
Task Space Control with Prioritization for Balance and Locomotion

Michael Mistry1, Jun Nakanishi,2,3 and Stefan Schaal1,2

1Computer Science & Neuroscience, University of Southern California, Los Angeles, CA 90089, USA
2ATR Computational Neuroscience Laboratories, Kyoto 619-0228, Japan

3ICORP, Japan Science and Technology Agency, Saitama 332-0012, Japan
mmistry@usc.edu, jun@atr.jp, sschaal@usc.edu

Abstract— This paper addresses locomotion with active bal-
ancing, via task space control with prioritization. The center of
gravity (COG) and foot of the swing leg are treated as task space
control points. Floating base inverse kinematics with constraints
is employed, thereby allowing for a mobile platform suitable
for locomotion. Different techniques of task prioritization are
discussed and we clarify differences and similarities of previous
suggested work. Varying levels of prioritization for control
are examined with emphasis on singularity robustness and the
negative effects of constraint switching. A novel controller for
task space control of balance and locomotion is developed which
attempts to address singularity robustness, while minimizing
discontinuities created by constraint switching. Controllers are
evaluated using a quadruped robot simulator engaging in a
locomotion task.

I. INTRODUCTION

Legged robots have advantages over wheeled platforms
in traversing rough terrain where accurate foot placement is
needed. However with increased mobility comes decreased
stability, often requiring active control to maintain balance
by positioning either the robot’s center-of-gravity (COG) or
zero-moment-point (ZMP) [2],[3]. Robots with multiple legs
such as quadrupeds, can utilize static gaits with COG sway to
always maintain the COG within the current support polygon.
Traditional approaches to quadruped locomotion have relied
on such static gaits, often using open loop gait patterns that
position the COG in the appropriate place [1]. However to
increase robustness, reactive COG control is still desirable,
particularly for traversing rough terrain where environmental
disturbances and slipping can perturb the open loop COG
trajectories. In addition to maintaining balance, locomotion
in rough terrain requires accurate foot placement.

This paper addresses task space control for simultaneous
balancing and walking. The robot’s COG and foot of the
swing leg are treated as task space control points. We will
discuss using a floating base representation of kinematics,
that allows for the robot to freely traverse its environment.
Floating base kinematics approaches have been used before
for spacecraft control [12] and humanoid robots [11]. Here
we will place emphasis on the constraints due to contacts
with the ground, including the effects of constraint switching
on locomotion. Additionally task-prioritization is discussed
as a potential solution for singularity robustness. Three
controllers are evaluated on a dynamic simulator of a the
Boston Dynamics LittleDog robot.

II. FLOATING BODY KINEMATICS

A free-floating body is by definition not confined to any
fixed location in space. In this section we will define the
necessary notation and the Jacobians required for floating
base inverse kinematics. We will also discuss the role of
constraints in the control of unactuated degrees of freedom.

A. Floating Base Jacobians

The complete configuration of a rigid-body robot with a
floating base can be represented by the vector:

q =
[

qTR xTB
]T

(1)

where qR ∈ Rn is the joint configuration of the robot
with n joints and xB ∈ R6 is the position and orientation
of a coordinate system attached locally to the robot base,
and measured with respect to some fixed world coordinate
system. If x = f(q) is the position and orientation of any
frame represented in the fixed world coordinate system, we
can construct a free-floating base Jacobian as follows:

J =
[

∂x
∂qR

∂x
∂xB

]
(2)

which maps configuration velocities to the velocity of that
point: ẋ = Jq̇. In a quadruped robot, for example, for
accurate foot placement we are interested in the control of
the position and possibly orientation of the ith foot (xLi) in
world coordinates. If we segment the the robot configuration
vector into the 4 separate leg configurations (qL1..4)

qR =
[

qTL1
qTL2

qTL3
qTL4

]T
, (3)

the floating base Jacobian for the linear velocity of the foot
of leg 1 will be

JL1 =
[

∂xL1
∂qL1

0 0 0 ∂xL1
∂xB

]
. (4)

Each component of the Jacobian can be computed geomet-
rically (see [17]). For example, end-effector motion relative
to base motion is

∂xLi

∂xB
=
[

I RB× (x̄Li − x̄B)
0 I

]
(5)

where x̄ ∈ R3 are the three positional components of x and
RB× is a column-wise cross product of RB , the rotation
matrix representing base orientation relative to the fixed
world frame. Other important free-floating base Jacobians

to consider are the Jacobian describing motion of the base
itself:

JB =
[

0 0 0 0 I 0
0 0 0 0 0 I

]
(6)

as well as the center of gravity [16] of the robot:

JCOG =
[∂x̄COG

∂qR
I RB× (x̄COG − x̄B)

0 0 0 0 0 I

]
(7)

where x̄COG is the position of the robot’s center of gravity,
and

∂x̄COG

∂qR
=
∑
imiJi,COG∑

imi
(8)

is the mass weighted average of the Jacobians of COGs of
individual links. Note that orientation of a COG is not a
realistic concept, so for the formulation of (7) the orientation
of the COG is defined to be the orientation of the robot’s
base.

B. Inverse Kinematics with Floating Base Jacobians

In order to control an end effector (the COG for example)
with floating base inverse kinematics, one could naively
take the pseudo-inverse of the floating base Jacobian, and
compute desired configuration velocities:

q̇ = J#ẋ (9)

where the pseudo-inverse is defined as A# = AT
(
AAT

)−1

when J has more columns than rows and has full row
rank. When J is not full row rank, the pseudo-inverse is
computable via a singular value decomposition (see [19]).
However, using (9) to compute desired joint trajectories
also creates desired trajectories for the base position and
orientation, which may not be realizable due to underactua-
tion. This problem can be overcome, provided our system is
constrained sufficiently such that the unactuated degrees of
freedom cannot move independently from the actuated joints
(there must exist more constraints than unactuated degrees
of freedom). Calling JC the Jacobian of constraints, we can
control an arbitrary end effector by:

q̇R =
[

I 0
] [JC

J

]# [0
ẋ

]
(10)

where the first matrix is used to select q̇R from q̇. This
equation will provide the correct velocities for the actuated
joints that result in the precise desired end effector veloc-
ity, provided that the desired end effector velocity, ẋ, is
compatible with the constraints and the augmented matrix[

JTC JT
]T

is not singular. It is important to note that
when constraints change (for example when feet make and
break contact with the ground during locomotion), JC will
abruptly change (possibly in size as well if new constraints
are added or removed), creating discontinuities in q̇R. These
discontinuities can potentially destabilize the robot and are
therefore undesirable.

III. TASK PRIORITIZATION

Robots can utilize redundancy, if available, to achieve
multiple tasks simultaneously. A robot may have a set of
n tasks, each represented by the vector xi, i = 1...n. It may
be possible to compute a configuration velocity, that will
achieve all n tasks simultaneously by utilizing the pseudo-
inverse of an augmented Jacobian matrix, created by stacking
the n task Jacobians together:

q̇ =

J1

J2

...
Jn

ẋ1

ẋ2

...
ẋn

 . (11)

For convenience we will write augmented Jacobians and
velocity vectors, stacked with i components, as Ĵi and ˆ̇xi
respectively, and can therefore rewrite (11) as

q̇ = Ĵ#
n

ˆ̇xn (12)

However, occasions can arise when two or more tasks will be
in conflict, i.e. one task cannot be completed without violat-
ing another task. In this case, the augmented Jacobian of (12)
will drop rank and become singular. The pseudo-inverse can
create unreasonably high joint velocities when approaching
singularities, and discontinuities when rank is changed [18].
Note that we can potentially deal with singularities by using
a damped pseudo-inverse, as discussed in [7]:

J#λ = JT
(
JJT + λ2I

)−1

at the cost of inaccurate control of task variables. Another
way to prevent singularities, is to employ a task-priority
framework, whereby lower priority tasks are guaranteed not
to interfere with the achievement of higher priorities. In
addition, if it becomes necessary to sacrifice a lower priority
task for a higher one, then the lower priority task should be
executed with a minimum amount of error.

Task-priority control of redundant manipulators have been
studied in several papers [4], [5], [6], [7], [8]. In one of
the originals [4], task-priority based control of two tasks is
defined the following way:

q̇ = J#
1 ẋ1 + (J2N1)#

(
ẋ2 − J2J

#
1 ẋ1

)
. (13)

where Ni = I−J#
i Ji is the null-space projection matrix of

Ji, and the task defined by ẋ1 is claimed to have higher
priority than the task defined by ẋ2. The framework is
generalized, recursively, in [5] for the prioritization of n
tasks:

q̇1 = J#
1 ẋ1

q̇i = q̇i−1 +
(
JiN̂i−1

)#

(ẋi − Jiq̇i−1) (14)

q̇ = q̇n

where N̂i−1 is defined to be the null space projection of the
augmented Jacobian Ĵi−1 :

N̂i−1 = I−

J1

J2

...
Ji−1

J1

J2

...
Ji−1

 ,
and task i − 1 is claimed to have higher priority than task
i. Unfortunately this formulation also has difficulty handling
task conflicts, since so called algorithmic singularities are
created when one task will violate another (and at least
one JiN̂i−1 term will become singular). By using a ma-
nipulability measure, [8] is able to show that algorithmic
singularities in the two task case of (13) occur if and
only if the augmented Jacobian of both tasks, i.e. (12), is
singular. Thus the formulations of (12) and (14) have two
striking similarities. They both achieve accurate tracking of
all n tasks whenever possible, and when two or more tasks
conflict, they both run into singularity difficulties. It will be
shown in the appendix of this paper that when Ĵn has full
row rank, for an arbitrary n > 1 tasks, the two formulations
are precisely equivalent, i.e.:

q̇n = q̇n−1 +
(
JnN̂n−1

)#

(ẋn − Jnq̇n−1) = Ĵ#
n

ˆ̇xn. (15)

Thus as the matrix Ĵn approaches a singularity, so will at
least one JiN̂i−1 term of (14). Consequently, the only benefit
of (14) over (12) occurs precisely at singularities, where (14)
is still able to guarantee task achievement of higher priority
tasks. However, practically, operating at singularities is un-
realistic since approaching them can generate unreasonably
high joint velocities, as well as large discontinuities at the
rank transition. Therefore in its current form, (14) is no
more useful as a task-priority formulation than (12), and
we must turn to singularity robust methods. [6] mentions
an alternative form of task prioritization:

q̇ = J#
1 ẋ1 + N1J

#
2 ẋ2, (16)

which [7] claims has poor tracking of lower priorities (even
if redundancy is available for the achievement of all tasks).
However, when two tasks of different priorities conflict there
are no problematic singularities. This technique, coupled
with augmented Jacobians of (12), and damped pseudo-
inverses, will be employed in the development of our control
algorithms.

IV. CONTROLLER FORMULATION

Our primary concern in balance and static locomotion is
the control of the COG position. The position of the COG
must be accurately controlled so that it does not drift outside
the support polygon. However, in order to do so with floating
base kinematics, we must have sufficiently many constraints
(to allow for control of unactuated DOFs) and our controllers
must always maintain those constraints. If at any time, a
constraint is allowed to be violated, the COG will no longer
be controllable. Therefore, we must always place the COG

and constraints in the same and highest level of priority, i.e.
together in an augmented Jacobian. It may be possible that
the COG trajectory can conflict with constraints: the most
common example would be when the COG is commanded
to go as high as possible, which is only achievable if the
feet lift from the floor (thus breaking constraints). Therefore,
we will only place the x and y (floor plane) components
of the COG Jacobian in this augmented Jacobian. The z
position (height) of the COG will be controlled at a lower
level of priority. It may be still possible that an x or y
component of the COG will violate the constraints, however
we will assume that these postures only occur when the
COG is outside the support triangle, when stability is lost
anyway. Our secondary concern is for the position of the
swing leg, for as accurate foot placement as possible. We
will investigate placing control of this task variable both in
primary and secondary levels. Finally, any remaining degrees
of freedom (COG height and orientation of the body), must
never be able to interfere with constraints, COG, or swing
leg, and will always be placed at the lowest level of priority.

A. Control Method 1
In our first controller implementation, we place the swing

leg in the same level of priority as the constraints and
COG. The main advantages are that the structure of the
primary Jacobian does not change with the constraints, and
thus desired joint velocities remain continuous (provided
desired end-effector velocities remain continuous). The ma-
jor disadvantage with this approach is that the swing leg
can potentially conflict with the COG (for example, when
reaching for a target outside of the leg’s workspace), and
thus swing leg trajectories must be planned in advance to
not interfere with COG trajectory. We will define:

ĴA =

 Ĵstance
Jswing

JCOG,XY

 ,
ĴP =

[
JRPY

JCOG,Z

]
where Ĵstance is the augmented Jacobian, containing a stack
of all legs in contact with the ground, Jswing is the Jacobian
of the swing leg, JRPY dictates base orientation (in roll, pitch,
yaw angles), JCOG,XY is the Jacobian for the projection of
the COG on the XY plane, and JCOG,Z for the height of
the COG. Similarly we will define the vector of desired end
effector velocities:

ˆ̇xA =

 0
ẋswing

ẋCOG,XY

 ,
ˆ̇xP =

[
ẋRPY

ẋCOG,Z

]
Finally we compute desired joint velocities as

q̇1 = Ĵ#
A

ˆ̇xA + N̂AĴ#
P

ˆ̇xP , (17)

and N̂A = I− Ĵ#
A ĴA is the null space projection matrix of

ĴA.

B. Control Method 2

Because Method 1 leaves us in danger of commanding the
swing leg to a posture that conflicts with the COG (creating
a kinematic singularity), we would like to move the swing
leg controller into the null space of the COG controller and
constraints. Defining:

ĴB =
[

Ĵstance
JCOG,XY

]
,

and
ˆ̇xB =

[
0

ẋCOG,XY

]
,

the 2nd controller will be:

q̇2 = Ĵ#
B

ˆ̇xB + N̂BJ#
swingẋswing + N̂AĴ#

P
ˆ̇xP . (18)

Note that we project Ĵ#
P

ˆ̇xP into the null-space of ĴA since
this is the intersection of the ĴB and Jswing null-spaces. Thus
the term N̂AĴ#

P
ˆ̇xP will not interfere with the constraints,

COG or swing leg. Also note that computation of N̂A

requires a pseudo-inverse of ĴA, and thus eliminates the
singularity robustness we were seeking by moving the swing
leg out of the top priority. To deal with this issue we will
compute N̂A with a damped pseudo-inverse:

N̂λ
A = I− Ĵ#λ

A ĴA

Because N̂λ
A does not perfectly project into the null-space of

ĴA, we will need to premultiply with N̂B to be certain the
constraints and COG are not violated. Thus the final version
of the method 2 controller is:

q̇2 = Ĵ#
B

ˆ̇xB + N̂BJ#
swingẋswing + N̂BN̂λ

AĴ#
P

ˆ̇xP . (19)

C. Control Method 3

Jacobian switching problems arise because at the moment
of transfer between a 3 and 4 leg stance: q̇1 6= q̇2. One
question we can ask is if it is possible to add a term to q̇2

such that at the moment of constraint switching:

q̇1 = q̇2 + N̂Bξ, (20)

where ξ is an arbitrary vector. The additional term will not
violate the constraints of COG trajectory (although it may
interfere with the swing leg). Substituting equations (17) and
(18) into (20), and solving for N̂Bξ gives us:

N̂Bξ = Ĵ#
A

ˆ̇xA − Ĵ#
B

ˆ̇xB − N̂BJ#
swingẋswing. (21)

We can multiply both sides of (21) by N̂B and because
N̂BĴ#

B = 0 and N̂B is idempotent, we have:

N̂Bξ = N̂BĴ#
A

ˆ̇xA − N̂BJ#
swingẋswing. (22)

Now adding this new term to (18) gives us

q̇3 = Ĵ#
B

ˆ̇xB + N̂BĴ#
A

ˆ̇xA + N̂AĴ#
P

ˆ̇xP .

Again, because we wish to be robust to singularities of ĴA
we will use the damped pseudo-inverse:

q̇3 = Ĵ#
B

ˆ̇xB + N̂BĴ#λ
A

ˆ̇xA + N̂BN̂λ
AĴ#

P
ˆ̇xP . (23)

If λ = 0, and because the relation of equation (20) holds,
and q̇3 = q̇1. Thus as long as ĴA is not near a singularity,
we can operate with λ = 0 and maintain continuous joint
velocities and accurate swing leg tracking. As ĴA approaches
a singularity (manipulability becomes low), we can increase
λ to maintain robustness.

V. EVALUATIONS

A. Platform

We evaluate the three controllers on a dynamic simulator
of the Boston Dynamics LittleDog quadruped robot. The
LittleDog robot is a 12 degree of freedom robot (3 per
leg) with point feet contacts. We attempt a locomotion task
on flat ground where a smooth, twice-differentiable, COG
trajectory for locomotion, is generated automatically based
on foot movement [10]. Foot motion is planned to reach
predefined targets on the floor (for moving straight ahead).
Trajectories for the feet to reach targets are generated via
5th order splines (which provide minimum jerk trajectories).
Desired task velocities (for input into the controllers) are
generated from the trajectories ẋd, xd, as follows:

ẋ = KV ẋd +KP (xd − x) (24)

The controllers compute desired joint velocities, which are
then integrated to produce desired joint positions. The desired
joint position and velocity set points are sent to low level
joint PD controllers on the robot at a rate of 500 Hz.

Fig. 1. LittleDog Robot Simulator

B. Locomotion Performance

The COG trajectory is automatically placed within the sup-
port triangle of the stance legs, and since the COG trajectory
is parameterized by foot position, velocity, and acceleration,

any foot movement, including slipping, will readjust the
trajectory (see [10]). Oscillations in the desired trajectories
are caused by ground contacts, which are modeled in the
simulator as spring mass dampers. Figure 2 shows the COG
tracking performance for each of the three controllers during
a locomotion task on flat terrain. The robot moves at a speed
of one gait cycle per 6 seconds. Controller 3 uses a constant
λ = 0.05 for the entire motion (although a more intelligent
approach may be to vary λ). Tracking for all controllers is
good enough for maintaining stability during a locomotion
task.

Fig. 2. x and y coordinates (overhead view) of the COG trajectory (in
blue) for the 3 controllers plotted with the desired COG trajectory in green,
during walking on flat ground. the robot moves from left to right.

The swing leg is guided to its target with a trajectory
created by a 5th order spline. Figure 3 shows the swing leg
tracking performance in the z direction of the left front leg
for each of the three controllers during locomotion. In green
is the trajectory generated by the splines for the leg to lift off
and touch down, and in blue is the foot’s actual trajectory.

C. Constraint Switching

Controllers 2 and 3 suffer from constraint switching dis-
continuities. Figure 4 shows the effect of constraint switch-
ing, on controller 2 during the transition from 4 foot support
phase to 3 foot support. Shown in the graph are plots of the
computed desired knee velocities for each of the for knees,
and the discontinuity created by the switching Jacobian.

Figure 5 shows the same time period for Controller 3 (with
λ = 0.05). Although, this controller is also going though a
constraint switch, the effect is nearly negligible.

D. Swing Leg Tracking

Since controller 1 places the swing leg in the highest
level of priority, we know that swing leg control will not
be distorted (provided ĴA remains non-singular). In order
to quantify the amount of degradation caused by placing
the swing leg controller in the null space of the balance

Fig. 3. left front leg’s tracking performance in the z direction over time
during locomotion for each of the three controllers. Controller 2 is not able
to track that well.

Fig. 4. desired knee velocities computed by controller 2. There are clearly
discontinuities in the trajectories, caused by a sudden constraint switch.

controller, we can compute the error in ẋswing reconstruction.
For controller 2, it is:

e2 = ẋswing − JswingN̂BJ#
swingẋswing

=
(
I− JswingN̂BJ#

swing

)
ẋswing

= E2ẋswing

where E2 is independent of the desired swing foot velocity.
For method 3:

E3 = I− JswingN̂BĴ#λ
A Sswing,

where Sswing is used to convert ẋswing into a higher dimen-
sional vector.

Sswing =

 0
I
0

 (25)

Fig. 5. desired knee velocities computed by controller 3. There is a
constraint switch but this controller maintains a rather smooth trajectory
though it.

The matrix E should give some indication of the controller’s
performance of swing leg tracking, independently of the par-
ticular trajectory (E = 0 means perfect swing leg tracking).
Figure 6 shows plots of the Frobenius norm of E2 (in blue),
E3 (in green) with λ = 0.05 during the swing phase of the
left front leg. Note that the norms of the first controller (or
third controller with λ = 0) are zero. The norm of controller
3 is consistently less than that of 2, indicating that controller
3 should be better at swing leg tracking. Reducing λ even
further will likewise reduce the norm, and should improve
swing leg tracking even further.

Fig. 6. The Frobenius norms of E2 (blue) and E3 (green) plotted during
the swing phase of the left front leg. Smaller norm means less distortion of
the desired swing leg trajectory.

VI. DISCUSSION

Controller 1 had the best performance for locomotion.
However, in order to use this controller, foot placement must

be carefully planned to avoid conflicts with the COG. Using
a damped pseudo-inverse in this controller, is not an option
since we will lose the ability to maintain the constraints (and
thus lose COG controllability). Controller 2 no longer has
these singularity issues, but as the results show, it performs
poorly in swing leg tracking and suffers from discontinuities
during constraint switches. Controller 3 seems to be a nice
tradeoff between these two approaches, however it requires
the additional tuning of the λ parameter to achieve the best
performance.

VII. CONCLUSION

We have demonstrated the feasibility using floating base
inverse kinematics, with task-prioritization to address the
issue of simultaneous balance and walking of a quadruped
robot. A controller developed here seems to be a promis-
ing trade-off between singularity problems and constraint
switching. Future work will focus on the evaluation of these
controllers on more complex terrain, torque based control
via inverse dynamics, and other robot platforms including
humanoids.

VIII. APPENDIX

A. Proof of (15)

Since (14) is a recursive formulation, we will use induction
to prove (15). The induction hypothesis will be:

q̇i =

J1

J2

...
Ji

ẋ1

ẋ2

...
ẋi

 = Ĵ#
i

ˆ̇xi, (26)

and the base case (i = 1) is trivially verified (q̇1 = J#
1 ẋ1).

Therefore we only need to prove the (i+ 1)th step:

q̇i+
(
Ji+1N̂i

)#

(ẋi+1 − Ji+1q̇i) =

J1

J2

...
Ji

Ji+1

ẋ1

ẋ2

...
ẋi

ẋi+1

(27)

The right hand side of (27) can be rewritten by using the
augmented Jacobian notation:

q̇ =
[

Ĵi
Ji+1

]# [ˆ̇xi
ẋi+1

]
(28)

Assuming the augmented Jacobian of (28) is full row rank,
we can expand its pseudo-inverse to get the equation:

q̇ =
[

ĴTi JTi+1

] [ĴiĴTi ĴiJTi+1

Ji+1ĴTi Ji+1JTi+1

]−1 [ˆ̇xi
ẋi+1

]
.

(29)
The inversion in (29) can be solved using the Strassen block-
wise inversion formula:[

A B
C D

]−1

=
[
W X
Y Z

]
. (30)

where

W = A−1 +A−1B
(
D − CA−1B

)−1
CA−1

X = −A−1B
(
D − CA−1B

)−1

Y = −
(
D − CA−1B

)−1
CA−1

Z =
(
D − CA−1B

)−1

By setting A,B,C, and D to the corresponding element of
the inverted matrix in (29) we can solve for W,X, Y, and Z.
First we expand Z:

Z =
(

Ji+1JTi+1 − Ji+1ĴTi
(
ĴiĴTi

)−1

ĴiJTi+1

)−1

=
(
Ji+1JTi+1 − Ji+1Ĵ

#
i ĴiJTi+1

)−1

=
(
Ji+1

(
I− Ĵ#

i Ĵi
)

JTi+1

)−1

=
(
Ji+1N̂iJTi+1

)−1

. (31)

Next we will expand the diagonal elements of (30):

Y = −
(
Ji+1N̂iJTi+1

)−1

Ji+1ĴTi
(
ĴiĴTi

)−1

= −
(
Ji+1N̂iJTi+1

)−1

Ji+1Ĵ
#
i , (32)

X = −
(
ĴiĴTi

)−1

ĴiJTi+1

(
Ji+1N̂iJTi+1

)−1

. (33)

And the final element is expanded:

W =
(
ĴiĴTi

)−1

+
(
ĴiĴTi

)−1

ĴiJTi+1

(
Ji+1N̂iJTi+1

)−1

Ji+1Ĵ
#
i

(34)

Replacing the matrix inversion in (29) with (30) results in:

q̇ =
[

ĴTi JTi+1

] [W X
Y Z

] [ˆ̇xi
ẋi+1

]
=

(
ĴTi W + JTi+1Y

)
ˆ̇xi +

(
ĴTi X + JTi+1Z

)
ẋi+1

= P ˆ̇xi +Qẋi+1 (35)

First we will expand the right most term of (35) and
substitute (31) and (33):

Q = ĴTi X + JTi+1Z

= −ĴTi
(
ĴiĴTi

)−1

ĴiJTi+1

(
Ji+1N̂iJTi+1

)−1

(36)

+JTi+1

(
Ji+1N̂iJTi+1

)−1

= −Ĵ#ĴiJTi+1

(
Ji+1N̂iJTi+1

)−1

+JTi+1

(
Ji+1N̂iJTi+1

)−1

=
(
I− Ĵ#

i Ĵi
)

JTi+1

(
Ji+1N̂iJTi+1

)−1

= N̂iJTi+1

(
Ji+1N̂iJTi+1

)−1

= N̂T
i JTi+1

(
Ji+1N̂iN̂T

i JTi+1

)−1

=
(
Ji+1N̂i

)#

(37)

The last two steps are possible because N̂ is symmetric and
idempotent. Next we expand the left hand term of (35) and
substitute (32) and (34):

P = ĴTi W + JTi+1Y

= ĴTi
(
ĴiĴTi

)−1

+ĴTi
(
ĴiĴTi

)−1

ĴiJTi+1

(
Ji+1N̂iJTi+1

)−1

Ji+1Ĵ
#
i

−JTi+1

(
Ji+1N̂iJTi+1

)−1

Ji+1Ĵ
#
i

= Ĵ#
i + Ĵ#

i ĴiJTi+1

(
Ji+1N̂iJTi+1

)−1

Ji+1Ĵ
#
i

−JTi+1

(
Ji+1N̂iJTi+1

)−1

Ji+1Ĵ
#
i

= Ĵ#
i − N̂iJTi+1

(
Ji+1N̂iJTi+1

)−1

Ji+1Ĵ
#
i

= Ĵ#
i −

(
Ji+1N̂i

)#

Ji+1Ĵ
#
i (38)

Substituting (37) and (38) into (35) yields:

q̇ = Ĵ#
i

ˆ̇xi −
(
Ji+1N̂i

)#

Ji+1Ĵ
#
i

ˆ̇xi +
(
Ji+1N̂i

)#

ẋi+1

= Ĵ#
i

ˆ̇xi +
(
Ji+1N̂i

)# (
ẋi+1 − Ji+1Ĵ

#
i

ˆ̇xi
)

(39)

Finally, we invoke the induction hypothesis and substitute
(26) into (39):

q̇ = q̇i +
(
Ji+1N̂i

)#

(ẋi+1 − Ji+1q̇i)

�

IX. ACKNOWLEDGMENTS

This research was supported in part by National Sci-
ence Foundation grants ECS-0325383, IIS-0312802, IIS-
0082995, ECS-0326095, ANI-0224419, the DARPA program
on Learning Locomotion, a NASA grant AC98-516, an
AFOSR grant on Intelligent Control, the ERATO Kawato
Dynamic Brain Project funded by the Japanese Science and

Technology Agency, and the ATR Computational Neuro-
science Laboratories. We thank the reviewers for referring
us to [18].

REFERENCES

[1] F. Hardarson, ”Stability analysis and synthesis of statically balanced
walking for quadruped robots,” in Mechatronics Lab, Department of
Machine Design. Stockholm: Royal Institute of Technology (KTH),
2002.

[2] M. Vukobratovic and J. Stepanenko, ”On the stability of anthropomor-
phic systems,” Journal of Mathematical Bioscience, vol. 15, pp. 1-37,
1972.

[3] M. Vukobratovic and B. Borovac, ”Zero-mement point – Thirty five
years of its life,” International Journal of Humanoid Robotics, vol. 1,
pp. 157-173, 2004.

[4] Y. Nakamura, H. Hanafusa, and T. Yoshikawa. Task-priority based
redundancy control of robot manipulators, International Journal of
Robotics Research, 6(2):3-15, 1987.

[5] B. Siciliano and J. Slotine, ”A general framework for managing
multiple tasks in highly redundant robotic systems, Fifth International
Conference on Advance Robotics, Pisa, Italy, 1991, pp. 1211-1216.

[6] S. Chiaverini. ”Singularity-robust task-priority redundancy resolution
for real-time kinematic control of robot manipulators”, IEEE Transac-
tions on Robotics and Automation, Vol 13, No. 3:398-410, 1997.

[7] P. Baerlocher, and R. Boulic, ”Task-priority formulations for the kine-
matic control of highly redundant articulated structures”, Proceedings of
IEEE/RSJ International Conference on Intelligent Robots and Systems,
323-329, 1998.

[8] G. Marani, J. Kim, J. Yuh, and W.K. Chung ”Algorithmic singularities
avoidance in task-priority based controller for redundant manipulators”,
Proceedings of the 2003 IEEE/RSJ International Conference on Intel-
ligent Robots and Systems, Las Vegas, Nevada, 3570-3574, 2003.

[9] J. Nakanishi, R. Cory, M. Mistry, J. Peters, S. Schaal, ”Comparative
Experiments on Task Space Control with Redundancy Resolution”,
2005 IEEE/RSJ International Conference on Intelligent Robots and
Systems, Edmonton, Canada, 2005, pp. 3901-3908.

[10] D. Pongas, M. Mistry, and S. Schaal, ”A Robust Quadruped Walking
Gait for Traversing Rough Terrain”, 2007 International Conference on
Robotics and Automation, Rome, Italy, 2007.

[11] L. Sentis and O. Khatib, ”Control of Free-Floating Humanoid Robots
Through Task Prioritization”, in Proceedings of the 2005 International
Conference on Robotics and Automation, Barcelona, Spain, 2005,
pp.1730-1735.

[12] S. Dubowsky and E. Papadopoulos. The kinematics, dynamics, and
control of free-flying and free-floating space robotic systems. IEEE
Transactions on Robotics and Automation, 9(5), October 1993.

[13] O. Khatib, A unified approach to motion and force control of robot
manipulators: The operational space formulation, International Journal
of Robotics Research, 3(1):43-53, 1987.

[14] J. Nakanishi, M. Mistry, and S. Schaal, ”Inverse dynamics control
with floating base and constraints”, submitted to the 2007 International
Conference on Robotics and Automation, Rome, Italy, 2007.

[15] J. Peters, M. Mistry, F. Udwadia, R. Cory, J. Nakanishi, S. Schaal.,
”A unifying methodology for the control of robotic systems”2005
IEEE/RSJ International Conference on Intelligent Robots and Systems,
Edmonton, Canada, 2005, pp. 1824-1831.

[16] Sugihara,T. Mobility Enhancement Control of Humanoid Robot based
on Reaction Force Manipulation via Whole Body Motion. PhD thesis,
University of Tokyo, 2004.

[17] L. Sciavicco, B. Siciliano, Modeling and Control of Robot Manipula-
tors, McGraw-Hill, Inc., New York, 1996.

[18] A. Maciejewski and C. Klein, Obstacle Avoidance for Kinematically
Redundant Manipulators in Dynamically Varying Environments, The
International Journal of Robotics Research, Vol. 4, No. 3, pp.109–117,
1985.

[19] G. Strang, Linear Algebra and its Applications, 3rd ed., Harcourt Brace
Jovanovich College Publishers, Orlando, 1988.

