
The New Robotics—towards human-centered
machines

Stefan Schaal1

1Computer Science and Neuroscience, University of Southern California, 3710 S. McClintock Avenue—
RTH 401, Los Angeles, California 90089-2905 and ATR Computational Neuroscience Laboratories,
2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-02

�Received 26 December 2006; accepted 21 May 2007; published online 16 July 2007)

Research in robotics has moved away from its primary focus on industrial
applications. The New Robotics is a vision that has been developed in past years
by our own university and many other national and international research
institutions and addresses how increasingly more human-like robots can live
among us and take over tasks where our current society has shortcomings. Elder
care, physical therapy, child education, search and rescue, and general
assistance in daily life situations are some of the examples that will benefit from
the New Robotics in the near future. With these goals in mind, research for the
New Robotics has to embrace a broad interdisciplinary approach, ranging from
traditional mathematical issues of robotics to novel issues in psychology,
neuroscience, and ethics. This paper outlines some of the important research
problems that will need to be resolved to make the New Robotics a reality.
[DOI: 10.2976/1.2748612]
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In 1921, Karel Capek’s play Ros-
sum’s Universal Robots—largely cred-
ited to be the beginning of the era of ro-
botics [e.g., Sciavicco and Siciliano
(1996)]—provided two interesting vi-
sions. First, robots were human-like,
and second, they interacted with hu-
mans in a natural, i.e., human-like, way.
For more than half a century after Ca-
pek’s conception of a robot, realizations
lagged far behind his ideas: robots were
minimalist mechanical devices, far
from achieving any general human-like
performance, and there was essentially
no interaction between humans and ro-
bots, except for a programmer upload-
ing code. Of course, all this made
sense, as robots were merely used for
highly repetitive and high precision po-
sitioning tasks in industry. And it is in
this domain that, so far, robots have
made a difference and contributed in
useful ways to the advance of technol-
ogy and industrial productivity.

The beginning of the 21st century,
however, witnessed a remarkable

change in the research focus of robot-
ics. As initiated by artificial intelli-
gence in the 1980’s and 1990’s, there
has always been great interest in gener-
ating more general purpose and intelli-
gent robotic machines. As there was
little application for such robots in
industry—i.e., industrial special pur-
pose robots are hard to beat in their pro-
ductivity on the task they were de-
signed for—work on intelligent robots
was initially largely confined to univer-
sity research and some unique research
programs like space exploration, un-
derwater exploration, etc. With the ad-
vance of information technology and
mechanical design, however, Capek’s
vision of human-like, autonomous, and
interactive robots has gradually be-
come within the reach of research pro-
totypes. In the late 1990’s, a new field
of robotics became salient, humanoid
robotics, primarily through pioneering
work at Waseda University, Sarcos Inc.,
and the Honda Corporation [e.g., for an
overview, see Menzel and D’Alusio
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(2000)]. In these places, the first full-body humanoid robots
were built and introduced to the research community and
popular press. Waseda University’s Wabian series of human
robots primarily focused on biped walking skills, as did Hon-
da’s Asmio robot, which, due to its association with a very
large company and its very refined appearance, has received
a lot of attention all over the world. The Sarcos humanoid
robot “DB” focused on autonomous manipulation skills, of-
ten paired with learning abilities that were derived from
ideas from computational neuroscience (Atkeson et al.,
2000). By now, numerous humanoid robots exist, primarily
in Asia and Japan in particular, but also in Europe and the
US. Since the year 2000, there is even a specialized confer-
ence devoted to humanoid robotics, the IEEE/RAS Interna-
tional Conference on Humanoid Robotics.

Besides the long-standing scientific challenge of under-
standing how the human brain works and how to create an
artificial system with similar capabilities as found in hu-
mans, is there any real use to having humanoid robots? From
the viewpoint of traditional manufacturing in industry, the
answer would probably be negative, as the cost/benefit ratio
of humanoid robots is—so far and in the medium future—
quite unattractive. But traditional industry is most likely not
what the New Robotics is going to impact on. Rather, hu-
manoid and similar robots will be part of our normal life, i.e.,
they will take over functions in our society where there are
simply too few humans to cope with societal needs. This is-
sue has been recognized and put forward by many countries
in the world, often sparked by the trends of increasing pro-
portions of older people in the society and the associated
danger of a future shortage of adequate care giving. How-
ever, there are many other areas where robots can be helpful.
Work in hazardous environments, and search and rescue mis-
sions after disasters are among the most commonly men-
tioned issues. Robots can also act as physical therapists to
help patients exercise properly and regain lost motor
functions—for instance, the lack of physical therapists pro-
vides stroke patients in the US with only about 40 min of
training a day, while about 6 h a day would be needed in the
immediate poststroke period to regain motor functions (Taub
and Wolf, 1997; van der Lee et al., 1999; Wolf and Blanton,
1999)—wouldn’t it be nice if one could “check out” a robot
physical therapist from the local pharmacy? Of course, ro-
bots could help in reaching, carrying, and manipulating ob-
jects for people in convalescence and with disabilities—this
topic is often discussed under the name of personal robotics
or assistive robotics. These robots can also take over mentor-
ing and cognitive functions, like reminding people to take
their medications in time, or to not forget other scheduled
activities. There are also interesting opportunities for robots
in the education and the daily life of children. For instance,
autistic children seem to react very positively to educational
games with robots (e.g., Robins et al., 2005). And robots
could also become playmates and educational helpers in

school scenarios such that children become and remain inter-
ested in higher education in science and technology. Many
more scenarios could be enumerated here—Fig. 1 provides
an artist’s sketch of some of these ideas.

It is important to emphasize that the New Robotics is go-
ing to be human-centered1, i.e., robots will work with hu-
mans in normal human environments. And it is in this role of
assistive robots that many new and interdisciplinary compo-
nents become part of robotics research. For instance, if a ro-
bot is supposed to be accepted by children and adults, it
needs to adhere to certain social behaviors and standards that
we as humans find acceptable. Thus, the psychology and eth-
ics of human-robot interaction needs to be explored. If a ro-
bot is going to act as a physical therapist, the robot needs to
incorporate knowledge about the neural and musculo-
skeletal deficiencies of a patient, and tailor exercises and
suggestions for improvements accordingly. Essentially, such
a robot must have some knowledge of how the human brain
controls movement, and how neural deficiencies, e.g., due to
stroke, affect the movement abilities of a patient. Or, if a ro-
bot is supposed to work in a human environment with the
same objects and tools that humans use in daily life, it may be
beneficial to understand how humans accomplish motor
skills and how the human skill repertoire is structured. Thus,

1There are also some dedicated workshops for human-centered robotics that have been

started recently, e.g., the International Workshop on Human-Centered Robotics.

Figure 1. An artist’s sketch of future involvement of robots in
the society: „a… assistive robots, „b… playmate robots in child
education, „c… robots for mentoring and assistance in manipu-
lation tasks, „d… robots that teach movement exercises, „e… per-
sonal robots for the elderly, „f… robots for surveillance and pro-
tection of children and adults.
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roboticists, traditionally deeply grounded in applied math-
ematics, mechanics, control theory, and optimization theory,
are suddenly confronted with a wealth of new topics ranging
from psychology, biology, and neuroscience to ethics. The
New Robotics will require a new kind of scientist that can
traverse a very broad range of different disciplines.

Figure 2 is an attempt to structure research topics in this
new, human-centered robotics into three major categories: (i)
action, (ii) interaction, and (iii) engagement. Action research
is primarily concerned with issues of motor control in both
humans and robots. Interaction research emphasizes human-
robot or robot-robot interaction, i.e., the basic research of
how two systems can act together in order to accomplish a
goal—at one extreme, this means that one system, e.g., the
human, instructs the other system, the robot, what to do. At
the other extreme, the two systems could work together to
accomplish a goal, e.g., as in jointly carrying a heavy object.
Finally, engagement research examines the cognitive and
psychological components of human-centered robotics.
Naturally, the structure suggested in Fig. 2 is not crisp, i.e.,
there is a large amount of overlap between action, interac-
tion, and engagement research. Nor is the list of research top-
ics in Fig. 2 comprehensive. But for the purpose of giving a
perspective on the future of robotics research and in order to
review some relevant recent literature, Fig. 2 provides a use-
ful guideline for the coming sections of this paper. It should
be noted that several other perspectives of the future of ro-
botics can be found in the literature (e.g., Khatib et al., 2004;
Brock et al., 2005).

ACTION RESEARCH
Action research is grounded in theory of motor control,
which was largely laid out in classical engineering fields like
cybernetics (Wiener, 1948), optimal control (Bellman,
1957), and control theory (Slotine and Li, 1991; Narendra
and Annaswamy, 2005). These fields addressed many crucial
issues of movement systems, including negative feedback

control, feedforward control, nonlinear control, movement
planning with optimization criteria, stability, control with
time delayed system, adaptive control, stochastic control,
state estimation, control of overactuated and underactuated
systems, etc. Figure 3 illustrates a classical control diagram
for motor control that highlights the different stages of a con-
trol circuit, each of which is associated with a large number
of research topics. Many of these topics have received ample
attention in robotics research such that they have become
textbook knowledge (e.g., Russell and Norvig, 1995; Scia-
vicco and Siciliano, 2000). Several issues, however, deserve
special attention. It should be noted that a large amount of
research in biological motor control is focused on topics
similar to those in Fig. 3 (Sabes, 2000; Schaal and Schweig-
hofer, 2005; Shadmehr and Wise, 2005).

MOTOR PRIMITIVES AND MOTOR LIBRARIES
While issues like coordinate transformations and motor
command generation in robotics (Fig. 3) are fairly well un-
derstood by now (e.g., Sciavicco and Siciliano, 2000), they
rely on someone providing the robot with an appropriate plan
of what to do. In many robotics projects, this part is taken
over by a human designer who manually creates the plan for
a particular behavior. While this approach is highly success-
ful in static environments, the New Robotics is inherently
about robots acting in normal human, i.e., dynamic environ-
ments. Thus, the question arises of how to create flexible and
reactive motor control and planning. Most commonly, an an-
swer is sought by creating a toolbox of elementary move-
ments, which in sequence or superposition create a suffi-
ciently large spectrum of complex motor skills. We call such
elementary movements motor primitives, but in the litera-
ture, they have also been denoted as schemas, basis behav-
iors, options, macros, etc. (for a review, see Mataric, 1998;
Schaal, 1999; Schaal et al., 2003).

One can distinguish at least two major trends on research
on movement primitives. First, movement primitives can be

Figure 2. Research topics in
human-centered robotics.
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modeled as dynamic systems, like point attractors and limit
cycles (e.g., Bullock and Grossberg, 1988; Burridge et al.,
1999; Schaal et al., 2004; Righetti and Ijspeert, 2006). The
dynamic systems approach allows addressing various impor-
tant issues in human-like movement in a natural way, e.g.,
stability issues, perception action coupling, obstacle avoid-
ance with potential fields, etc. Frequently, dynamic systems
motor primitives are easily interpreted as behavioral units,
e.g., reaching for a target, biped locomotion, etc. As a draw-
back, modeling with nonlinear differential equations is often
quite complex and not always analytically tractable.

The second major approach to movement primitives is by
means of statistical techniques (e.g., Atkeson et al., 2000;
Haruno et al., 2001; Doya et al., 2002; Jenkins, 2003; Ina-
mura et al., 2004). As an advantage, statistical methods offer
well-understood tools and mechanisms to extract movement
modules from empirical data, such that movement primitives
can be grounded in behavioral recordings from humans. As a
disadvantage, it seems that statistically extracted movement
primitives are frequently not behaviorally meaningful, such
that it is not clear how well such movement primitives gener-
alize to new behaviors. Moreover, phenomenal like percep-
tion action coupling, obstacle avoidance, etc., are not natu-
rally included in statistical models of movement primitives.

So far, comprehensive implementations of any move-
ment primitive approach are lacking, and it is hard to objec-
tively favor one approach over the other.

MOVEMENT MODELING
In order to operate in environments that were built for hu-
mans, it is often advantageous for robots to employ similar
movement strategies as humans. Additionally, if robots move
like humans, humans accept them more easily as partners
due to our inherent tuning to natural looking movement
(Johansson, 1973; Viviani and Schneider, 1991; Viviani et
al., 1997). Thus, one needs to ask the question of what prin-
ciples (or models) humans use in movement generation, and

what are the underlying strategies of human motor skills.
These questions are hard, as they have been addressed by the
field of behavioral psychology for motor control and neuro-
motor control for several decades (e.g., see Schmidt, 1988;
Arbib, 1995a; Arbib, 1995b; Shadmehr and Wise, 2005) and
definite conclusions are still missing.

However, it is possible to highlight several characteristics
of human movement, in particular, if these characteristics are
largely missing in robotic systems. One of these is that hu-
man movement generation is highly compliant, while most
(even modern) robots use rather stiff (high gain) control. The
reason why roboticists favor high gain control is that it re-
duces the need for accurate models of the robot and its envi-
ronment. High gain control simply means that position and
velocity errors between a desired and an achieved trajectory
are multiplied with a large number, and these results are then
added to the motor commands. Thus, small deviations from
the desired movement lead to strong corrective motor com-
mands, i.e., the robot feels very stiff. The problem with stiff
control is that any unforeseen perturbation is fought with
very high effort, potentially so high that either the robot itself
of the environment may get damaged. Humans and animals,
on the other hand, softly give in to perturbation, and thus
avoid hurting the environment (which may be another hu-
man) or themselves. Given that in a dynamic environment
collisions with the environment are unavoidable, compliant
control seems to be crucial for the New Robotics.

An alternative to high gain control is low gain control
with feedforward models (An et al., 1988; Miall and Wolp-
ert, 1996; Kawato, 1999), i.e., models of the dynamics of the
robot that support predicting the optimal motor command for
any position, velocity, and acceleration of the robot’s degrees
of freedom. In theory, the design specifications of a robot
allow generating these models fairly accurately. But in prac-
tice, theoretical models and actual dynamics of the robot of-
ten do not match, due to complex actuator dynamics, wires,
hoses, protective shells, etc., on the robot. Thus, low gain

Figure 3. Sketch of a generic control diagram that is typically used in robotics research.
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model-based control on complex human-like robots is actu-
ally quite hard and still a topic of ongoing research (Vijaya-
kumar and Schaal, 2000; Vijayakumar et al., 2005). The
topic becomes even more complex if the interaction dynam-
ics between a robot and its environment are taken into
account—every walking system, for instance, has these in-
teraction dynamics due to ground-reaction forces. Interac-
tions with the environment create constraints, and the math-
ematics of model-based control becomes significantly more
complex (Peters et al., 2005a; Nakanishi et al. submitted). As
a consequence, compliant control in human-like robots has
hardly been achieved, neither theoretically nor experimen-
tally (for some exceptions, see Albu-Schäffer et al., 2007),
and, potentially, a lot can be learned from human movement
studies (Gomi and Kawato, 1996; Franklin et al., 2003; Osu
et al., 2004) and the properties of the human musculo-
skeletal system (Brown et al., 1999; Brown and Loeb, 1999;
Loeb, 2001).

Another fascinating feature of human motor control is
that most of the time, we accomplish several tasks in parallel,
e.g., balancing on two feet and grasping for an object. Robot-
ics theory has developed methods of hierarchical task priori-
tization (Nakamura, 1991; Khatib et al., 2004; Sentis and
Khatib, 2004; Arimoto et al., 2005; Peters et al., 2005b) that,
in theory, are quite appealing and capable. In recent work,
Sentis and Khatib (Khatib et al., 2002; Khatib et al., 2004;
Sentis and Khatib, 2004) demonstrated that rather natural
looking behaviors could be generated with appropriate task-
space controllers and hierarchies. However, most of the
methods rely on accurate models of the robot, and become
quite complex when the robot is in contact with the environ-
ment, particularly when the contact conditions switch (like in
locomotion or object manipulation). Rather little experimen-
tal evaluations exist of hierarchical task control on complex
robotic systems, and behavioral studies with humans have
hardly addressed such complicated problems.

MOTOR SKILL UNDERSTANDING AND LEARNING
Much more needs to be understood of how to represent mo-
tor skill. There is usually a choice as to whether special task
coordinates, general external coordinates (e.g., Cartesian co-
ordinates), or internal (joint-angle) coordinates are the most
suitable (Saltzman, 1979; Schaal et al., 1992). Special con-
trol strategies can make motor skills easier or harder (e.g.,
Beek, 1989; Schaal et al., 1992). Some ideas exist how to
generate generic representations of motor skill (Wada and
Kawato, 1995; Miyamoto et al., 1996; Miyamoto and Ka-
wato, 1998; Ijspeert et al., 2003), but, so far, a generic ap-
proach to skill acquisition is missing.

Another important component in understanding motor
skills lies in representing the task goal, i.e., some kind of a
metric that measures task achievement. For some tasks, like
reaching for an object, this is straightforward as the metric of
success is simply the distance of the hand from the object.

For other tasks, for instance, bipedal locomotion, the task
goal is much more abstract and not easily quantifiable. For
biped locomotion, the primary task goal is not to fall over,
but a secondary task goal is to conserve energy, a tertiary
task goal is to reduce wear and tear on the motor system, and
another task goal could be to maintain balance while simul-
taneously reaching for a coffee cup. The goal to balance itself
is not easily quantifiable: we could choose the desired posi-
tion of the center of gravity, but also a desired position of the
zero moment point (Kajita and Tani, 1996). Other research-
ers may claim that such measures are unsuitable for human-
like biped locomotion and resort to describing the biped lo-
comotion in terms of a stability measure of the associated
limit cycle (McGeer, 1990; Collins et al., 2005). Essentially,
specifying task specific optimization criteria is not easy.

If we assume we have a task representation and a metric
to measure task success, it is still not clear how to choose
appropriate motor commands to accomplish the task. In-
sights from a human designer are one possibility, but as men-
tioned before, the New Robotics will require robots that can
react to dynamic environments, and it is unlikely that human
designers can foresee all possible events that a robot will be
exposed to. Thus, learning robots would be very desirable, a
field that is called learning control. It is helpful to follow one
of the most general frameworks of learning control as origi-
nally developed in the middle of the 20th century in the fields
of optimization theory, optimal control, and in particular dy-
namic programming (Bellman, 1957; Dyer and McRey-
nolds, 1970). Here, the goal of learning control was formal-
ized as the need to acquire a task dependent control policy •
that maps the continuous valued state vector x of a control
system and its environment, possibly in a time dependent
way, to a continuous valued control vector u:

u = ��x,�,t� . �1�

The parameter vector � contains the problem specific param-
eters in the policy • that need to be adjusted by the learning
system. Since the controlled system can generally be ex-
pressed as a nonlinear function

ẋ = f�x,u� �2�

in accordance with standard dynamical systems theory (Stro-
gatz, 1994), the combined system and controller dynamics
result in

ẋ = f�x,��x,t,��� . �3�

Thus, learning control means finding a (usually nonlinear)
function • that is adequate for a given desired behavior and
movement system.

A general approach of learning control policies is rein-
forcement learning (Sutton and Barto, 1998; Schaal, 2002;
Barto and Mahadevan, 2003). Unfortunately, reinforcement
learning is a rather slow technique, with tremendous compu-
tational and theoretical problems when it comes to applying
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it to actual robots (Peters et al., 2003a; Peters et al., 2003b;
Peters et al., 2005c). Alternatively, one can choose to apply
learning only to some parts of the control problem, e.g., as in
learning the internal models that are need in feedforward
control. Such tasks can be achieved with supervised learning
techniques, which is computationally and practically much
more tractable (Atkeson et al., 1986; Schaal and Atkeson,
1994; Atkeson et al., 1997a; Atkeson et al., 1997b; Schaal et
al., 2002; Peters and Schaal, 2006). Unfortunately, learning
applied to human-like robots has been pursued only to a
rather small extent, and a large amount of research both on
the theoretical and practical side of machine learning and ro-
botics remains to be done (for a review, see Schaal, 2002;
Schaal, in press).

INTERACTION RESEARCH
Interaction research adds an interesting component to robot-
ics, i.e., how to coordinate two movement systems to cooper-
ate on the same task goal. Of course, this cooperation is not
constrained to a mechanical cooperation but allows for any
kind of interaction, e.g., language, gestures, etc. Interaction
research has recently started its own research field and asso-
ciated conferences: human-robot interaction (HRI). To illus-
trate the complexity of HRI, we could tentatively define it
similar to the term “human-computer interaction:”

HRI is where both humans and robots are engaged in a
mutual affecting response experience. In technical
terms, we have (at least) two-coupled control policies,
one working out of a human, one out of a robot

The problem here is that HRI couples at least two nonlinear
dynamic systems. One of them, the robot, may be rather well
understood. The other, the human, is less well understood,
and even at the risk of being hurt if HRI goes wrong. In gen-
eral, it is well understood that coupled nonlinear dynamic
systems can behave in a predictable or unpredictable, highly
complex manner (Strogatz, 1994). Thus, research has to be
rather careful in designing methods for HRI, always keeping
in mind that simple algorithms that are well understood in
isolation can cause damage when coupled over multiple sys-
tems. That is, ethics and safety concerns are highly important
in HRI, as well as a solid understanding of the dynamics of
human action and perception, and which stimuli or behaviors
could trigger dangerous situations for the human, e.g., sei-
zures from perceptual stimulation, emotional reactions, or
inappropriate physical reactions.

MOVEMENT AND ACTIVITY IMITATION
Cultural and imitation learning are among the most fascinat-
ing elements of humans, and often believed to be a corner-
stone for how humans could develop such a high level of in-
telligence (cf. reviews in Piaget, 1951; Tomasello et al.,
1993; Meltzoff and Moore, 1994; Byrne and Russon, 1998;
Rizzolatti and Arbib, 1998; Dautenhahn and Nehaniv, 2002).
For more than 20 years, roboticists have tried to add imita-

tion learning, or learning from demonstration as it was called
initially, to the repertoire of robot learning. Movement imita-
tion is familiar to everybody from daily experience: a teacher
demonstrates a movement, and immediately the student is
capable of approximately repeating it. From the viewpoint of
learning, a teacher’s demonstration as the starting point of
one’s own learning can significantly speed up the learning
process, as imitation usually drastically reduces the amount
of trial and error that is needed to accomplish the movement
goal by providing a good example of a successful movement
(Schaal, 1999). Thus, from a robotics point of view, it is im-
portant to understand the detailed principles, algorithms, and
metrics that subserve imitation, starting from the visual per-
ception of the teacher up to issuing motor commands that
move the limbs of the student.

Figure 4 sketches the major ingredients of a conceptual
imitation learning system [for a review of many related pa-
pers, see Schaal (1999)]. Visual sensory information needs to
be parsed into information about objects and their spatial lo-
cation in an internal or external coordinate system; the de-
picted organization is largely inspired by the dorsal (what)
and ventral (where) stream as discovered in neuroscientific
research (van Essen and Maunsell, 1983). As a result, some
form of postural information of the movement of the teacher
and/or three-dimensional object information about the ma-
nipulated object (if an object is involved) should become
available. Subsequently, one of the major questions revolves
around how such information can be converted into action.
For this purpose, Fig. 4 alludes to the concept of movement
primitives, which was already discussed above. In general,
we think of movement primitives to code complete temporal
behaviors, like “grasping a cup,” “walking,” “a tennis serve,”
etc. Figure 4 assumes that the perceived action of the teacher
is mapped onto a set of existing primitives in an assimilation
phase, also suggested in Demiris and Hayes (2002) and
(Wolpert et al., submitted). This mapping process also needs
to resolve the correspondence problem concerning a mis-
match between the teachers body and the student’s body
(Dautenhahn and Nehaniv, 2002). Subsequently, the most ap-
propriate primitives are adjusted by learning to improve the
performance in an accommodation phase. Figure 4 indicates
such a process by highlighting the better-matching primitives
with increasing linewidths. If no existing primitive is a good
match for the observed behavior, a new primitive must be
generated. After an initial imitation phase, self-
improvement, e.g., with the help of a reinforcement-based
performance evaluation criterion (Sutton and Barto, 1998),
can refine both movement primitives and an assumed stage
of motor command generation (see below) until a desired
level of motor performance is achieved (e.g., Peters et al.,
2003a; Bentivegna et al., 2004a).

Imitation learning requires a high level of motor and per-
ceptual competency, none of which has been realized in ro-
botic systems so far. Nevertheless, the field of imitation in
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robotics has seen a large amount of research in the past ten
years, and excellent reviews and paper collections exist (e.g.,
Schaal, 1999; Mataric, 2000; Dautenhahn and Nehaniv,
2002; Schaal et al.; Arbib, 2006).

MOVEMENT AND ACTIVITY RECOGNITION
Understanding human movement and activity will be an im-
portant component in the New Robotics, as robots will need
to infer and react autonomously to the context of what is hap-
pening around them. Thus, detecting humans in the environ-
ment and recognizing who they are and what they are doing
will be crucial. While most related research has originated in
computer vision (e.g., for reviews, see Gavrila, 1997; Aggar-
wal and Cai, 1999) and is beyond the scope of this paper,
from the viewpoint of movement generation, a potential
shortcoming of those approaches is that representations used
for recognition are mostly inappropriate for the control of
movement, as they do not relate to the notion of joints,
muscles, joint torques, or task goals. Given that robots in the
New Robotics will not just be used for surveillance, but
rather need to act upon what they perceived, e.g., as in move-
ment imitation or physical therapy, we need action-oriented
perception rather than perception in isolation.

Sparked by the discovery of “mirror neurons” in neuro-

biological research, i.e., some neurons that are situated at the
interface of perception and action in humans and monkeys
(Rizzolatti and Arbib, 1998; Schaal, 1999; Frith and Wolpert,
2004; Arbib, 2006), and that indeed seem to be involved in
action-oriented perception, several research projects in ro-
botics and related areas have embarked to develop corre-
sponding theories and algorithms. That is, the modular motor
control approach by Wolpert and Kawato (1998), the dy-
namic systems approach by Ijspeert et al. (Ijspeert et al.,
2003), and the statistical approach by Inamura et al. (Ina-
mura et al., 2004) and Jenkins (Jenkins, 2003) are all meth-
ods that perform action-oriented perception and can be ap-
plied to robotics. However, it needs to be emphasized that
perception in these approaches is usually simplified, i.e., the
authors do not use raw video inputs for movement recogni-
tion, but rather equip their subjects with markers or other
means to reduce the complexity of visual processing. Thus,
much more needs to be done to achieve action-oriented per-
ception in truly natural environments.

COLLABORATIVE TASK ACHIEVEMENT
In certain situations, it will be useful if multiple robots, or
robots and human, collaborate in order to achieve a particu-
lar goal. There are two kinds of collaboration: collaboration

Figure 4. Conceptual sketch of an imitation learning system. The right side of the figure contains primarily perceptual elements and
indicates how visual information is transformed into spatial and object information. The left side focuses on motor elements, illustrating how
a set of movement primitives competes for a demonstrated behavior. Motor commands are generated from input of the most appropriate
primitive. Learning can adjust both movement primitives and the motor command generator.
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by means of physical contact (e.g., as jointly carrying an ob-
ject) and collaboration purely by means of information shar-
ing (e.g., as in multiple robots mapping an environment). The
latter domain has received a fair amount of attention in re-
cent years due to the RoboCup competition, i.e., mobile ro-
bots playing soccer in teams (e.g., see Bredenfeld et al.,
2006), and there is also a technical conference on multi-robot
systems (e.g., see Parker et al., 2005). Many of the tech-
niques developed in this research area will have bearing on
the New Robotics, but expanding this paper to this domain
would reduce our focus on interdisciplinary human-centered
research too much.

Physical collaboration of robots (or robots and humans)
is largely addressed under the name of force control in robot-
ics, as the sum of forces acting on a jointly manipulated ob-
ject are the most central for the object’s behavior. A theoreti-
cally very appealing framework of such manipulation was
developed by Khatib (Khatib, 1987), initially with the goal of
explaining how force could be the most crucial variable in
coding motor tasks (in contrast to position, velocity, or accel-
eration). In Featherstone and Khatib (1997) it was realized
that Khatib’s framework on force-based task-level control
(a.k.a. operational space control) was very suitable for col-
laborative task achievement, as the special formulation of
Khatib avoids complex mathematical interaction between
the collaborating motor systems, i.e., each system can indi-
vidually contribute its force contribution without taking the
combined state of the all contributing motor systems into ac-
count. Khatib’s formulation of task control remains thus one
of the most appealing theoretical approaches to the genera-
tion of robotic motor skills, as it combines the ability of com-
pliant control, hierarchical control, and even multi-robot co-
ordination. As mentioned before, the only drawback is that
these properties require quite accurate models of the robot
system. It will be interesting to see in future work whether
human motor control can be shown to operate according to
similar principles as suggested by Khatib’s work, and some
work in this direction is under way (Scholz and Schoner,
1999; Todorov and Jordan, 2002; Todorov, 2005).

SAFETY
While this paper will not address technical issues of safety in
the New Robotics, it is nevertheless important to point out
that safety will be a major concern and roadblock in the de-
velopment of the New Robotics. It is inevitable that there
will be accidents between humans and robots in a human-
centered robotics environment. The robot may not trigger
such issues, but who will be able to prevent humans from
accidentally pushing the robots, children to climb on them,
etc.? The most powerful ways of reducing the risk of injuries
is by means of lightweight and compliant robot design (e.g.,
Zinn et al., 2004), and by adopting recovery behaviors simi-
lar to what we humans do (e.g., Fujiwara et al., 2002).

ENGAGEMENT RESEARCH
When watching an industrial robot assembling a car, one can
be fascinated by the technology for a moment, but after a few
repetitions, this interest fades. Engagement research tries to
understand what it takes to keep humans interested when in-
teracting with a robot, which will be crucial in the New Ro-
botics when robots are to become educators, physical thera-
pists, personal assistants, or even pets. Engagement research
is the least of an original robotics topic and much more
rooted in psychology and cognitive sciences. In this paper,
we will thus focus only on a few issues of engagement re-
search that relate the most strongly to the technical research
of robotics.

ATTENTION AND SHARED ATTENTION
Eye movements are crucial in human behavior in at least two
ways. First, we use them to shift the focus of our attention to
an object of interest, such that it can be inspected with the
high-resolution foveal region of the retina, and second, we
use our eyes to inform others about interesting objects, i.e.,
we share attention and elicit engagement. Additionally, the
human oculomotor system has several lower level behaviors
that subserve the stabilization of visual input (the vestibulo-
ocular reflex, the opto-kinetic reflex, smooth pursuit, and
vergence, e.g., see Shibata et al., 2001). Finally, eye move-
ments seem to be an important component in creating com-
plex motor sequences (Flanagan and Johansson, 2003;
Flanagan et al., 2006), such that sequential action generation
may require understanding the principles of visual attention
and planning in visual space.

From a robotics point of view, there has been a fair mount
of work on creating low-level motor behaviors of vision
heads (e.g., Demiris et al., 1997; Breazeal et al., 2001; Shi-
bata et al., 2001; Panerai et al., 2003; Aryananda and Weber,
2004). So far, however, a complete implementation of all the
oculomotor behaviors of the human oculomotor system is
missing. As long as robot heads were mounted on static plat-
forms, there was often not much need for a complete oculo-
motor system, but if the head is supposed to be on a moving
humanoid robot, all the stabilization reflexes and higher-
level motor behaviors will be required. It is not that any of
these behaviors by itself is a technical problem, but rather the
challenge lies in the combination and arbitration of all be-
haviors and some required learning abilities for tuning the
behavioral parameters (Shibata et al., 2001).

Visual attention with robot vision heads has also been ex-
plored extensively (e.g., Braun, 1994; Driscoll et al., 1998;
Breazeal et al., 2001; Shibata et al., 2001; Vijayakumar et
al., 2001), but it is just recently that a rather comprehensive
visual attention system for technical applications was de-
rived from insight from neurobiology (Koch and Ullman,
1985; Itti and Koch, 2000a; Itti and Koch, 2000b; Itti and
Koch, 2001; Itti et al., 2003). This work is currently on its
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way to explore how intention (i.e., top-down task relevant bi-
ases) can influence attention and decision making (Navalpa-
kkam and Itti, 2005; Carmi and Itti, 2006).

Finally, shared attention, which is critical in engagement
research, has started to be explored in some robotics projects
(Kozima and Ito, 1998; Scassellati, 1998; Scassellati, 2002).
Capabilities required for monitoring attention include gaze
tracking, posture interpretation, facial expression recogni-
tion, etc. (e.g., Breazeal and Scassellati, 2002). It will take a
significant amount of research and technological develop-
ments until such systems become well understood, compa-
rable in their abilities to human performance, and practical in
real-world environments.

INTENT AND USER MODELING
A rather unexplored and hard question of human-robot inter-
action is how to extract the intent and preferences of some-
body’s movement. If we understood these issues, appropriate
protocols could be developed in interaction and engagement
research that appeal to individual users and take their indi-
vidual inclinations into account. Rather few research
projects can be found that relate to these questions. A first
step might be to understand human movement and activity in
terms of cost functions, i.e., to associate a particular cost
function with a particular behavior. Reinforcement learning
generates control policies based on such cost functions and
deducing the cost function from a given policy (i.e., behav-
ior) could be called inverse reinforcement learning (Ng and
Russell, 2000). Alternatively, behavioral statistics can be col-
lected from observed behavior, which subsequently charac-
terize certain user and movement preferences (Bentivegna et
al., 2004b; Billard et al., 2004). Much research work needs
to be done to find feasible approaches to the topic and intent
and user modeling, which essentially tries to approach the
topic of a “theory of mind” in algorithmic ways (Gallese and
Goldman, 1998; Scassellati, 2002; Wolpert et al., 2003).

MOTIVATION AND EMOTIONS
Closely related to intent and user modeling is the question of
how to understand motivation and emotions of humans in an
automatic way, and, of course, how to create robot behaviors
in the New Robotics that relate to those characteristics of hu-
man personalities. So far, there is empirical and explorative
work in the robotics community on this topic (e.g., Breazeal
and Scassellati, 2002; Kanda et al., 2004; Coradeschi et al.,
2006), usually by confronting human subjects with some
form of human-like looking robot and by studying their re-
action according to some psychological metrics. An interest-
ing new approach is to look into the neuroscientific basis of
motivation and emotions, investigated in the context of train-
ing and engagement. Research on training and engagement
starts from the hypothesis that motor learning itself can gen-
erate internal rewards. Specifically, it is proposed that the
nervous system computes the rate of motor skill learning,

which serves as an internal reward and adds to externals re-
ward terms. According to a preliminary model (Daw and
Touretzky, 2002; Schweighofer and Doya, 2003; Schweig-
hofer et al., 2004), the motivation to learn will depend on the
balance between successes, failures, and external rewards. In
particular, the difficulty of the observed to-be-learned move-
ment is crucial. If too easy or too hard, the rate of learning
will soon become zero. Thus, only moderate and decreasing
learning errors will yield a high gain in the positive feedback
loop that will maximize the motivation to learn. These intui-
tions can be formalized in training schedules and can lead to
methods that optimally keep students engaged for fast learn-
ing. A similar research methodology might be applicable to
other situations in which human motivation and emotions
play important roles.

CONCLUSIONS
This perspective highlighted an interdisciplinary research
program that could pave the path towards a New Robotics.
The vision is that, at some point in the near future, robots will
be ubiquitously among us and help us to fulfill tasks in an
increasingly complex society, a society that is more and more
confronted by an aging population, educational problems, di-
sasters, diseases, etc. In order to function among us, the ro-
bots in the New Robotics will need to have much more
human-like abilities in their motor behaviors, and they will
also be required to have appropriate social behaviors. Thus,
robotics research has to embrace a novel interdisciplinary
program ranging from traditional technical topics of control
up to neuroscience, psychology, cognitive sciences, and eth-
ics. This paper focused on bringing—in a noncomprehensive
way—some structure to the potential research topics in the
New Robotics. Some of these topics, e.g., those mentioned
under Action Research, have already a more solid scientific
foundation and are on their way to pilot studies on real ro-
bots. Other topics, particularly those enumerated under En-
gagement Research, are more in their infancy and it is the
task of research to find out which are the right questions to
ask, and which approaches might be promising. In some
sense, the New Robotics is nothing but the old dream of ar-
tificial intelligence to create an artificial system with similar
abilities than those of humans. It is just that the means and
approaches to this topic have changed significantly away
from the classical ideas of symbolic reasoning, and, in the
wake of improved computer technology and insights into the
human brain, rather pursue methods of statistical learning,
computational neuroscience, and computational psychology.
It is also important that the ambitions of the New Robotics
are reduced: they can really focus on societal needs and make
progress in well-defined problem areas, e.g., robotic physical
therapy or robotic education of children with special needs
(e.g., autistic children), rather than trying to create the omni-
potential robotic system for all problems. In many countries,
research agencies have started to fund the seedlings of the
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New Robotics, and it will be exciting to witness the develop-
ment of this new field over the next decade.
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