a neighborhood of velocity
directions also in the set found by STABLE, the velocity
directions found by STABLE positively span the velocity
sphere. o

The slider of Figure 11 is small-time locally control-
lable by stable pushing with the two line contacts shown
in Figure 12.

Applying Theorem 7, it is easy to show that any rect-

angular or regular 21~-gon slider is small-time locally

Fig. 12. The slider of Figure 11 is small-time locally
controllable by stable pushing at two edges using pushes
found by STABLE. The friction coefficient is 0.5.

controllable by the stable pushes found by STABLE,
provided the center of friction is in the interior of the
slider and there is nonzero friction at the edge contacts.
It suffices to show there are two opposing edges with
opposing pure forces in the interior of their respective
friction cones.

4. Planning Stable Pushing Paths among
Obstacles

The stable pushing directions impose nonholonomic con-
straints on the motion of the pusher, and the problem is to
plan free pushing paths among obstacles subject to these
nonholonomic constraints. This problem is similar to the
problem of planning paths for car-like mobile robots, the
subject of much recent robotics research. The configura-
tion space of a car-like mobile robot is also R2 x S1, but
its feasible velocity direction set is only one-dimensional,
corresponding to the angle of the steering wheel. Despite
this, Laumond (1986) showed that a car-like robot that
can reverse can reach any configuration in any open con-
nected subset of its free configuration space. Barraquand
and Latombe (1993) showed that only two steering direc-
tions are required.
Many path planners for car-like mobile robots have

been proposed; see Chapter 9 of Latombe (1991) for
a survey. In our work on planning pushing paths, we
chose to adapt an algorithm by Barraquand and Latombe
(1993) due to its simplicity and its adaptability to two-
dimensional velocity direction sets. The resulting algo-
rithm closely parallels that described by Barraquand and
Latombe. We provide only a brief description below. We
refer the interested reader to Barraquand and Latombe
(1993) for details.

4.1. Algorithm

To plan stable pushing paths, we first choose a discrete
set of ni line pushing contacts. For each pushing contact
i = 1, ... , m,, we calculate the set of stable pushing di-
rections using the procedure STABLE. In light of Proposi-
tion 3, the planner uses discrete sets of velocity directions
vextrerraal~ where 9§~~~~~~~ is the set of vertices of the
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convex polygon of velocity directions found by STABLE
for pushing contact i. We denote the union of V~~t~.e~dl
for all i to be Vextremal’ ·
The planner, shown below in pseudo-code, is a simple

best-first search using a variation of Dijkstra’s algorithm
(Aho et al. 1974). The planner constructs a tree T of
configurations reached in the search and a list OPEN of
configurations in T whose successors have not yet been
generated. Configurations in OPEN are sorted by the
costs of their paths. The planner either returns failure or
a path to a user-specified goal neighborhood. Note that
the planner is not exact, as it only finds a path to a goal
neighborhood.

program push-planner.
initialize T, OPEN with start config q2~i~
wl~ile OPEN not empty

q ~ first in OPEN, remove from OPEN
if q is in the goal region

report success

if q is not near previously occupied config
mark q occupied
for each pushing contact i = 1, ... , m

for each pushing direction in l.~e~tr~,m~,a
integrate forward from q a small distance,
compute cost of path to the new config qn~u,
if (cost <= MAXCOST and

path is collisron-free)
make qnew a successor to q in T
and place qnew in OPEN, sorted by cost

report failure
end

4.2. Details of the Implementation

4.2.1. Collision Detection

The workspace is an open rectangular subset of 1t2, and
obstacles are represented as closed polygons. For a par-
ticular pushing contact configuration, PS is the closed
region of the workspace occupied by the pusher P and
the slider S. PS(q) is the closed region of the workspace
occupied by the pusher and the slider at the configuration
q. The obstacle space Cobs is the closed set of configu-
rations q such that PS(q) intersects an obstacle or the
walls bounding the workspace. The free space C fr~~ is
the open set of the configuration space C complementary
to Coos.

The free space C frEe changes with the pushing contact,
but for simplicity the planner uses a single representation
of free space for all pushing contacts. This simplification
is appropriate when the pusher P is much smaller or
much larger than the slider S. The region occupied by the

pusher and the slider is treated as the smallest disk that
encloses them for all pushing contact configurations. A
collision occurs when this disk intersects the polygonal
obstacles. This representation of the free space Free
is not exact, but the resulting code is simple and the
collision detection routine is fast.

The planner checks for collisions at each new config-
uration in the search, not along the path. For this reason,
the disk approximation to PS is grown by the maximum
distance any point in PS can move in a single step. This
ensures that if a new configuration is free, then the path
that transferred it there is also free. This approach is sim-
ple and fast but somewhat conservative: the planner may
not find paths through tight spots where paths exist.

4.2.2. Cost Function

In the current implementation, the cost of a path is the
sum of an integer a times the number of pushing steps,
an integer b times the number of control changes, and
an integer c times the number of changes of the pushing
contact. These values must all be nonnegative. The user
can control the maximum permissible cost MAXCOST
for a path.

Because path costs are always integral, the sorted list
OPEN is represented by a 1-D array of linked lists,
where each array index represents the cost of the paths
to the configurations in its linked list. Inserting a new
configuration into OPEN consists of simply appending
it to the end of the appropriate linked list and therefore
takes constant time.

4.2.3. Pruning

The planner prunes configurations that are sufficiently
close to configurations that have been reached with the
same or lower cost and the same pushing contact. Two
configurations are considered sufficiently close if they
occupy the same cell of a predefined grid on the configu-
ration space.

4.2.4. Parameters

The user must specify the parameters defining the size of
the goal neighborhood 9(qg,,al), the length of the inte-
gration step, and the resolution of the configuration space
grid used to check for prior occupancy. These parameters
are interdependent. The resolution of the grid should be
sufficiently fine that the application of any control moves
the configuration to a new grid cell, and the goal neigh-
borhood should be large enough that PS does not jump
over it. The user must also specify the maximum num-
ber of configurations that the planner will explore before
returning failure.
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4.2.5. Changing the Pushing Contact

We assume that the pusher 7~ can change pushing con-
tacts at any time. If the slider is pushed by a manipulator
capable of moving above the obstacles, such as a robot
arm pushing objects on a table, this is a reasonable as-
sumption. If the pusher is constrained to move in the
plane, such as a mobile robot, however, this planner does
not address the problem of finding paths between pushing
contacts.

4.3. Properties of the Planner

This planner inherits properties of the planner described
by Barraquand and Latombe (1993). Changing contact
configurations in the pushing case is essentially equivalent
to shifting between forward and reverse in the car-like
robot case. (Note that we assume there is always a path
for the pusher from one feasible pushing contact to an-
other.) With an exact collision detection routine, it is
possible to choose search parameters such that the follow-
ing properties hold:

~ Completeness. If there is a feasible pushing path
frarra the initial configuration qinit to the goal
neighborhood ~(q9odr) using the stable pushing
directions found by STABLE, then the planner will
find a pushing path.

~ Optimality. If the cost of the pushing path is given
by the number of changes of the pushing contact,
then the planner will find a pushing path with A
changes of the pushing contact, where A is the min-
irnum number of contact changes , for any feasible
pushing path connecting the initial configuration
qinit to the goal neighborhood ~(q9,~al) using veloc-
ity directions found by STABLE.

Now assume that the extent of the pusher ’7~ is negligi-
ble so that 7~~5 is equivalent to the slider S. If Vextremal
satisfies the conditions for small-time local controllability,
then, with an exact collision detection routine, it is pos-
sible to choose search parameters such that the following
property holds:

. Existence of a solution. If the initial configuration
q~~,2~ and the goal configuration qgoal lie in the
same connected component of the sliders free con-
figuration space C free’ then the planner will find a
pushing path connecting qinit to the goal r2eighbar-
hood !9(q...,).

The proofs of these properties do not suggest how
small to choose the integration step or how to choose the
other search parameters. See Barraquand and Latombe
(1993) for a more detailed discussion of the properties of
the planner.

4.4. Experimental Results

The planner is implemented in C on a Sparc 20. This
section presents some pushing paths generated for the
slider of Figure 12.

In the first two examples, a mobile robot pushes the
slider from edge 1 in Figure 12. Because the mobile robot
pushes from only a single edge, the slider is not small-
time locally controllable. The extremal velocity directions
~extremc~ found by STABLE consist of two rotations and
two translations. The goal region is about ~25% the
length of the slider and +2 degrees.

In Figure 13, the slider is pushed to the goal by an
omnidirectional mobile robot. This path took about 7
seconds to generate. The same problem is presented to
a car-like mobile robot, which imposes additional con-
straints on the possible pushing directions. Figure 14
shows the intersection of the stable pushing directions
with the set of possible robot velocity directions, limited
by the rolling constraint of parallel wheels and a mini-
mum turning radius. Combining the constraints, we see
that the robot cannot execute a left-turn stable push: the
extremal velocity directions consist of a straight-ahead
motion and a right turn. (Even if the straight-ahead mo-
tion is not extremal, it should be included in the planner’s
control set to smooth paths.) Figure 15 shows the path
generated for the car-like mobile robot. The robot is
forced to take a longer path due to its kinematic con-
straints. Planning time was 1 second. In both examples,
the cost function is a = 1, b = 5, and c = oo (edge
changes are disallowed). A nonzero value of b tends
to smooth the paths by eliminating excessive control
changes.

In the next two examples, a robot arm pushes the
slider on a table, and the arm is capable of lifting up
and changing the pushing contact. The pusher can contact
the slider at the two opposite edges shown in Figure 12.
The resulting sets of stable pushing directions yield small-
time local controllability. For each edge, the planner uses
the four extremal velocity directions found by STABLE.
The area of the pusher P in the plane is assumed to be
negligible.

Figures 16 and 17 show pushing paths that solve the
same problem using different cost functions. In these
examples the goal region is abut ±10% the length of the
slider and ~2 degrees. In Figure 16, the cost function is
a = I , b = 5, and c = 0: short paths with few control
changes are preferred. The resulting path took 35 seconds
to find. In Figure 17, the cost function is a = 0, b = 1,
and c = 10: paths that minimize contact changes are
preferred. The planner found this path in 2 seconds.

Figure 18 presents another example of maneuvering the
slider in a cluttered workspace using two pushing edges.
The size of the goal region is the same as the previous
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Fig. 13. The slider being pushed to the goal by an omnidirectional mobile robot. For- clarity, the rrtobile robot is drawn
only at the beginning of the path.

two examples, and the cost function is a = 0, b = 1, and
c = 10. Planning time was 43 seconds.
Our experience shows that this simple push planner

can quickly and reliably solve complex manipulation
problems. The user must choose the integration step size
with care, however. If the step is too small, the search
will reach its memory capacity before it reaches the goal
region; if the step is too large, tight paths will be missed,
and the goal size may have to be increased.
We are using an Adept 550 tabletop robot to exe-

cute pushing plans similar to those above, with object
dimensions of about 30 mm. The user enters the push-
ing problem via a graphical user interface, and the

solution is automatically downloaded and executed by
the robot. The plans are robust. More information about
the implementation, the planner code, and the graphical
user interface can be found on the World Wide Web at

http://www.cs.c~u.edu/&dquo;mlab.

4.5. Variation on the Planner

To shrink the size of the goal neighborhood without sac-
rificing much speed in planning, the integration step and
grid cell sizes could be decreased in the neighborhood of
the goal. This would allow fine positioning near the goal.
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Fig. 15. The slider being pushed to the goal by a car-like mobile robot.

Fig. 14. Intersecting the feasible velocity directions of
the car-like mobile robot pusher (represented as rotation
centers) with the stable pushing directions for the slider.
The intersection prohibits left turns.

The planner could be modified to find a path to an
exact goal configuration instead of a goal neighbor-
hood. A very simple way to implement this is to plan
a path to a goal neighborhood as before, then back
up along the path until a configuration is found from
which P~S can move exactly to the goal configura-
tion using a single pushing direction in 9~tabie. This is
possible due to the fact that the space of stable push-
ing directions has nonempty interior on the velocity
sphere. (This is not true for the case of a car-like mo-
bile robot pusher.) The preimage of the goal configuration
under all constant stable pushing directions therefore
encloses a volume of the configuration space C with
nonempty interior. An even better solution is to define
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Fig. 16. A pushing plan found with cost function a = 1, b = 5, and c = 0.

this preimage as the goal region. Another approach is to
find an exact holonomic path and transform it into one
that obeys the nonholonomic constraints (Laumond et
al. 1994).
The examples presented in Section 4.4 use stable

translational velocity directions that border on being
unstable. These pushing paths may be made robust to
bounded uncertainty in the pushing friction coefficient
and the location of the center of friction by propagat-
ing this uncertainty through the procedure STABLE. The
result is to shrink the set returned by STABLE. Brost
(1988; 1992) has applied this idea to several manipula-
tion tasks.

4.6. Open Problems

This planner ignores the issue of finding the path for
the pusher from one feasible pushing contact to an-
other but assumes that a free path always exists. If the
pusher is constrained to move in the plane of the obsta-
cles, this problem must be addressed. Wilfong (1988)
describes an algorithm for a convex polygon translating
among obstacles and pushing another convex polygon at
edge contacts, without considering pushing direction con-
straints. In the terminology of Alami et al. (1989), a path
between pushing contacts is a transit path, and a push-
ing path is a transfer path. They describe an approach
to planning both the transit and transfer paths using
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Fig. l7. A pushing plan found with cost jUnction a = U, b = 1, and c = lU.

manipulation graphs. In their problem, the robot and
the manipulated object translate in a planar workspace
with obstacles, and the robot can grasp the object at a
discrete set of locations and place the object at a discrete
set of configurations. The planner of Dacre-Wright et
al. (1992) addresses the case of a convex planar robot and
object where the robot can grasp the object at any con-
tact. Koga and Latombe (1994) use manipulation graphs
to find plans for a multiple arm robot manipulating a
single object among obstacles.
The push planner is asymptotically optimal in the sense

that if a feasible pushing path exists, then with an ap-
propriate choice of search parameters, it will find a path
that minimizes the number of changes in the pushing
contact. We can make no claim, however, that the re-

sulting path will be &dquo;short.&dquo; An open problem is how to
find shortest paths for a polygonal set of feasible veloc-
ity directions. Dubins (1957) found a set of canonical
paths in the obstacle-free plane that is guaranteed to
include the minimum arclength path for a car-like mo-
bile robot that can only go forward. This result has
been utilized by Jacobs and Canny (1989) in planning
paths among obstacles. Reeds and Shepp (1990) enu-
merated a set of canonical paths, guaranteed to include
the shortest path in the obstacle-free plane, for a car-
like mobile robot that can reverse. This result has also

been used in planning paths among obstacles (Lau-
mond et al. 1994). As far as we are aware, there have
been no similar results for more general sets of velocity
directions.

 at TU Muenchen on February 16, 2012ijr.sagepub.comDownloaded from 

http://ijr.sagepub.com/


553

Fig. 18. A pushing plan found with cost function a = 0, b = I, and c = 10.

We have assumed that the set of possible pushing con-
tacts is specified by the user. An interesting problem
is how to choose the set of pushing contacts based on
knowledge of the pusher, the slider, the environment, and
the initial and goal configurations. We have focused on
line contact pushing in this article, but a similar approach
can be used with other types of pushing contacts.
To manipulate an unknown object, a robot could es-

timate the friction parameters of the object (Yoshikawa
and Kurisu 1991; Lynch 1993), perform the mechanics
analysis, and use the results in the planner described here.
Alternatively, the robot could empirically determine a set
of stable pushing directions and plug these directly into
the planner.

The pushing paths described in this article are sta-
bilized by using more than one contact point between
the pusher and the slider. No sensing is required: the
inherent mechanics of the task essentially close a tight
feedback loop. Nevertheless, unmodeled effects could
cause the pusher to lose control of the motion of the ob-
ject. The planner described here could be considered the
feedforward component of a pushing control system.

5. Conclusion

A model of the mechanics of a task is a resource for the

robot, just as actuators and sensors are resources. The ef-
fective use of frictional, gravitational, and dynamic forces
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can substitute for extra actuators; the expectation derived
from a good model can minimize sensing requirements.
We have used a quasistatic model to derive an algorithm
to automatically find sensorless pushing plans.

As the mechanics model becomes more detailed, how-
ever, it becomes more challenging to assess the capabil-
ities of a robot. The set of accessible configurations of
the manipulated object is no longer just the set of config-
urations the end effector can reach. We must answer the

fundamental question, &dquo;Can the object be pushed from
here to there?&dquo; This article begins to answer that question
by elucidating some of the controllability properties of
objects pushed with point or line contact.
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